
Defending Networked Resources Against Floods of
Unwelcome Requests

by

Michael Wal�sh

S.M., Electrical Engineering and Computer Science, M.I.T., 2004
A.B., Computer Science, Harvard University, 1998

Submitted to the Department of Electrical Engineering and Computer Science
in partial ful�llment of the requirements for the degree of

Doctor of Philosophy in Computer Science
at the

Massachusetts Institute of Technology

February 2008

© 2007 Michael Wal�sh. All rights reserved.

�e author hereby grants to MIT permission to reproduce and to
distribute publicly paper and electronic copies of this document in
whole or in part in any medium now known or herea±er created.

�is version of the dissertation contains an addendum to the submitted version. �e
addendum is Appendix f. �is version also makes a few other small changes.



Defending Networked Resources Against Floods of
Unwelcome Requests

by

Michael Wal�sh

Submitted to the Department of Electrical Engineering and Computer
Science on November 8, 2007, in partial ful�llment of the requirements

for the degree of Doctor of Philosophy in Computer Science

abstract

�e Internet is a�icted by “unwelcome requests”, de�ned broadly as spurious claims
on scarce resources. For example, the CPU and other resources at a server are targets
of denial-of-service (DoS) attacks. Another example is spam (i.e., unsolicited bulk
email); here, the resource is human attention. Absent any defense, a very small number
of attackers can claim a very large fraction of the scarce resources.

Traditional responses identify “bad” requests based on content (for example, spam
�lters analyze email text and embedded URLs). We argue that such approaches are in-
herently gameable because motivated attackers can make “bad” requests look “good”.
Instead, defenses should aim to allocate resources proportionally (so if 10% of the
requesters are “bad”, they should be limited to 10% of the scarce resources).

To meet this goal, we present the design, implementation, analysis, and experi-
mental evaluation of two systems. �e �rst, speak-up, defends servers against applica-
tion-level denial-of-service by encouraging all clients to automatically send more traf-
�c. �e “good” clients can thereby compete equally with the “bad” ones. Experiments
with an implementation of speak-up indicate that it allocates a server’s resources in
rough proportion to clients’ upload bandwidths, which is the intended result.

�e second system, DQE, controls spam with per-sender email quotas. Under
DQE, senders attach stamps to emails. Receivers communicate with a well-known, un-
trusted enforcer to verify that stamps are fresh and to cancel stamps to prevent reuse.
�e enforcer is distributed over multiple hosts and is designed to tolerate arbitrary
faults in these hosts, resist various attacks, and handle hundreds of billions of mes-
sages daily (two or three million stamp checks per second). Our experimental results
suggest that our implementation can meet these goals with only a few thousand PCs.
�e enforcer occupies a novel design point: a set of hosts implement a simple storage
abstraction but avoid neighbor maintenance, replica maintenance, and mutual trust.

One connection between these systems is that DQE needs a DoS defense—and
can use speak-up. We re�ect on this connection, on why we apply speak-up to DoS
and DQE to spam, and, more generally, on what problems call for which solutions.

Dissertation Supervisor: Hari Balakrishnan
Title: Professor



To Jack and Ruth Radin



Contents

Figures 7

Previously Published Material 8

Acknowledgments 9

1 Introduction 12
1.1 �e Problem in Abstract Terms . . . . . . . . . . . . . . . 14
1.2 Philosophy . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3 Contents of the Dissertation . . . . . . . . . . . . . . . . . 16
1.4 Contributions & Results . . . . . . . . . . . . . . . . . . . 18
1.5 Confronting Controversy . . . . . . . . . . . . . . . . . . 20

2 Background 21
2.1 An Internet Underworld & Its Eco-system . . . . . . . . . 21
2.2 Numbers of Bots & Botnets . . . . . . . . . . . . . . . . . 22
2.3 Key Characteristics of the Problem . . . . . . . . . . . . . 23

3 Speak-up 25
3.1 High Level Explanation . . . . . . . . . . . . . . . . . . . 28
3.2 Five Questions . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 �reat Model & Applicability Conditions . . . . . . . . . . 31
3.4 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5 Revisiting Assumptions . . . . . . . . . . . . . . . . . . . 43
3.6 Heterogeneous Requests . . . . . . . . . . . . . . . . . . . 46
3.7 Implementation . . . . . . . . . . . . . . . . . . . . . . . 47
3.8 Experimental Evaluation . . . . . . . . . . . . . . . . . . . 50
3.9 Speak-up Compared & Critiqued . . . . . . . . . . . . . . 63
3.10 Plausibility of the �reat & Conditions . . . . . . . . . . . 69
3.11 Re�ections . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4



4 DQE 76
4.1 �e �reat . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2 Technical Requirements & Challenges . . . . . . . . . . . 79
4.3 DQE Architecture . . . . . . . . . . . . . . . . . . . . . . 81
4.4 Detailed Design of the Enforcer . . . . . . . . . . . . . . . 86
4.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . 104
4.6 Evaluation of the Enforcer . . . . . . . . . . . . . . . . . . 105
4.7 Quota Allocation . . . . . . . . . . . . . . . . . . . . . . . 116
4.8 Synthesis: End-to-End E�ectiveness . . . . . . . . . . . . . 118
4.9 Adoption & Usage . . . . . . . . . . . . . . . . . . . . . . 119
4.10 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.11 Critique & Re�ections . . . . . . . . . . . . . . . . . . . . 129

5 Comparisons& Connections 131
5.1 Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.2 Re�ections on the Taxonomy . . . . . . . . . . . . . . . . 135
5.3 Our Choices . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.4 Connections . . . . . . . . . . . . . . . . . . . . . . . . . 138

6 Critiques& Conclusion 140
6.1 Looking Ahead . . . . . . . . . . . . . . . . . . . . . . . . 141
6.2 Looking Back . . . . . . . . . . . . . . . . . . . . . . . . . 144

Appendix a—Questions about Speak-up 146
a.1 �e �reat . . . . . . . . . . . . . . . . . . . . . . . . . . 146
a.2 �e Costs of Speak-up . . . . . . . . . . . . . . . . . . . . 147
a.3 �e General Philosophy of Speak-up . . . . . . . . . . . . 148
a.4 Alternate Defenses . . . . . . . . . . . . . . . . . . . . . . 149
a.5 Details of the Mechanism . . . . . . . . . . . . . . . . . . 150
a.6 Attacks on the �inner . . . . . . . . . . . . . . . . . . . . 151
a.7 Other Questions . . . . . . . . . . . . . . . . . . . . . . . 152

Appendix b—Questions about DQE 153
b.1 General Questions about DQE . . . . . . . . . . . . . . . 153
b.2 Attacks on DQE . . . . . . . . . . . . . . . . . . . . . . . 154
b.3 Allocation, Deployment, & Adoption . . . . . . . . . . . . 155
b.4 Micropayments & Digital Postage . . . . . . . . . . . . . . 155
b.5 Alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Appendix c—Address Hijacking 158

5



Appendix d—Bounding Total Stamp Reuse 160

Appendix e—Calculations for Enforcer Experiments 162
e.1 Expectation in “Crashed” Experiment . . . . . . . . . . . . 162
e.2 Average Number of RPCs per test . . . . . . . . . . . . . . 165

Appendix f—Revisiting the Enforcer’s Design 170
f.1 Current Design Compared to Default . . . . . . . . . . . . 170
f.2 Flash Memory . . . . . . . . . . . . . . . . . . . . . . . . 174
f.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

References 176

6



Figures

1.1 Two examples of the abstract problem . . . . . . . . . . . 14

3.1 Illustration of speak-up . . . . . . . . . . . . . . . . . . . 29
3.2 �e components of speak-up . . . . . . . . . . . . . . . . 34
3.3 Speak-up with an explicit payment channel . . . . . . . . . 37
3.4 Implementation of speak-up using a payment channel . . . 49
3.5 Allocation of the server as a function of G

G+B . . . . . . . . 52
3.6 Allocation of the server under di�erent server capacities . . 53
3.7 Latency caused by the payment channel in our experiments 54
3.8 Extra bits introduced by speak-up in our experiments . . . 55
3.9 Allocation of the server to clients of di�erent bandwidths . 57
3.10 Allocation of the server to clients with di�erent RTTs . . . 58
3.11 Topology for the “bottleneck” experiments . . . . . . . . . 59
3.12 Server allocation when good & bad clients share a bottleneck 60
3.13 Collateral damage introduced by speak-up . . . . . . . . . 61
3.14 Allocation of the server for under-provisioned thinner . . 62
3.15 Rates of potential attacks observed by Sekar et al. [138] . . 71

4.1 DQE architecture . . . . . . . . . . . . . . . . . . . . . . . 81
4.2 Stamp cancellation protocol . . . . . . . . . . . . . . . . . 83
4.3 Enforcer design . . . . . . . . . . . . . . . . . . . . . . . . 87
4.4 Pseudo-code for test and set in terms of get and put . . 89
4.5 Pseudo-code for get and put . . . . . . . . . . . . . . . . 93
4.6 In-RAM index that maps k to the disk block that holds (k, v ) 94
4.7 E�ect of “bad” nodes on stamp reuse . . . . . . . . . . . . 107
4.8 Capacity of a 32-node enforcer . . . . . . . . . . . . . . . 111
4.9 Capacity of the enforcer as a function of number of nodes . 111
4.10 E�ect of livelock avoidance scheme from §4.4.4 . . . . . . 115

5.1 Taxonomy of abstract methods for resource allocation . . . 132

7



Previously Published Material

Chapter 3 signi�cantly revises a previous publication [169]: M. Wal�sh, M.
Vutukuru, H. Balakrishnan, D. Karger, and S. Shenker. DDoS defense by of-
fense, Proc. acm sigcomm, Sept. 2006. http://doi.acm.org/10.1145/
1159913.1159948 © 2006 acm.

Chapter 4 signi�cantly revises a previous publication [168]: M. Wal�sh, J.D.
Zam�rescu, H. Balakrishnan, D. Karger, and S. Shenker. Distributed quota
enforcement for spam control, Proc. usenix nsdi, May 2006.

Appendix e and pieces of Chapter 4 appear in M. Wal�sh, J.D. Zam�rescu,
H. Balakrishnan, D. Karger, and S. Shenker. Supplement to “Distributed
Quota Enforcement for Spam Control”. Technical report, MIT CSAIL,
mit-csail-tr-2006-33, May 2006. http://hdl.handle.net/1721.1/
32542

Figure 3.15 (page 71) is reproduced from the following paper [138]: V.
Sekar, N. Du�eld, O. Spatscheck, J. van der Merwe, and H. Zhang. LADS:
Large-scale automated DDoS detection system.Proc.usenixTechnical Con-
ference, June 2006. �e author gratefully acknowledges the permission of
Vyas Sekar and his co-authors and of the usenix association to reproduce
this �gure.

8

http://doi.acm.org/10.1145/1159913.1159948
http://doi.acm.org/10.1145/1159913.1159948
http://hdl.handle.net/1721.1/32542
http://hdl.handle.net/1721.1/32542


Acknowledgments

For months, I have been referring to this document as “my diss”.1 Fortu-
nately, the custom of acknowledgments lets me end the dissing with a list
of props. May I list properly.

�e list begins with Hari Balakrishnan, my adviser, and Scott Shenker,
my step-adviser in their research union. For me, Hari has been the con-
summate “justi�ed optimist”: he has made the di�cult seem, and become,
manageable. Scott’s mastery of the O´and Suggestion �at Solves the
Quandary at Hand has been clutch. �e two of them have given me a
tremendous amount, and here I can thank them only for a subset. First,
their advice. It has ranged usefully over nudges, pokes, pushes, and, when
needed, shoves. Without it, I would not have done most of what I did in
graduate school. Second, their support, both teaching me How It is Done
and socializing me to our research community. �ird, their humor. Last and
most relevant to this dissertation, our joint work. I am very much in their
intellectual debt.

I am likewise massively indebted to co-author David Karger, whose con-
tributions and style of thinking imbue this dissertation. I do not understand
how someone can think so fast yet be so relaxed and patient, but I am grate-
ful for this combination.

Co-author Mythili Vutukuru is the reason that our sigcomm paper,
and likely this dissertation, was submitted on time. Under extreme pressure
(which never shook her) she, among other things, created a durable, power-
ful infrastructure that continued to pay dividends as I prepared this disser-
tation. Co-author J.D. Zam�rescu delivered analogously for our nsdi paper,
and his contributions and in�uence dwell in Chapter 4 and Appendix e.

Frans Kaashoek’s friendly skepticism, detailed comments, and high
standards improved not only this dissertation, for which he was a com-
mittee member, but also my past written and spoken work, and my general
research taste. I am grateful for these things.

1I did not invent this moniker.

9



Committee member Mark Handley’s careful reading, gentle but pointed
comments, and cheery mix of enthusiasm and skepticism contributed
much not only to this work but also to my morale. At various times and
in various ways, Mark has been very supportive, and here I thank him for
those things and for his trans-Atlantic readership and travel to my defense.

* * *
�is dissertation builds on several papers [167–169]. �ose papers were
much improved by comments from, and conversations with, the follow-
ing people: Ben Adida, Dave Andersen, Micah Brodsky, Russ Cox, Jon
Crowcro±, Frank Dabek, Nick Feamster, Michel Goraczko, Jaeyeon Jung,
Brad Karp, Dina Katabi, Sachin Katti, Eddie Kohler, Christian Kreibich,
Maxwell Krohn, Karthik Lakshminarayanan, Vern Paxson, Adrian Per-
rig, Max Poletto, Sean Rhea, Rodrigo Rodrigues, Srini Seshan, Emil Sit,
Sara Su, Arvind �iagarajan, Mythili Vutukuru, Shabsi Wal�sh, Andrew
War�eld, Keith Winstein, J.D. Zam�rescu, the HotNets 2005 attendees, and
the anonymous reviewers for HotNets, sigcomm, and nsdi.

Also, I thank Jay Lepreau, Mike Hibler, Leigh Stoller, and the rest of Emu-
lab for indispensable infrastructure and ace user support. And I thank the
ndseg fellowship program and the nsf for generous �nancial support.

* * *
I am fortunate to have been at mit csail for the past �ve years. �ere, I
have pro�ted from the suggestions, high standards, and expertise of many.

Robert Morris sets an inspirational example.
Maxwell Krohn and Russ Cox have entertained, with good nature, a pre-

posterous volume of questions. In so doing, they have extracted me from
more than a few tight situations and contributed much to my education.
�ey are generous souls. I thank them for good advice, good feedback, good
taste, good so±ware, good conversations, and good fun.

Nick Feamster and Dave Andersen have served as great examples of
Grad School (And Its A±ermath) Done Right. �ey have also given heaps
of crucial advice, comments on dra±s and talks, and sample code.

I am indebted to my o�cemates, present and past. Mythili Vutukuru
is an inspiring collaborator. �e curiosity and high standards of Jakob
Eriksson, Bret Hull, Jaeyeon Jung, Arvind �iagarajan and, recently, Ramki
Gummadi gave rise to great feedback and great conversations. Over the
years, Emil Sit has given valuable pointers and talk feedback.

10



Jeremy Stribling is a hilarious man. And totally hardcore.
I have learned much and received helpful feedback from many oth-

ers at mit, including Dan Abadi, Magdalena Balazinska, Micah Brodsky,
Vladimir Bychkovsky, Austin Clements, Dorothy Curtis, Frank Dabek,
Bryan Ford, Michel Goraczko, Anjali Gupta, Kyle Jamieson, Srikanth
Kandula, Dina Katabi, Sachin Katti, Jon Kelner, Nate Kushman, Chris
Lesniewski-Laas, Barbara Liskov, Sam Madden, Petar Maymounkov, David
Mazières, Martin Rinard, Rodrigo Rodrigues, Stan Rost, Sara Su, Russ
Tedrake, Alex Vandiver, Keith Winstein, John Wroclawski, and Alex Yip.

I thank Eddie Kohler for much typographical guidance, for otftotfm,
and for the inspiring example of his dissertation.

Vivek Goyal and John Guttag gave particularly good suggestions on
practice job talks, which are re�ected in some of the “phrasing” of this dis-
sertation. Both have also given me key advice at key times.

Butler Lampson’s suggestions caused Appendix f.
I thank Sheila Marian for cheer.

* * *
�ere are a number of people who in�uenced me to enter graduate school
in the �rst place and who equipped me with the needed skills.

Brad Karp has been encouraging my interest in Computer Science and
research since 1995, when I was an undergraduate. I would not have been
aware of this path—let alone taken it—had I not known him and his infec-
tious passion for the �eld. He made many key suggestions over the years,
including pointing me to Digital Fountain, and has spent entirely too much
time over the last six years giving me clutch advice, support, and help.

Going back eight years, the Ph.D.s at Digital Fountain—particularly
Vivek Goyal, Armin Haken, Diane Hernek, Mike Luby, Adrian Perrig, and
Amin Shokrollahi—motivated me by example, whether they knew it or not.
I am especially grateful for Diane’s encouragement and Mike’s support.

Going back even further, Mr. Arrigo taught me the joy of math and re-
lated disciplines, and it was he who encouraged me to take a CS course as
an undergraduate, back when I knew nothing of the �eld. And Mrs. Leer-
burger, more than anyone, taught me to write.

And going back further, further still, I thank my parents, the Wal�shes,
and their parents, the Wal�shes and Radins—for nature and nurture.

11



1
Introduction

Spam, de�ned as unsolicited bulk email, had been a background annoy-
ance since the famous “DEC email” of 1978, the �rst known spam [156].
In the late 1990s, however, the volume of spam increased sharply, �ood-
ing inboxes and making email unusable for many recipients [37, 155]. In
response, email providers and individual recipients deployed spam �lters,
which kept messages with certain words (e.g., “Viagra”) out of inboxes.
Spammers must have thought that their problem was one simply of pre-
sentation, not underlying message, for they began to tra�c in euphemism:
�lter writers now had to block messages containing “encoded” words (e.g.,
“V!@gr@”). But spammers changed tactics again, and today their advertise-
ments appear inside excerpts from sources like �e New York Times, Ham-
let, and “Seinfeld”—which are di�cult for �lters to recognize as spam—or
inside images and audio �les that are di�cult for a computer to interpret.
And there are anecdotal reports that spammers can respond within hours
to changes in popular spam �lters [94].

In this environment, it is hard to get �lters right. Yet, people still �lter.
�ey have to: spam is roughly 75% of all email sent [106, 107, 150]. �e
result of �ltering in this regime—a regime in which most email is spam, yet
much spam looks legitimate to a computer—is that legitimate email is some-
times kept from the recipient’s inbox. Anecdotal evidence suggests that the
rate of such “false positives” is 1% [30, 116], with some estimating their eco-
nomic damage at hundreds of millions of dollars annually [31, 48]. While
we have no way to verify these numbers, we can vouch for the personal
inconvenience caused by false positives. Email is no longer reliable.

* * *
Spam’s increasing sophistication parallels developments in denial-of-service
(DoS), a phenomenon that has many incarnations and is de�ned at a high

12



level as consuming a scarce resource to prevent legitimate clients of the re-
source from doing so. (We discuss some of the motives for conducting DoS
attacks in the next chapter.) One of the original DoS attacks was to �ood
network links with ICMP [119] tra�c. However, such attacks are easily �l-
tered by placing a module in front of the �ooded link. Next, many attackers
turned to TCP SYN �oods, which send a server spurious requests to es-
tablish TCP sessions. However, these �oods can be heavily mitigated with
TCP SYN cookies [21], which push the burden of session setup to clients,
thereby preventing a small number of clients from overwhelming a server.
In response, attackers have moved to distributed denial-of-service (known
as DDoS), in which a large set of machines carries out the types of attacks
above.

Lately, a particularly noxious form of DDoS has emerged, namely ap-
plication-level attacks [73], in which the attackers mimic legitimate client
behavior by sending proper-looking requests. Examples include HTTP re-
quests for large �les [129, 136], making queries of search engines [38], and
issuing computationally expensive requests (e.g., database queries or trans-
actions) [82]. For the savvy attacker, the appeal of this attack over a link
�ood or TCP SYN �ood is two-fold. First, far less bandwidth is required:
the victim’s computational resources—disks, CPUs, memory, application
server licenses, etc.—can o±en be depleted by proper-looking requests long
before its access link is saturated. Second, because the attack tra�c is “in-
band”, it is harder to identify and thus more potent.

* * *
So where does such unwelcome tra�c—spam, DDoS, and other unsavory
tra�c, like viruses and worms—come from? �e answer is: in many cases,
from a �ourishing Internet underworld. �e eco-system of this underworld
is well-developed, and we outline its structure in Chapter 2. For now, we
just highlight a few aspects. First, the inhabitants of this underworld—
organized criminals seeking pro�t and misguided middle-schoolers seek-
ing bragging rights—are motivated and adaptable. Second, they send much
of the unwelcome tra�c from a low-cost attack platform—a collection of
other people’s computers that they have compromised and now control re-
motely. �ird, the tra�c is o±en disguised not only in terms of content, as
with spam and DDoS that is di�cult to detect (as described above), but
also in terms of location: because the commandeered computers can be all
over the world, it is hard to �lter the tra�c by looking at the network or
geographic origin of the tra�c.

13



good
good

bad
bad

scarce
resources

(Web site)

CPU, RAM,
disk

GET /index

GET /index

(a)

scarce
resources

Human
attention

good
good

bad
bad

(b)

Figure 1.1—Two examples of the abstract problem. In the problem, the two populations’
requests are indistinguishable.

�e state-of-a�airs that has so far been described is vexing, and it high-
lights a fundamental, hard question. �at question motivates this disserta-
tion, and it is best phrased by casting the above situation in abstract terms.

1.1 the problem in abstract terms

�e situation that we are concerned with has the following characteristics:

Scarce resources; bad clients may issue far more requests than good ones.
�ere is a population of good and bad clients that make requests for some
scarce resource. �e situation becomes problematic when the bad clients in-
dividually issue far more requests than the good clients. For “resources” and
“requests”, we adopt broad notions. For example, requests could be HTTP
requests, with the scarce resources being the CPU, RAM, and disk of a Web
server, as in Figure 1.1(a). But requests could also be email messages, in
which case the requested resource is human attention, as in Figure 1.1(b).

14



Open resources. By open, we mean that network protocols and social
mores permit any client to make a request of the resource. For example,
spam claims human attention by abusing the fact that anyone can, given
a recipient’s address, send email to that recipient. �e resources of search
engines (e.g., Google) and travel distribution sites (e.g., Orbitz) are another
example: these sites devote signi�cant computational resources—seconds
of CPU time or more—to any client that sends them a request. (Request
latencies to Google are of course fractions of a second, but it is highly likely
that each request is concurrently handled by tens of CPUs or more.)

Can’t di�erentiate good and bad reliably. First, we mean that good and
bad requests are not di�erentiable. By “di�erentiate”, we mean with com-
putational means. (For example, a human can certainly detect spam, but
the human’s attention is the very thing that we are trying to protect.) Sec-
ond, we mean that good and bad clients may not be di�erentiable: each bad
client could adopt multiple identities (e.g., by pretending to have 200 IP
addresses), meaning that an abusively heavy consumer of a resource might
not be identi�able as such.

Spam has the three characteristics just listed. Other examples with these
characteristics are HTTP �oods of travel distribution sites, as discussed
above; �oods of DNS (Domain Name System) requests to sites that expose
a database via a DNS front-end (e.g., the blacklist Spamhaus [158]); and
�oods of remote procedure calls (RPCs) (e.g., for exhausting the resources
of a service like OpenDHT [130], in which clients are invited to consume
storage anonymously, and make requests by RPC).

In these situations, classifying requests based on their contents amounts
to applying a heuristic. Yet such heuristics are inherently gameable1 and,
when they err, may cause active harm by blocking valid requests (as in the
case of spam �lters blocking legitimate email, described earlier). Trying to
identify and limit heavy users explicitly doesn’t work either: a bad client
making 100 times as many requests as a good client can thwart such a de-
fense by adopting 100 separate identities.

�us, we have the following question: How can one defend against at-
tacks on open, scarce resources, in which the bad clients make many more
requests than the good ones, yet good and bad requests look alike?

�is is the question that this dissertation is trying to answer.

1I thank Maxwell Krohn for the words “heuristic” and “gameable” in this context.

15



1.2 philosophy

Because, in our problem statement, telling apart “good” and “bad” requests
and clients is di�cult or impossible, our defenses will not even try to make
this distinction. Indeed, in contrast to the prevailing “detect and block”
ethos of current defenses, the defenses in this dissertation have an egali-
tarian ethos in that they treat all clients the same.

Speci�cally, our goal is to allocate resources proportionally to all clients.
If, for example, 10% of the requesters of some scarce resource are “bad”, then
those clients should be limited to 10% of the resources (though the defense
does not “know” that these clients are “bad”). To further specify the goal,
the allocation to clients ought to re�ect their actual numbers (as opposed to
their virtual identities). �us, any defense should be robust against a client
manufacturing multiple identities to try to increase its share.

But what if 90% of the requesting clients are bad? In this case, meeting
our goal still accomplishes something, namely limiting the bad clients to
90% of the resources. However, this “accomplishment” is likely insu�cient:
unless the resources are appropriately over-provisioned, the 10% “slice” that
the good clients can claim will not meet their demand. While this fact is un-
fortunate, observe that if the bad clients look exactly like the good ones but
vastly outnumber them, then no defense works. (In this case, the only re-
course is a proportional allocation together with heavy over-provisioning.)

One might object that our philosophy “treats symptoms”, rather than
removing the underlying problem. However, as argued in Chapter 2, elimi-
nating the root of the problem—compromised computers and underground
demand for their services—is a separate, long-term e�ort. Meanwhile, a re-
sponse to the symptoms is needed today.

1.3 contents of the dissertation

Much of this dissertation focuses on the design, implementation, analysis,
and evaluation of two systems that seek the proportional allocation goal
stated above.

Speak-up. First, speak-up, the subject of Chapter 3, defends against ap-
plication-level DDoS (as de�ned above). With speak-up, a server so vic-
timized encourages its clients: it causes them, resources permitting, to send
higher volumes of tra�c. (�e resulting extra tra�c is automatic; the hu-
man owner of the client does not act.) �e key insight of this defense is

16



as follows: we suppose that bad clients are already using most of their up-
load bandwidth so cannot react to the encouragement, whereas good clients
have spare upload bandwidth so can send drastically higher volumes of traf-
�c. As a result, the tra�c into the server in�ates, but the good clients are
much better represented in the tra�c mix than before and thus capture a
much larger fraction of the server’s resources than before.

Another way to explain speak-up is to say that the server, when attacked,
charges clients bandwidth for access. Because the mechanism asks all clients
for payment and does not distinguish among them, speak-up upholds the
philosophy above. (In practice, speak-up can achieve only a roughly pro-
portional allocation because it allocates service to clients in proportion to
their bandwidths, which are not all equal. As we will argue in Chapter 3, a
fully proportional allocation does not appear possible, given the threat.)

Of course, speak-up’s use of bandwidth as a computational currency
(i.e., a resource that the server asks clients to expend to get service) raises
questions. However, we aim to show throughout Chapter 3 that speak-up is
appropriate and viable under certain conditions. We also compare speak-
up to other defenses and, in particular, compare bandwidth to CPU and
memory cycles, which are the computational currencies that have previ-
ously been proposed [2, 10, 11, 45, 46, 80, 98, 170].

DQE. �e second system in this dissertation, the subject of Chapter 4,
is Distributed Quota Enforcement (DQE), which controls spam by limiting
email volumes directly. Under DQE, each sender gets a quota of stamps and
attaches a stamp to each email. Receivers communicate with a well-known
quota enforcer to verify that the stamp on the email is fresh and to cancel
the stamp to prevent reuse. �e receiving host delivers only messages with
fresh stamps to the human user; messages with used stamps are assumed to
be spam. �e intent is that the quotas would be set such that, unlike today,
no one could send more than a tiny fraction of all email. Because spammers
need huge volumes to be pro�table, such quota levels would probably drive
them out of business. However, the system does its job even if they remain
solvent.

�is approach upholds the philosophy above: under DQE, an email—a
request for human attention—is valid if the sender has not exhausted its
quota; the contents of the email do not matter. Moreover, the quota alloca-
tion process does not try to determine which senders are spammers.

�e focus of our work on DQE is the enforcer. Its design and imple-
mentation must meet several technical challenges: the enforcer must scale

17



to current and future email volumes (around 80 billion emails are sent per
day [77, 123], and we target 200 billion emails, which is roughly two million
messages per second), requiring distribution over many machines, perhaps
across several organizations; it must tolerate faults in its underlying ma-
chines without letting much spam through; it must resist attacks; it must
tolerate mutual distrust among its constituent hosts; and it should use as
few machines as possible (to simplify management and hardware costs).

In addition to the technical requirements above, DQE raises some pol-
icy, economic, and pragmatic questions, notably: Which entity (or enti-
ties) will allocate quotas? How will that entity set quotas? Does DQE admit
a plausible path to deployment and then widespread adoption? Although
these issues are challenging, we are optimistic that they have viable solu-
tions (as we discuss in Chapter 4). Moreover, even if they cannot be solved,
the technical components of DQE are still useful building blocks for other
systems.

Connections. �is dissertation also considers the connections between
these two systems. For one thing, we will see that DQE’s enforcer can use a
variant of speak-up to defend itself! (See §4.4.5.) More broadly, Chapter 5
situates speak-up and DQE in a spectrum of possible solutions to the ab-
stract problem described in §1.1. We discuss what types of problems call
for which solutions, why we apply speak-up to DDoS and DQE to spam
(rather than vice-versa), and why DQE can defend itself with speak-up (but
not vice-versa).

Interactions. Of course, if speak-up and DQE are successful, adversaries
may shi± to di�erent tactics and attacks. In §4.7 and Chapter 6, we consider
the interaction between these defenses and attackers’ strategies.

1.4 contributions & results

We divide our contributions and results into three categories:

Articulation and philosophy. �e contributions in this category are a
de�nition of the abstract problem, including a recognition that spam and
DDoS can be viewed as two incarnations of the same abstract problem; our
philosophy of defense to this attack, namely avoiding heuristics and instead
setting proportional allocation as the goal; and a comparison of several ab-
stract solutions in the same framework.

18



Bandwidth as a currency. Speak-up’s �rst contribution is to introduce
bandwidth as a computational currency. One advantage of charging in this
resource is that it is most likely adversaries’ actual constraint.

A second contribution is to give four methods of charging in this cur-
rency. All of the methods incorporate a front-end to the server that does
the following when the server is over-subscribed: (a) rate-limits requests to
the server; (b) encourages clients to send more tra�c; and (c) allocates the
server in proportion to the bandwidth spent by clients. �e method that we
implement and evaluate is a virtual auction: the front-end causes each client
to automatically send a congestion-controlled stream of dummy bytes on a
separate payment channel. When the server is ready to process a request,
the front-end admits the client that has sent the most bytes.

�e collection of mechanisms for charging bandwidth is interesting for
several reasons. First, the mechanisms are conceptually and practically sim-
ple. Second, they resist gaming by adversaries. �ird, they �nd the price
of service (in bits) automatically; the front-end and clients do not need to
guess the correct price or communicate about it. Last, the mechanisms ap-
ply to other currencies (and the existing literature on computational cur-
rencies has not proposed mechanisms that have all of the properties of
speak-up’s mechanisms).

Beyond these methods, another contribution is to embody the idea in
a working system. We implemented the front-end for Web servers. When
the protected Web server is overloaded, the front-end gives JavaScript to
unmodi�ed Web clients that makes them send large HTTP POSTs. �ese
POSTs are the “bandwidth payment”. Our main experimental �nding is that
this implementation meets our goal of allocating the protected server’s re-
sources in rough proportion to clients’ upload bandwidths.

Large-scale quota enforcement. DQE is in the family of email postage
systems (which we review in §4.10). �is dissertation’s contribution to that
literature is solving the many technical problems of large-scale, distributed
quota enforcement (listed above in §1.3) with a working system, namely the
enforcer. We show that the enforcer is practical: our experimental results
suggest that our implementation can handle 200 billion messages daily (a
multiple of the world’s email volume) with a few thousand dedicated PCs.

�ough we discuss the enforcer mostly in the context of spam control,
it is useful as a building block in other contexts, both for enforcing quotas
on resources other than human attention and for other applications.

Interesting aspects of the enforcer are as follows. �e enforcer stores

19



billions of key-value pairs (canceled stamps) over a set of mutually untrust-
ing nodes. It relies on just one trust assumption, common in distributed
systems: that the constituent hosts are determined by a trusted entity. It tol-
erates Byzantine and crash faults in its nodes. It achieves this fault-tolerance
despite storing only one copy (roughly) of each canceled stamp, and it gives
tight guarantees on the average number of reuses per stamp. Each node uses
an optimized internal key-value map that balances storage and speed, and
nodes shed load to avoid “distributed livelock” (a problem that we conjec-
ture exists in many other distributed systems when they are overloaded).

Stepping back from these techniques, we observe that the enforcer oc-
cupies a novel point in the design space for distributed systems, a point
notable for simplicity. �e enforcer implements a storage abstraction, yet
its constituent nodes need neither keep track of other nodes, nor perform
replica maintenance, nor use heavyweight cryptography, nor trust one an-
other. �e enforcer gets away with this simplicity because we tailored its
design to the semantics of quota enforcement, speci�cally, that the e�ect of
lost data is only that adversaries’ e�ective quotas increase.

1.5 confronting controversy

�e author has given over twenty audio-visual presentations that covered
the key ideas in this dissertation. �ese presentations have had at least �ve
incarnations, have adopted di�erent perspectives, and have been delivered
to a range of audiences, from those familiar with the related work to general
computer science audiences. �e reception was the same every time:

“What??”

We therefore conclude that there is an element of controversy in these
contents. For this reason, Appendices a and b answer common questions.
Readers with immediate questions are encouraged to turn to these appen-
dices now. And, while the main text tries to answer many of these questions,
consulting these appendices while reading that text may still be useful.

Finally, for explicit critiques of speak-up, DQE, and the work as a whole,
please see, respectively, §3.9, §4.11, and Chapter 6.

20



2
Background

In this chapter, we describe the eco-system that launches spam, DDoS, and
other attacks; give a sense for the scale of the problem; and then high-
light several important aspects. �e abstract problem in §1.1 has been dis-
tilled from this context and from the speci�cs of the attacks themselves (de-
scribed in later chapters).

2.1 an internet underworld & its eco-system

�e eco-system, in rough contours, works as follows. (For more detail, see
[16, 75, 76, 99, 163] and citations therein.) First, there are people who spe-
cialize in �nding exploits, i.e., bugs in operating systems and applications
that allow a remote person or program to take control of a machine.

Next, the exploit-�nders are compensated for their discoveries by virus
and worm authors, whose wares use exploits to spread from machine to ma-
chine. Like real diseases, these “so±ware diseases”, commonly called mal-
ware, can spread either automatically (each machine compromised by an
exploit searches for, and then compromises, other machines that are vul-
nerable to the same exploit) or as a result of ill-advised human behavior
(visiting sketchy Web sites can lead to machine compromise if the Web
browser on the machine is vulnerable to an exploit). Of course, malware
can also spread without exploiting so±ware �aws. For example, so±ware
programs, especially those of uncertain provenance, may include bundled
malware; a side e�ect of installing such so±ware is to install the malware. As
another example, some viruses are installed when the virus emails copies
of itself (to spam lists or to a human’s address book) and recipients follow
the email’s instructions to install the attached program, which is the virus
itself.

21



�e malware authors are in turn compensated for their e�orts by bot
herders, who deploy the malware, hoping that its infectiousness will com-
promise a large population of machines (anywhere from hundreds to mil-
lions), leaving those machines under the control of the bot herder. Such a
commandeered machine is known as a bot or zombie, and a collection of
them is a bot network, or a botnet.

Bot herders pro�t from renting out their botnets.
Finally, those who rent the botnet make their pro�t from various ac-

tivities that we now list. Spam is pro�table because a small percentage of
recipients do respond [57]. Launching DDoS attacks can be pro�table if
the attack is used to suppress a competing online business [38, 136] or to
conduct extortion [111, 129, 160]. One can also use a botnet to host phish-
ing Web sites (in phishing, people receive email, purportedly from their
bank, that encourages them to disclose �nancial information at a Web site
controlled by the attacker). A �nal activity is to log the key strokes of the
human owner of the compromised machine, thereby gaining access to bank
accounts or other “assets”.

Of course, as only a single strand in the food chain, the account just
given is an approximation. Nevertheless, it should give the reader enough
context for the remainder of this chapter.

2.2 numbers of bots & botnets

We �rst consider how many bots there might be worldwide and then how
they are organized into botnets.

Estimates of the total number of bots are varied. According to Network
World [112], “Symantec says it found 6 million infected bots in the sec-
ond half of 2006. Currently, about 3.5 million bots are used to send spam
daily, says ... a well-known botnet hunter”. �e author has personally heard
informal estimates of tens of millions of bots and, based on these conversa-
tions, believes that 20 million bots is a high estimate of the worldwide total.
Moreover, as Rajab et al. observe, the total number of bots that are online at
any given moment is likely much smaller than the total number of infected
computers [125].

In terms of how the bots are divided, there are likely a few big ones
that are hundreds of thousands, or millions, strong [24, 40, 73, 75, 104,
153]. However, most botnets are far smaller. We consider average botnet
size more completely at the end of the next chapter (§3.10.2); for now, we

22



simply relate one of the points made there, which is that 10,000 members
is a large botnet.

�us, while the aggregate computing power of bots represents several
percentage points of the roughly one billion computers worldwide [34], no
one bot herder can command anywhere near those resources. Moreover,
bot herders frequently compete with each other to acquire bots; it is unlikely
that they would merge their armies.

Nevertheless, bots are vexing and threatening. We now summarize some
of the di�culties that they pose.

2.3 key characteristics of the problem

�e “bot problem”—meaning the existence of bots themselves and also the
attacks that they launch—is di�cult for reasons that include the following:

–– Adversaries are motivated, adaptable, and skilled. As mentioned in
Chapter 1, the inhabitants of this eco-system are a combination of
�nancially-motivated professionals and status-conscious teens (their
notion of status is strange). Both groups have an incentive to be “good
at being bad”.

–– Bots are unlikely to go extinct. Bots propagate as a result of two
things that are notoriously di�cult to control completely: bugs and
human behavior. For this reason, we argue that while the number of
bots may decrease in the future, the phenomenon will be with us for
a long time to come. �e problems caused by bots (spam, DDoS, etc.)
must therefore be treated in isolation (even if they are just symptoms);
we cannot wait for the “bot problem” to be eliminated.

–– Attack platform is cheap and powerful. Botnets function as a large
collection of inexpensive computing resources: bot rental rates, cents
per bot week per host [73, 161], are orders of magnitude cheaper than
hardware purchases. Moreover, bots allow an attacker to hide his ac-
tual geographic and network whereabouts since it is the bots, not the
attacker’s personal computers, that send the objectionable tra�c.

–– Adversarial tra�c can be disguised as normal tra�c. �is disguise
exists on two levels. First, as illustrated in the beginning of Chapter 1,
adversaries disguise the content of their tra�c. Second, because a bot
army may be widely distributed, its bots o±en look, from a network

23



perspective, like a set of ordinary clients. It may therefore be di�cult
or impossible for the victim (the target of a DDoS attack, an email
server receiving a lot of spam, etc.) or even the victim’s Internet Ser-
vice Provider (ISP) to �lter the attack tra�c by looking at the network
or geographic origin of the tra�c.

–– No robust notion of host identity in today’s Internet. We mean two
things here. First, via address hijacking, attackers can pretend to have
multiple IP addresses. Address hijacking is more than a host simply
fudging the source IP address of its packets—a host can actually be
reachable at the adopted addresses. We describe the details of this at-
tack in Appendix c; it can be carried out either by bots or by comput-
ers that the attacker actually owns. Second, while address hijacking
is of course anti-social, there is socially acceptable Internet behav-
ior with a similar e�ect, namely deploying NATs (Network Address
Translators) and proxies. Whereas address hijacking allows one host
to adopt several identities, NATs and proxies cause multiple hosts to
share a single identity (thousands of hosts behind a proxy or NAT
may share a handful of IP addresses). As a result of all of these phe-
nomena, the recipient of a packet in today’s Internet may be unable
to attribute that packet to a particular client.

We will further specify the threats relevant to the next two chapters in those
chapters (see §3.3 and §4.1). �e descriptions presented in this chapter are
common to both threats.

24



3
Speak-up

�is chapter is about our defense to application-level DDoS. �is attack,
de�ned at the beginning of Chapter 1, is a speci�c instance of the abstract
problem described in §1.1. Recall that in this attack, computer criminals
send well-formed requests to a victimized server, the intent being to exhaust
a resource like CPU, memory, or disk bandwidth that can be depleted by a
request rate far below what is needed to saturate an access link.

Current DDoS defenses try to slow down the bad clients. �ough we
stand in solidarity with these defenses in the goal of limiting the service
that attackers get, our approach is di�erent. It is to encourage all clients to
speak up, rather than sit idly by while attackers drown them out.

To justify this approach, and to illustrate how it re�ects the philosophy
in §1.2, we now discuss three categories of defense. �e �rst approach that
one might consider is to over-provision massively: in theory, one could
purchase enough computational resources to serve both good clients and
attackers. However, anecdotal evidence [111, 151] suggests that while sites
provision additional link capacity during attacks [25, 120], even the largest
Web sites try to conserve computation by detecting bots and denying them
access, using the methods in the second category.

We call this category—approaches that try to distinguish between good
and bad clients—detect-and-block. Examples are pro�ling by IP address [9,
29, 103] (a box in front of the server or the server itself admits requests ac-
cording to a learned demand pro�le); pro�ling based on application-level
behavior [128, 147] (the server denies access to clients whose request pro-
�les appear deviant); and captcha-based defenses [61, 82, 109, 151, 166],
which preferentially admit humans. �ese techniques are powerful because
they seek to block or explicitly limit unauthorized users, but their discrim-
inations can err, as discussed in Chapter 1. Indeed, detection-based ap-
proaches become increasingly brittle as attackers’ mimicry of legitimate

25



clients becomes increasingly convincing (see §3.9.2 for elaboration of this
point).

It is for this reason that our philosophy in §1.2 calls for proportional
allocation, i.e., giving every client an equal share of the server without try-
ing to tell apart good and bad. Unfortunately, in today’s Internet, attaining
even this goal is impossible. As discussed in Chapter 2, address hijacking (in
which one client appears to be many) and proxies (in which multiple clients
appear to be one) prevent the server from knowing how many clients it has
or whether a given set of requests originated at one client or many.

As a result, we settle for a roughly fair allocation. At a high level, our
approach is as follows. �e server makes clients reveal how much of some
resource they have; examples of suitable resources are CPU cycles, memory
cycles, bandwidth, and money. �en, based on this revelation, the server
should arrange things so that if a given client has a fraction f of the clientele’s
total resources, that client can claim up to a fraction f of the server. We call
such an allocation a resource-proportional allocation. �is allocation cannot
be “fooled” by the Internet’s blurry notion of client identity. Speci�cally,
if multiple clients “pool” their resources, claiming to be one client, or if
one client splits its resources over multiple virtual clients, the allocation is
unchanged.

Our approach is kin to previous work in which clients must spend some
resource to get service [2, 10, 11, 41, 45, 46, 53, 80, 98, 114, 148, 170, 172].
We call these proposals resource-based defenses. Ours falls into this third
category. However, the other proposals in this category neither articulate,
nor explicitly aim for, the goal of a resource-proportional allocation.1

�e preceding raises the question: which client resource should the
server use? �is chapter investigates bandwidth, by which we mean avail-
able upstream bandwidth to the server. Speci�cally, when the server is at-
tacked, it encourages all clients to consume their bandwidth (as a way of
revealing it); this behavior is what we promised to justify above.

A natural question is, “Why charge clients bandwidth? Why not charge
them CPU cycles?” In §3.9.1, we give an extended comparison and show
that bandwidth has advantages (as well as disadvantages!). For now, we sim-
ply state that many of this chapter’s contributions apply to both currencies.
�ose contributions, mentioned in §1.4, include (1) articulating the goal
of a resource-proportional allocation; (2) giving a family of mechanisms to

1An exception is a recent paper by Parno et al. [114], which was published a±er our work [169];
see §3.9.1.

26



charge in the currency that are simple, that �nd the correct “price”, that do
not require clients or the server to know or guess the price, and that re-
sist gaming by adversaries; and (3) a viable system that incorporates one of
these mechanisms and works with unmodi�ed Web clients.

�is chapter presents these contributions in the context of speak-up,
a system that defends against application-level DDoS by charging clients
bandwidth for access. We believe that our work in [167, 169] (on which
this chapter is based) was the �rst to investigate this idea, though [70, 142]
share the same high-level motivation (see §3.9.1).

* * *
�e chapter proceeds in two stages. �e �rst stage is a quick overview. It
consists of the general threat (this section), the high-level solution (§3.1),
and responses to �ve common questions (§3.2). �e second stage follows a
particular argument. Here is the argument’s outline:

–– We give a detailed description of the threat and of two conditions for
addressing the threat (§3.3). �e �rst of these conditions is inherent
in any defense to this threat.

–– We then describe a design goal that, if met, would mitigate the threat—
and fully defend against it, under the �rst condition (§3.4.1).

–– We next give a set of designs that, under the second condition, meet
the goal (§3.4.2–§3.4.5).

–– We describe our implementation and our evaluation of that imple-
mentation; our main �nding is that the implementation roughly meets
the goal (§3.7–§3.8).

–– At this point, having shown that speak-up “meets its spec”, we con-
sider whether it is an appropriate choice: we compare speak-up to al-
ternatives, critique it, and re�ect on the plausibility of the threat itself
(§3.9–§3.10).

With respect to this plausibility, one might well wonder how o±en ap-
plication-level attacks happen today and whether they are in fact di�cult
to �lter. We answer this question in §3.10: according to anecdote, current
application-level attacks happen today, but they are primitive. However, in
evaluating the need for speak-up, we believe that the right questions are
not about how o±en the threat has happened but rather about whether the

27



threat could happen. (And it can.) Simply put, prudence requires proactiv-
ity. We need to consider weaknesses before they are exploited.

At the end of the chapter (§3.11), we depart from this speci�c threat, in
two ways. First, we observe that one may, in practice, be able to combine
speak-up with other defenses. Second, we mention other attacks, besides
application-level denial-of-service, that could call for speak-up.

3.1 high level explanation

Speak-up is motivated by a simple observation about bad clients: they send
requests to victimized servers at much higher rates than legitimate clients
do. (�is observation has also been made by many others, including the
authors of pro�ling and detection methods. Indeed, if bad clients weren’t
sending at higher rates, then, as long as their numbers didn’t dominate the
number of good clients, modest over-provisioning of the server would ad-
dress the attack.)

At the same time, some limiting factor must prevent bad clients from
sending even more requests. We posit that in many cases this limiting factor
is bandwidth. �e speci�c constraint could be a physical limit (e.g., access
link capacity) or a threshold above which the attacker fears detection by
pro�ling tools at the server or by the human owner of the “botted” host. For
now, we assume that bad clients exhaust all of their available bandwidth on
spurious requests. In contrast, good clients, which spend substantial time
quiescent, are likely using a only small portion of their available bandwidth.
�e key idea of speak-up is to exploit this di�erence, as we now explain with
a simple illustration.

Illustration. Imagine a simple request-response server, where each re-
quest is cheap for clients to issue, is expensive to serve, and consumes the
same quantity of server resources. Real-world examples include Web servers
receiving single-packet requests, DNS (Domain Name System) front-ends
such as those used by content distribution networks or infrastructures like
CoDoNS [127], and AFS (Andrew File System) servers. Suppose that the
server has the capacity to handle c requests per second and that the aggre-
gate demand from good clients is g requests per second, g < c. Assume
that when the server is overloaded it randomly drops excess requests. If
the attackers consume all of their aggregate upload bandwidth, B (which
for now we express in requests per second) in attacking the server, and if
g + B > c, then the good clients receive only a fraction g

g+B of the server’s

28



good

good

bad

bad
server

c

g

B

(a)

good

good

bad

bad
server

c

G

B

(b)

Figure 3.1—Illustration of speak-up. �e �gure depicts an attacked server, B + g > c.
In (a), the server is not defended. In (b), the good clients send a much higher volume of
tra�c, thereby capturing much more of the server than before. �e good clients’ tra�c is
black, as is the portion of the server that they capture.

resources. Assuming B � g (if B ≈ g, then over-provisioning by moder-
ately increasing c would ensure g+B < c, thereby handling the attack), the
bulk of the server goes to the attacking clients. �is situation is depicted in
Figure 3.1(a).

In this situation, current defenses would try to slow down the bad clients.
But what if, instead, we arranged things so that when the server is under at-
tack good clients send requests at the same rates as bad clients? Of course, the
server does not know which clients are good, but the bad clients have al-
ready “maxed out” their bandwidth (as assumed above). So if the server
encouraged all clients to use up their bandwidth, it could speed up the
good ones without telling apart good and bad. Doing so would certainly
in�ate the tra�c into the server during an attack. But it would also cause
the good clients to be much better represented in the mix of tra�c, giv-
ing them much more of the server’s attention and the attackers much less.
If the good clients have total bandwidth G, they would now capture a frac-
tion G

G+B of the server’s resources, as depicted in Figure 3.1(b). SinceG� g,
this fraction is much larger than before.

In §3.4, we make the preceding under-speci�ed illustration practical.
Before doing so, we answer several nagging questions (§3.2) and then char-
acterize the threat that calls for speak-up (§3.3).

3.2 five questions

How much aggregate bandwidth does the legitimate clientele need for speak-
up to be e�ective? Speak-up helps good clients, no matter how much band-
width they have. Speak-up either ensures that the good clients get all the
service they need or increases the service they get (compared to an attack

29



without speak-up) by the ratio of their available bandwidth to their current
usage, which we expect to be very high. Moreover, as with many security
measures, speak-up “raises the bar” for attackers: to in�ict the same level of
service-denial on a speak-up defended site, a much larger botnet—perhaps
several orders of magnitude larger—is required. Similarly, the amount of
over-provisioning needed at a site defended by speak-up is much less than
what a non-defended site would need.

�anks for the sales pitch, but what we meant was: how much aggregate
bandwidth does the legitimate clientele need for speak-up to leave them un-
harmed by an attack? �e answer depends on the server’s spare capacity
(i.e., 1−utilization) when not under attack. Speak-up’s goal is to allocate
resources in proportion to the bandwidths of requesting clients. If this goal
is met, then for a server with spare capacity 50%, the legitimate clients can
retain full service if they have the same aggregate bandwidth as the attack-
ing clients (see §3.4.1). For a server with spare capacity 90%, the legiti-
mate clientele needs only 1/9th of the aggregate bandwidth of the attacking
clients. In §3.10.2, we elaborate on this point and discuss it in the context
of today’s botnet sizes.

�en couldn’t small Web sites, even if defended by speak-up, still be harmed?
Yes. �ere have been reports of large botnets [24, 40, 73, 75, 104, 153]. If at-
tacked by such a botnet, a speak-up-defended site would need a large clien-
tele or vast over-provisioning to withstand attack fully. However, most bot-
nets are much smaller, as we discuss in §3.10.2. Moreover, as stated in §1.2,
every defense has this “problem”: no defense can work against a huge pop-
ulation of bad clients, if the good and bad clients are indistinguishable.

Because bandwidth is in part a communal resource, doesn’t the encourage-
ment to send more tra�c damage the network? We �rst observe that speak-
up in�ates tra�c only to servers currently under attack—a very small frac-
tion of all servers—so the increase in total tra�c will be minimal. Moreover,
the “core” appears to be heavily over-provisioned (see, e.g., [54]), so it could
absorb such an increase. (Of course, this over-provisioning could change
over time, for example with �ber in homes.) Finally, speak-up’s additional
tra�c is congestion-controlled and will share fairly with other tra�c. We
address this question more fully in §3.5.

30



Couldn’t speak-up “edge out” other network activity at the user’s access link,
thereby introducing an opportunity cost?Yes. When triggered, speak-upmay
be a heavy network consumer. Some users will not mind this fact. Others
will, and they can avoid speak-up’s opportunity cost by leaving the attacked
service (see §3.9.1 for further discussion of this point).

3.3 threat model & applicability conditions

�e preceding section gave a general picture of speak-up’s applicability. We
now give a more precise description. We begin with the threat model, which
is a concrete version of the abstract problem statement in §1.1, and then
state the conditions that are required for speak-up to be most e�ective.

Speak-up aims to protect a server, de�ned as any network-accessible ser-
vice with scarce computational resources (disks, CPUs, RAM, application
licenses, �le descriptors, etc.), from an attacker, de�ned as an entity (human
or organization) that is trying to deplete those resources with legitimate-
looking requests (database queries, HTTP requests, etc.) As mentioned in
Chapter 1, such an assault is called an application-level attack [73]. �e
clientele of the server is neither pre-de�ned (otherwise the server can in-
stall �lters to permit tra�c only from known clients) nor exclusively human
(ruling out proof-of-humanity tests [61, 82, 109, 113, 151, 166]).

Each attacker sends tra�c from many compromised hosts, and this traf-
�c obeys all protocols, so the server has no easy way to tell from a single
request that it was issued with ill intent. Moreover, as mentioned in Chap-
ter 2, the Internet has no robust notion of host identity. Since a determined
attacker can repeatedly request service from a site while pretending to have
di�erent IP addresses, we assume that an abusively heavy client of a site will
not always be identi�able as such.

Most services handle requests of varying di�culty (e.g., database queries
with very di�erent completion times). While servers may not be able to de-
termine the di�culty of a request a priori, our threat model presumes that
the attacker can send di�cult requests intentionally.

We are not considering link attacks. We assume that the server’s access
links are not �ooded; see condition c2 below.

�e canonical example of a service that is threatened by the attack just
described is a Web server for which requests are computationally intensive,
perhaps because they involve back-end database transactions or searches
(e.g., sites with search engines, travel sites, and automatic update services

31



for desktop so±ware). O±en, the clientele of these sites is partially or all
non-human. Beyond these server applications, other vulnerable services in-
clude the capability allocators in network architectures such as TVA [178]
and SIFF [177].2

�ere are many types of Internet services, with varying defensive require-
ments; speak-up is not appropriate for all of them. For speak-up to fully de-
fend against the threat modeled above, the following two conditions must
hold:

c1 Adequate client bandwidth.To be unharmed during an attack, the good
clients must have in total roughly the same order of magnitude (or more)
bandwidth than the attacking clients. �is condition is fundamental to
any defense to the threat above, in which good and bad clients are in-
distinguishable: as discussed in §1.2, if the bad population vastly out-
numbers the good population, then no defense works.

c2 Adequate link bandwidth. �e protected service needs enough link
bandwidth to handle the incoming request stream (and this stream will
be in�ated by speak-up). �is condition is one of the main costs of
speak-up, relative to other defenses. However, we do not believe that it
is insurmountable. First, observe thatmostWeb sites use far less inbound
bandwidth than outbound bandwidth (most Web requests are small, yet
generate big replies).3 �us, the inbound request stream to a server
could in�ate by many multiples before the inbound bandwidth equals
the outbound bandwidth. Second, if that headroom is not enough, then
servers can satisfy the condition in various ways. Options include a
permanent high-bandwidth access link, co-location at a data center, or
temporarily acquiring more bandwidth using services like [25, 120].
A further option, which we expect to be the most common deploy-
ment scenario, is ISPs—which of course have signi�cant bandwidth—
o�ering speak-up as a service (just as they do with other DDoS defenses

2Such systems are intended to defend against DoS attacks. Brie�y, they work as follows: to gain access
to a protected server, clients request tokens, or capabilities, from an allocator. �e allocator meters
its replies (for example, to match the server’s capacity). �en, routers pass tra�c only from clients
with valid capabilities, thereby protecting the server from overload. In such systems, the capability
allocator itself is vulnerable to attack. See §3.9.3 for more detail.

3As one datum, consider Wikimedia, the host of http://www.wikipedia.org. According
to [174], for the 12 months ending in August, 2007, the organization’s outbound bandwidth con-
sumption was six times its inbound. And for the month of August, 2007, Wikimedia’s outbound
consumption was eight times its inbound.

32

http://www.wikipedia.org


today), perhaps amortizing the expense over many defended sites, as
suggested in [3].

Later in this chapter (§3.10), we re�ect on the extent to which this threat is
a practical concern and on whether the conditions are reasonable in prac-
tice. We also evaluate how speak-up performs when condition c2 isn’t met
(§3.8.8).

3.4 design

In this section, we aim to make practical the high-level illustration in §3.1.
We use the notation from that section, and we assume that all requests cause
equal server work.

We begin with requirements (§3.4.1), then develop two speci�c ways to
realize these requirements (§3.4.2, §3.4.3). We then consider the connec-
tions between these approaches as we re�ect more generally on the space of
design possibilities (§3.4.5). We also consider various attacks (§3.4.4). We
revisit our assumptions in §3.5 and describe how speak-up handles hetero-
geneous requests in §3.6.

3.4.1 Design Goal and Required Mechanisms

Design Goal. As explained at the beginning of this chapter, speak-up’s
principal goal is to allocate resources to competing clients in proportion to
their bandwidths:

Consider a server that can handle c requests per second. If the good
clients make g requests per second in aggregate and have aggregate
bandwidth ofG requests per second to the server, and if the bad clients
have aggregate bandwidth of B requests per second, then the server
should process good requests at a rate of min(g, G

G+Bc) requests per
second.

If this goal is met, then modest over-provisioning of the server (relative to
the legitimate demand) can satisfy the good clients. For if it is met, then sat-
isfying them requires only G

G+Bc ≥ g (i.e., the piece that the good clients can
get must exceed their demand). �is expression translates to the idealized
server provisioning requirement:

c ≥ g
(

1 +
B
G

)
def
= cid,

33



server

request
thinner

request
request

request

request

encouragement

client

requestclient

Figure 3.2—�e components of speak-up. �e thinner rate-limits requests to the server.
�e encouragement signal is depicted by a dashed line from thinner to client (the particu-
lar encouragement mechanism is unspeci�ed). In this example, there are two clients, and
they send equal amounts of tra�c. �us, the thinner’s proportional allocation mechanism
(unspeci�ed in this �gure) admits requests so that each client claims half of the server.

which says that the server must be able to handle the “good” demand (g)
and diminished demand from the bad clients (B g

G). For example, if B = G
(a special case of condition c1 in §3.3), then the required over-provisioning
is a factor of two (c ≥ 2g). In practice, speak-up cannot exactly achieve this
ideal because limited cheating is possible. We analyze this e�ect in §3.4.4.

RequiredMechanisms. Any practical realization of speak-up needs three
mechanisms. �e �rst is a way to limit requests to the server to c per sec-
ond. However, rate-limiting alone will not change the server’s allocation
to good and bad clients. Since the design goal is that this allocation re�ect
available bandwidth, speak-up also needs a mechanism to reveal that band-
width: speak-up must perform encouragement, which we de�ne as caus-
ing a client to send more tra�c—potentially much more—for a single request
than it would if the server were not under attack. �ird, given the incoming
bandwidths, speak-up needs a proportional allocation mechanism to admit
clients at rates proportional to their delivered bandwidths.

Under speak-up, these mechanisms are implemented by a front-end to
the server, called the thinner. As depicted in Figure 3.2, the thinner imple-
ments encouragement and controls which requests the server sees. Encour-
agement and proportional allocation can each take several forms, as we will
see in the two variations of speak-up below (§3.4.2, §3.4.3). And we will see

34



in §3.4.5 that the choices of encouragement mechanism and proportional
allocation mechanism are orthogonal.

Before presenting these speci�cs, we observe that today when a server is
overloaded and fails to respond to a request, a client typically times out and
retries—thereby generating more tra�c than if the server were unloaded.
However, the bandwidth increase is small (since today’s timeouts are long).
In contrast, encouragement (which is initiated by an agent of the server)
will cause good clients to send signi�cantly more tra�c—while still obeying
congestion control.

3.4.2 Aggressive Retries and Random Drops

In the version of speak-up that we now describe, the thinner implements
proportional allocation by dropping requests at random to reduce the rate
to c. To implement encouragement, the thinner, for each request that it
drops, immediately asks the client to retry. �is synchronous please-retry
signal causes the good clients—the bad ones are already “maxed out”—to
retry at far higher rates than they would under silent dropping. (Silent drop-
ping happens in many applications and in e�ect says, “please try again later”,
whereas the thinner says, “please try again now”.)

With the scheme as presented thus far, a good client sends only one
packet per round-trip time (RTT) while a bad client can keep many requests
outstanding, thereby manufacturing an advantage. To avoid this problem,
we modify the scheme as follows: without waiting for explicit please-retry
signals, the clients send repeated retries in a congestion-controlled stream.
Here, the feedback used by the congestion control protocol functions as
implicit please-retry signals. �is modi�cation allows all clients to pipeline
their requests and keep their pipe to the thinner full.

One might ask, “To solve the same problem, why not enforce one out-
standing retry per client?” or, “Why not dispense with retries, queue clients’
requests, and serve the oldest?” �e answer is that clients are not identi�-
able: with address hijacking, discussed in Chapter 2, one client may claim
to be several, and with NATs and proxies, several clients (which may indi-
vidually have plenty of bandwidth) may appear to be one. �us, the thinner
can enforce neither one outstanding retry per “client” nor any other quota
scheme that needs to identify clients. Ironically, taxing clients is easier than
identifying them: the continuous stream of bytes that clients are asked to
send ensures that each is charged individually.

Indeed, speak-up is a currency-based scheme (as we said earlier), and
the price for access is the average number of retries, r, that a client must

35



send. Observe that the thinner does not communicate r to clients: good
clients keep resending until they get through (or give up). Also, r automat-
ically changes with the attack size, as can be seen from the expressions for
r, derived below.

�is approach ful�lls the design goal in §3.4.1, as we now show. �e
thinner admits incoming requests with some probability p to make the total
load reaching the server be c. �ere are two cases. Either the good clients
cannot a�ord the price, in which case they exhaust all of their bandwidth
and do not get service at rate g, or they can a�ord the price, in which case
they send retries until getting through. In both cases, the price, r, is 1/p. In
the �rst case, a load of B + G enters the thinner, so p = c

B+G , r = B+G
c , and

the good clients can pay for G/r = G
G+Bc requests per second. In the second

case, the good clients get service at rate g, as required, and r = B/(c − g)
(as we show immediately below). Note that in both cases r changes with the
attack size, B.

To see that r = B/(c−g) in the second case, observe that the “bad load”
that actually reaches the server reduces from B, the attackers’ full budget, to
Bp. �us, the thinner’s dropping, combined with the fact that good clients
retry their “good load” of g until getting through, results in the equation
g + Bp = c, which implies r = 1/p = B/(c− g).

3.4.3 Explicit Payment Channel and Virtual Auction

We now describe another encouragement mechanism and another propor-
tional allocation mechanism; we use these mechanisms in our implemen-
tation and evaluation. �ey are depicted in Figure 3.3. For encouragement,
the thinner does the following. When the server is oversubscribed, the thin-
ner asks a requesting client to open a separate payment channel. �e client
then sends a congestion-controlled stream of bits on this channel. (Con-
ceptually, the client is padding dummy bytes to its request.) We call a client
that is sending bits a contending client; the thinner tracks how many bits
each contending client sends.

�e proportional allocation mechanism is as follows. Assume that the
server noti�es the thinner when it is ready for a new request. When the
thinner receives such a noti�cation, it holds a virtual auction: it admits to
the server the contending client that has sent the most bits, and it terminates
the corresponding payment channel.

As with the version in §3.4.2, the price here emerges naturally. Here, it
is expressed in bits per request. �e “going rate” for access is the winning
bid from the most recent auction. We now consider the average price. Here,

36



server

request

“send bits” thinner
congestion-
controlled
stream of

dummy bits request

“send bits”

Figure 3.3—Speak-up with an explicit payment channel. For each request that arrives
when the server is busy, the thinner asks the requesting client to send dummy bits. Imagine
that an auction is about to happen. �e dark gray request will win the auction because it
has �ve units of payment associated with it, compared to only two units for the light gray
request.

we express B and G in bits (not requests) per second and assume that the
good and bad clients are “spending everything”, so B + G bits per second
enter the thinner. Since auctions happen every 1/c seconds on average, the
average price is B+G

c bits per request.
However, we cannot claim, as in §3.4.2, that good clients get G

G+Bc re-
quests served per second: the auction might allow “gaming” in which ad-
versaries consistently pay a lower-than-average price, forcing good clients
to pay a higher-than-average price. In the next section, we show that the
auction can be gamed but not too badly, so all clients do in fact see prices
that are close to the average.

3.4.4 Cheating and the Virtual Auction

In considering the robustness of the virtual auction mechanism, we begin
with a theorem and then describe how practice may be both worse and bet-
ter than this theory. �e theorem is based on one simplifying assumption:
that requests are served with perfect regularity (i.e., every 1/c seconds).

�eorem 3.1 In a system with regular service intervals, any client that con-
tinuously transmits an α fraction of the average bandwidth received by the
thinner gets at least an α/2 fraction of the service, regardless of how the
bad clients time or divide up their bandwidth.

37



Proof:Consider a client,X, that transmits anα fraction of the average band-
width. �e intuition is that to keep X from winning auctions, the other
clients must deliver substantial payment.

Because our claims are purely about proportions, we choose units to
keep the discussion simple. We call the amount of bandwidth thatX delivers
between every pair of auctions a dollar. Suppose thatX must wait t auctions
before winning k auctions. Let t1 be the number of auctions that occur until
(and including) X’s �rst win, t2 the number that occur a±er that until and
including X’s second win, and so on. �us,

∑k
i=1 ti = t. Since X does not

win until auction number t1, X is defeated in the previous auctions. In the
�rst auction, X has delivered 1 dollar, so at least 1 dollar is spent to defeat
it; in the next auction 2 dollars are needed to defeat it, and so on until the
(t1− 1)st auction when t1− 1 dollars are spent to defeat it. So 1 + 2 + · · ·+
(t1 − 1) = t1(t1 − 1)/2 dollars are spent to defeat X before it wins. More
generally, the total dollars spent by other clients over the t auctions is at
least

k∑
i=1

t2
i − ti

2
=

k∑
i=1

t2
i

2
− t

2
.

�is sum is minimized, subject to
∑

ti = t, when all the ti are equal, namely
ti = t/k. We conclude that the total spent by the other clients is at least

k∑
i=1

t2

2k2 −
t
2

=
t2

2k
− t

2
.

Adding the t dollars spent by X, the total number of dollars spent is at least
t2

2k
+

t
2

.

�us, recalling that α is what we called the fraction of the total spent by X,
we get

α ≤ 2
(t/k + 1)

.

It follows that
k
t
≥ α

2− α
≥ α

2
,

i.e., X receives at least an α/2 fraction of the service.
Observe that this analysis holds for each good client separately. It fol-

lows that if the good clients deliver in aggregate an α fraction of the band-
width, then in aggregate they will receive an α/2 fraction of the service.
Note that this claim remains true regardless of the service rate c, which need
not be known to carry out the auction.

38



�eory versus practice. We now consider ways in which the above theo-
rem is both weaker and stronger than what we expect to see in practice. We
begin with weaknesses. First, consider the unreasonable assumption that
requests are served with perfect regularity. To relax this assumption, the
theorem can be extended as follows: for service times that �uctuate within
a bounded range [(1 − δ)/c , (1 + δ)/c ], X receives at least a (1 − 2δ)α/2
fraction of the service. However, even this looser restriction may be unreal-
istic in practice. And pathological service timings violate the theorem. For
example, if many request ful�llments are bunched in a tiny interval during
which X has not yet paid much, bad clients can cheaply outbid it during
this interval, if they know that the pathology is happening and are able to
time their bids. But doing so requires implausibly deep information.

Second, the theorem assumes that a good client “pays bits” at a constant
rate given by its bandwidth. However, the payment channel in our imple-
mentation runs over TCP, and TCP’s slow start means that a good client’s
rate must grow. Moreover, because we implement the payment channel as a
series of large HTTP POSTs (see §3.7), there is a quiescent period between
POSTs (equal to one RTT between client and thinner) as well as TCP’s slow
start for each POST. Nevertheless, we can extend the analysis to capture this
behavior and again derive a lower bound for the fraction of service that a
given good client receives. �e result is that if the good client has a small
fraction of the total bandwidth (causing it to spend a lot of time paying),
and if the HTTP POST is big compared to the bandwidth-delay product,
then the client’s fraction of service is not noticeably a�ected (because the
quiescent periods are negligible relative to the time spent paying at full rate).

We now consider the strength of the theorem: it makes no assumptions
at all about adversarial behavior. We believe that in practice adversaries will
attack the auction by opening many concurrent TCP connections to avoid
quiescent periods, but the theorem handles every other case too. �e ad-
versary can open few or many TCP connections, disregard TCP semantics,
or send continuously or in bursts. �e only parameter in the theorem is the
total number of bits sent in a given interval by other clients.

�e theorem does cede the adversary an extra factor of two “advantage”
in bandwidth (the good client sees only α/2 service for α bandwidth). �is
advantage arises because the proof lets the adversary control exactly when
its bits arrive—sending fewer when the good client’s bid is small and more
as the bid grows. �is ability is powerful indeed—most likely stronger than
real adversaries have. Nevertheless, even with this highly pessimistic as-
sumption about adversarial abilities, speak-up can still do its job: the re-

39



quired provisioning has only increased by a factor of two over the ideal
from §3.4.1, and this provisioning is still far less than what would be re-
quired to absorb the attack without speak-up.

To see that the required provisioning increases by a factor of two, ob-
serve that the theorem says that good clients can get service of up to cα/2 =

Gc
2(G+B)

requests per second. Yet good clients need service of g requests per
second. �us, the required provisioning, which we denote creq, must satisfy
Gcreq

2(G+B)
≥ g. �is inequality yields creq ≥ 2cid.

In §3.8.4, we quantify the adversarial advantage in our experiments by
determining how the factors mentioned in this section—quiescent periods
for good clients, bad clients opening concurrent connections—a�ect the
required provisioning above the ideal.

3.4.5 Design Space

We now re�ect on the possible designs for speak-up and then discuss how
we chose which one to implement and evaluate.

Axes

We have so far presented two designs: “aggressive retries and random drops”
(§3.4.2) and “payment channel and virtual auction” (§3.4.3). �ese designs
are drawn from a larger space, in which there are two orthogonal axes that
correspond to the required mechanisms from §3.4.1:

a1 Encouragement method:

–– Aggressive retries
–– Payment channel

a2 Allocation mechanism:

–– Random drops
–– Virtual auction

�us, it is possible to imagine two other designs. We discuss them now.

“Retries and Virtual Auction”

In this design, clients send repeated retries in-band on a congestion-
controlled stream. �e thinner conducts a periodic auction, selecting as the
winner the request with the most retries (rather than the most bits) up to
that point. We can apply �eorem 3.1 to this design, as follows. �e theo-
rem describes clients’ bandwidths in terms of a made-up unit (the “dollar”),
so we need only take this unit to be retries between auctions, rather than
bits between auctions.

40



“Payment Channel and Random Drops”

In this design,4 clients pay bits out of band. As in the “virtual auction” de-
signs, the thinner divides time into service intervals (i.e., time lengths of
1/c seconds), making an admission decision at the end of each interval. In
this design, however, the intervals are independent. For a given interval,
the thinner records how many bits clients have sent in that interval. At the
end of an interval, the thinner chooses randomly. Speci�cally, a request that
has sent a fraction f of the total bits in that interval is admitted by the thin-
ner with probability f . To show that this design achieves our goal, we use
the following theorem; like �eorem 3.1, it relies on the assumption that
requests are served with perfect regularity.

�eorem 3.2 Under this design, any client that continuously delivers a frac-
tion α of the average bandwidth received by the thinner gets a fraction α
of service, in expectation, regardless of how the other clients time or divide
up their bandwidth.

Proof: As in �eorem 3.1, consider a single client, X, and again assume that
X delivers a dollar between service intervals. We will examine what happens
over t time intervals. Over this period,X delivers t dollars of bandwidth. We
are given that all of the clients together deliver t/α dollars over this period,
so the other clients deliver t/α− t dollars.

Now, consider each of the i intervals. In each interval, the service that X
expects is the same as the probability that it is admitted, which is 1/(1+bi),
where bi is the bandwidth delivered by the other clients in interval i. By
linearity of expectation, the total expected service received by X is

t∑
i=1

1
1 + bi

subject to
t∑

i=1

bi =
t
α
− t.

�e minimum—which is the worst case for X—happens when the bi are
equal to each other, i.e., bi = 1/α − 1. In that case, the expected service
received by X is

t∑
i=1

1
1 + 1/α− 1

= αt,

so X can expect at least an α fraction of the total service.

4A good question by Je� Erickson caused us to think of this approach.

41



An advantage of this approach is that the thinner need not keep track
of how many bits have been sent on behalf of each request, as we now ex-
plain. (Of course, depending on the scenario, the thinner may still need per-
request state, such as congestion control state or other connection state.) We
can regard the thinner’s tasks as (a) receiving a stream of bits in each inter-
val (each packet brings a set of bits on behalf of a request); (b) at the end
of the interval, choosing a bit uniformly at random; and (c) admitting the
request on whose behalf the “winning bit” arrived. �ese tasks correspond
to admitting a request with probability proportional to the number of bits
that were sent on behalf of that request in the given interval.

To implement these tasks, the thinner can use reservoir sampling [85]
with a reservoir of one bit (and its associated request). Reservoir sampling
takes as input a stream of unknown size and �ips an appropriately weighted
coin to make a “keep-or-drop” decision for each item in the stream (a “keep”
decision evicts a previously kept item). �e weights on the coins ensure that,
when the stream ends, the algorithm will have chosen a uniformly random
sample of size k (in our case, k = 1). A further re�nement avoids making a
decision for each item (or bit, in our context): once the algorithm keeps an
item, it chooses a random value representing the next item to admit; it can
then discard all intermediate items with a clear conscience [165].

Comparing the Possibilities

Before we actually compare the alternatives, observe that one of the de-
signs is under-speci�ed: in the description of “aggressive retries and ran-
dom drops” in §3.4.2, we did not say how to set p, the drop probability.
However, the design and theorem above suggest one way to do so: the thin-
ner divides up time and selects one client to “win” each interval (rather than
trying to apply a drop probability to each retry independently such that the
total rate of admitted requests is c). With this method of setting p, every de-
sign in this space shares the same high-level structure: clients pipeline bits
or requests, and the thinner selects a client once every 1/c seconds. �e
designs are thus directly comparable.

�e di�erences among the designs are as follows. Axis a1 is primarily
an implementation distinction, and which choice is appropriate depends on
the protected application and on how speak-up �ts into the communication
protocol between clients and servers.

Axis a2 is more substantive. Here, we have a classic trade-o� between
random and deterministic algorithms. �e “virtual auction” is gameable in
a limited way, but clients’ waiting times are bounded: once a client has paid

42



enough, it is served. “Random drops” is the opposite: it is not at all game-
able, but our claims about it apply only to long-term averages. At short time
scales, there will be signi�cant variation in the server’s allocation and thus
in waiting times. In particular, a typical coupon-collector analysis shows
that if there are n equivalent clients that continually make requests, some
of the clients will have to wait an expected O(n log n ) intervals to get ser-
vice. (Regard each interval as picking a client uniformly at random.) An-
other di�erence between the two options is that one can implement “ran-
dom drops” with less state at the thinner (by using reservoir sampling, as
described above). Which choice on axis 2 is appropriate depends on one’s
goals and taste.

Rationale for our choices. For our prototype (§3.7), we chose the pay-
ment channel over in-band retries for reasons related to how JavaScript
drives Web browsers. We chose the virtual auction over random drops be-
cause we wanted to avoid variance.

Other designs. One might wonder whether the design space is larger than
these four possibilities, which share a similar structure. Indeed, we used to
be enamored of a di�erent structure, namely the version of “random drops”
described at the beginning of §3.4.2. �e charm of that version was that its
thinner was stateless. However, we ultimately rejected that approach be-
cause, as described in §3.4.2, clients need to keep their pipes to the thinner
full (otherwise, recall, bad clients could manufacture a bandwidth advan-
tage). �is requirement implies that the thinner must maintain congestion
control state for each client, ending the dream of a stateless thinner.

3.5 revisiting assumptions

We have so far made a number of assumptions. Below we address four of
them in turn: that aside from end-hosts’ access links, the Internet has in-
�nite capacity; that no bottleneck link is shared (which is a special case of
the �rst assumption, but we address them separately); that the thinner has
in�nite capacity; and that bad clients consume all of their upload band-
width when they attack. In the next section, we relax the assumption of
equal server requests.

43



3.5.1 Speak-up’s E�ect on the Network

No �ow between a good client and a thinner individually exhibits anti-
social behavior. In our implementation (see §3.7), each payment channel
comprises a series of HTTP POSTs and thus inherits TCP’s congestion con-
trol. For UDP applications, the payment channel could use the congestion
manager [14] or DCCP [87]. (Bad clients can refuse to control congestion,
but this behavior is a link attack, which speak-up does not defend against;
see §3.3.) However, individually courteous �ows do not automatically ex-
cuse the larger rudeness of increased tra�c levels, and we must ask whether
the network can handle this increase.

To answer this question, we give two sketchy arguments suggesting that
speak-up would not increase total tra�c much, and then consider the ef-
fect of such increases. First, speak-up in�ates upload bandwidth, and, de-
spite the popularity of peer-to-peer �le-sharing, most bytes still �ow in the
download direction [54]. �us, in�ating upload tra�c even to the level of
download tra�c would cause an in�ation factor of at most two. Second,
only a very small fraction of servers is under attack at any given time. �us,
even if speak-up did increase the tra�c to each attacked site by an order of
magnitude, the increase in overall Internet tra�c would still be small.

Whatever the overall tra�c increase, it is unlikely to be problematic for
the Internet “core”: both anecdotes from network operators and measure-
ments [54] suggest that these links operate at low utilization. And, while the
core cannot handle every client transmitting maximally (as argued in [164]),
we expect that the fraction of clients doing so at any time will be small—
again, because few sites will be attacked at any time. Speak-up will, however,
create contention at bottleneck links (as will any heavy user of the network),
an e�ect that we explore experimentally in §3.8.7.

3.5.2 Shared Links

We now consider what happens when clients that share a bottleneck link
are simultaneously encouraged by the thinner. For simplicity, assume two
clients behind bottleneck link l; the discussion generalizes to more clients. If
the clients are both good, their individual �ows roughly share l, so they get
roughly the same piece of the server. Each may be disadvantaged compared
to clients that are not similarly bottlenecked, but neither is disadvantaged
relative to the other.

If, however, one of the clients is bad, then the good client has a problem:
the bad client can open n parallel TCP connections (§3.4.4), claim roughly

44



an n/(n + 1) fraction of l’s bandwidth, and get a much larger piece of the
server. While this outcome is unfortunate for the good client, observe, �rst,
that the server is still protected (the bad client can “spend” at most l ). Sec-
ond, while the thinner’s encouragement might instigate the bad client, the
fact is that when a good and bad client share a bottleneck link—speak-up
or no—the good client loses: the bad client can always deny service to the
good client. We experimentally investigate such sharing in §3.8.6.

3.5.3 Provisioning the�inner

For speak-up to work, the thinner must be uncongested: a congested thin-
ner could not “get the word out” to encourage clients. �us, the thinner
needs enough bandwidth to absorb a full DDoS attack and more (which is
condition c2 in §3.3). It also needs enough processing capacity to handle
the dummy bits. (Meeting this requirement is far easier than provisioning
the server to handle the full attack because the thinner does not do much
per-request processing.) We now argue that meeting these requirements is
plausible.

One study [138] of observed DoS attacks found that the 95th percentile
of attack size was in the low hundreds of Mbits/s (see Figure 3.15 in §3.10.2),
which agrees with other anecdotes (e.g., [162]). �e tra�c from speak-up
would presumably be multiples larger since the good clients would also
send at high rates. However, even with several Gbits/s of tra�c in an at-
tack, the thinner’s requirements are not insurmountable.

First, providers readily o�er links, even temporarily (e.g., [25, 120]), that
accommodate these speeds. Such bandwidth is expensive, but co-located
servers could share a thinner, or else the ISP could provide the thinner as
a service (see condition c2 in §3.3). Second, we consider processing capac-
ity. Our unoptimized so±ware thinner running on commodity hardware
can handle 1.5 Gbits/s of tra�c and tens or even hundreds of thousands of
concurrent clients; see §3.8.1. A production solution would presumably do
much better.

3.5.4 Attackers’ Constraints

�e assumption that bad clients are today “maxing out” their upload band-
width was made for ease of exposition. �e required assumption is only that
bad clients consistently make requests at higher rates than legitimate clients.
Speci�cally, if bad clients are limited by their download bandwidth, or they
are not maxed out at all today, speak-up is still useful: itmakes upload band-

45



width into a constraint by forcing everyone to spend this resource. Since
bad clients—even those that aren’t maxed out—are more active than good
ones, the imposition of this upload bandwidth constraint a�ects the bad
clients more, again changing the mix of the server that goes to the good
clients. Our goals and analysis in §3.4 still hold: they are in terms of the
bandwidth available to both populations, not the bandwidth that they ac-
tually use today.

3.6 heterogeneous requests

We now generalize the design to handle the more realistic case in which the
requests are unequal. �ere are two possibilities: either the thinner can tell
the di�culty of a request in advance, or it cannot. In the �rst case, the design
is straightforward: the thinner simply scales a given bandwidth payment
by the di�culty of the associated request (causing clients to pay more for
harder requests).

In the remainder of this section, we address the second case, making the
worst-case assumption that although the thinner does not know the di�-
culty of requests in advance, attackers do, as given by the threat model in
§3.3. If the thinner treated all requests equally (charging, in e�ect, the av-
erage price for any request), an attacker could get a disproportionate share
of the server by sending only the hardest requests.

In describing the generalization to the design, we make two assump-
tions:

–– As in the homogeneous case, the server processes only one request at a
time. �us, the “hardness” of a computation is measured by how long
it takes to complete. Relaxing this assumption to account for more
complicated servers is not di�cult, as long as the server implements
processor sharing among concurrent requests, but we don’t delve into
those details here.

–– �e server exports an interface that allows the thinner to suspend,
resume, and abort requests. (Many transaction managers and ap-
plication servers support such an interface.)

At a high level, the solution is for the thinner to break time into quanta,
to view a request as comprising equal-sized chunks that each consume a
quantum of the server’s attention, and to hold a virtual auction for each
quantum. �us, if a client’s request is made of x chunks, the client must win

46



x auctions for its request to be fully served. �e thinner need not know x in
advance for any request.

In more detail: rather than terminate the payment channel once the
client’s request is admitted (as in §3.4.3), the thinner extracts an on-going
payment until the request completes. Given these on-going payments, the
thinner implements the following procedure every τ seconds (τ is the quan-
tum length):

1. Let v be the currently-active request. Let u be the contending request
that has paid the most.

2. If u has paid more than v, then suspend v, admit (or resume) u, and
set u’s payment to zero.

3. If v has paid more than u, then let v continue executing but set v’s
payment to zero (since v has not yet paid for the next quantum).

4. Time-out and abort any request that has been suspended for some
period (e.g., 30 seconds).

�is scheme requires some cooperation from the server. First, the server
should not suspend requests that hold critical locks; doing so could cause
deadlock. Second, suspend, resume, and abort should have low over-
head.

In general, the approach described in this section could apply to other
defenses as well (though, to our knowledge, no one has proposed it). For ex-
ample, a pro�ler could allocate quanta based on clients’ historical demand
rather than on how many bits clients have paid.

3.7 implementation

We implemented a prototype thinner in C++ as an OKWS [90] Web service
using the SFS toolkit [101]. It runs on Linux 2.6. Any JavaScript-capable
Web browser can use our system; we have successfully tested our imple-
mentation with Firefox, Internet Explorer, Safari, and a custom client that
we use in our experiments.

�e thinner is designed to be easy to deploy. It is a Web front-end that
is intended to run on a separate machine “in front” of the protected Web
server (which we will call just the server in the remainder of this section).
Moreover, there are not many con�guration parameters. �ey are:

47



–– �e capacity of the protected server, expressed in requests per second.

–– A list of URLs and regular expressions that correspond to “hard re-
quests”. Each URL and regular expression is associated with a di�-
culty level. �is di�culty level is relative to the capacity. For example,
if the server’s capacity is 100 requests per second, and if the thinner
is con�gured such that a given URL has di�culty 2, then the thinner
assumes that for the server to handle that request takes an average of
.02 seconds.

–– �e name or address of the server.

–– A custom “please wait” screen that humans will see while the server
is working and while their browser is paying bits. Existing computa-
tionally intensive Web sites already use such screens.

When the thinner gets a request, it �rst checks whether that request is
on the list of hard requests. If not, it passes the request directly to the server
and feeds the response back to the client on behalf of the server.

On the other hand, if the Web client has requested a “hard” URL, the
thinner immediately replies with the “please wait” screen. If there are no
other connections to the thinner (i.e., if the server is not oversubscribed),
then the thinner submits the client’s request to the protected server. A±er
the server processes the request and replies to the thinner, the thinner re-
turns to the client (1) JavaScript that wipes the “please wait” screen and (2)
the contents of the server’s reply.

If, however, other clients are communicating with the thinner (i.e., if the
server is oversubscribed), the thinner adds JavaScript a±er the “please wait”
HTML. As depicted in Figure 3.4, this JavaScript causes the client’s browser
to dynamically construct, and then submit, a one-megabyte HTTP POST
containing random bytes. (One megabyte re�ects some browsers’ limits on
POSTs.) �is POST is the client’s bandwidth payment (§3.4.3). If, while
sending these dummy bytes, the client wins an auction (we say below when
auctions happen), the thinner terminates the POST and submits the client’s
request to the server, as above. And, as above, the server then replies to the
thinner, the thinner wipes the “please wait” screen, etc.

If the client completes the POST without winning an auction, then the
thinner returns JavaScript that causes the browser to send another POST,
and the process described in the previous paragraph repeats. �e thinner
correlates the client’s payments with its request via a “request id” �eld in all
HTTP requests. �is �eld could be forged by a client, but such forgery is not

48



Web
server

GET /hard-url.php
Web

front-endbrowser

JavaScript:
……………………………………

POST /payment
3sa8fdf98uwqrwq8u7wel8alsdfsdfsd
1234023fasd24sf23asdf234…….

Java
Script

Figure 3.4—Implementation of the payment channel. When the server is busy, the thin-
ner, implemented as a Web front-end, sends JavaScript to clients that causes them to send
large HTTP POSTs. �e thinner ends a POST if and when the client wins the auction.

cause for concern: it amounts to contributing bandwidth to another client
or splitting bandwidth over two virtual clients, both of which are behaviors
that the design assumes of clients (see page 26, §3.4.1, and §3.4.4).

Auctions. �e thinner holds auctions (and demands bandwidth payment)
whenever it has more than one connection open (this state corresponds
to over-subscription of the server). �e server does not tell the thinner
whether it is free. Rather, the thinner uses the con�guration parameters
(speci�cally, the server’s capacity and the di�culty of requests) to meter re-
quests to the server in the obvious way: if we assume for a moment that all
requests are of unit di�culty, then the thinner holds an auction every 1/c
seconds. Backing o� of this assumption, if a request of di�culty level d has
just been admitted to the server, then the thinner will hold the next auc-
tion d/c seconds later. To handle di�cult requests fairly, the thinner scales
clients’ payments by the di�culty level, and the auction winner is based on
the scaled payments.

* * *
One can con�gure the thinner to support hundreds of thousands of con-
current connections by setting the maximum number of connection de-
scriptors appropriately. (�e thinner evicts old clients as these descriptors
deplete.) With modern versions of Linux, the limit on concurrent clients
is not per-connection descriptors but rather the RAM consumed by each
open connection.

49



Our thinner implementation allocates a protected server in
rough proportion to clients’ bandwidths. §3.8.2, §3.8.5

In our experiments, the server needs to provision only 37% be-
yond the bandwidth-proportional ideal to serve 99.98% of the
good requests.

§3.8.3, §3.8.4

Our unoptimized thinner implementation can sink 1.5 Gbits/s
of uploaded “payment tra�c”. §3.8.1

On a bottleneck link, speak-up tra�c can crowd out other
speak-up tra�c and non-speak-up tra�c. §3.8.6, §3.8.7

When the thinner has less bandwidth than required (i.e., when
condition c2 from §3.3 is not met), speak-up does not achieve
a bandwidth-proportional allocation but still yields a better al-
location than having no defense.

§3.8.8

Table 3.1—Summary of main evaluation results.

3.8 experimental evaluation

To investigate the e�ectiveness and performance of speak-up, we conducted
experiments with our prototype thinner. Our primary question is how the
thinner allocates an attacked server to good clients. To answer this ques-
tion, we begin in §3.8.2 by varying the bandwidth of good (G) and bad (B)
clients, and measuring how the server is allocated with and without speak-
up. We also measure this allocation with server capacities above and be-
low the ideal in §3.4.1. In §3.8.3, we measure speak-up’s latency and byte
cost. In §3.8.4, we ask how much bad clients can “cheat” speak-up to get
more than a bandwidth-proportional share of the server. §3.8.5 shows how
speak-up performs when clients have di�ering bandwidths and latencies to
the thinner. We also explore scenarios in which speak-up tra�c shares a
bottleneck link with other speak-up tra�c (§3.8.6) and with non-speak-up
tra�c (§3.8.7). Finally, we measure how speak-up performs when the thin-
ner’s bandwidth is under-provisioned (§3.8.8); that is, we measure the e�ect
of not meeting condition c2 in §3.3. Table 3.1 summarizes our results.

3.8.1 Setup and Method

All of the experiments described here ran on the Emulab testbed [47]. �e
clients run a custom Python Web client and connect to the prototype thin-

50



ner in various emulated topologies. �e thinner runs on Emulab’s “PC 3000”,
which has a 3 GHz Xeon processor and 2 GBytes of RAM; the clients are
allowed to run on any of Emulab’s hardware classes.

�e protected server is an Apache Web server that runs on the same
host as the thinner. �e thinner is con�gured so that “hard” requests are
those to a particular URL, U, that corresponds to a simple PHP script. �at
PHP script responds to HTTP GET requests for U by �rst sleeping for 1/c
seconds and then returning a simple text �le. c is the server capacity that we
are modeling and varies depending on the experiment. �e thinner sends
the server requests for U no more o±en than once every 1/c seconds. If
a request arrives while the server is still “processing” (really, sleeping on
behalf of) a previous one, the thinner replies with JavaScript that makes the
client issue a one megabyte HTTP POST—the payment bytes (see §3.7).

All experiments run for 600 seconds. Each client runs on a separate
Emulab host and generates requests for U. All requests are identical. Each
client’s requests are driven by a Poisson process of rate λ requests/s. How-
ever, a client never allows more than a con�gurable numberw (the window)
of outstanding requests. If the stochastic process “�res” when more than w
requests are outstanding, the client puts the new request in a backlog queue,
which drains when the client receives a response to an earlier request. If a
request is in this queue for more than 10 seconds, it times out, and the client
logs a service denial.

We use the behavior just described to model both good and bad clients.
A bad client, by de�nition, tries to capture more than its fair share. We
model this intent as follows: in our experiments, bad clients send requests
faster than good clients, and bad clients send requests concurrently. Specif-
ically, we choose λ = 40, w = 20 for bad clients and λ = 2, w = 1 for good
clients.

Our choices of B and G are determined by the number of clients that
we are able to run in the testbed and by a rough model of today’s client
access links. Speci�cally, in most of our experiments, there are 50 clients,
each with 2 Mbits/s of access bandwidth. �us, B + G usually equals 100
Mbits/s. �is scale is smaller than most attacks. Nevertheless, we believe
that the results generalize because we focus on how the prototype’s behavior
di�ers from the theory in §3.4. By understanding this di�erence, one can
make predictions about speak-up’s performance in larger attacks.

Because the experimental scale does not tax the thinner, we separately
measured its capacity and found that it can handle loads comparable to
recent attacks. At 90% CPU utilization on the hardware described above

51



0.0

0.2

0.4

0.6

0.8

1.0

 0.1  0.3  0.5  0.7  0.9Fr
ac

tio
n 

of
 se

rv
er

 al
lo

ca
te

d 
to

 g
oo

d 
cl

ie
nt

s

Good clients’ fraction of total client bandwidth

With speak-up
Without speak-up

Ideal

Figure 3.5—Server allocation when c = 100 requests/s as a function of G
G+B . �e mea-

sured results for speak-up are close to the ideal line. Without speak-up, bad clients sending
at λ = 40 requests/s and w = 20 capture much more of the server.

with multiple gigabit Ethernet interfaces, in a 600-second experiment with
a time series of 5-second intervals, the thinner sinks payment bytes at 1451
Mbits/s (with standard deviation of 38 Mbits/s) for 1500-byte packets and
at 379 Mbits/s (with standard deviation of 24 Mbits/s) for 120-byte packets.
Many recent attacks are roughly this size; see §3.5.3 and §3.10.2. �e capac-
ity also depends on how many concurrent clients the thinner supports; the
limit here is only the RAM for each connection (see §3.7).

3.8.2 Validating the�inner’s Allocation

When the rate of incoming requests exceeds the server’s capacity, speak-up’s
goal is to allocate the server’s resources to a group of clients in proportion
to their aggregate bandwidth. In this section, we evaluate to what degree
our implementation meets this goal.

In our �rst experiment, 50 clients connect to the thinner over a 100
Mbits/s LAN. Each client has 2 Mbits/s of bandwidth. We vary f , the frac-
tion of “good” clients (the rest are “bad”). In this homogeneous setting, G

G+B
(i.e., the fraction of “good client bandwidth”) equals f , and the server’s ca-
pacity is c = 100 requests/s.

Figure 3.5 shows the fraction of the server allocated to the good clients
as a function of f . Without speak-up, the bad clients capture a larger frac-
tion of the server than the good clients because they make more requests

52



0.0

0.2

0.4

0.6

0.8

1.0

50,OFF 50,ON 100,OFF 100,ON 200,OFF 200,ON

Fr
ac

tio
n

Capacity of the server (requests/sec)

Server allocation to good clients
Server allocation to bad clients

Fraction of good requests served

Figure 3.6—Server allocation to good and bad clients, and the fraction of good requests
that are served, without (“OFF”) and with (“ON”) speak-up. c varies, and G = B = 50
Mbits/s. For c = 50, 100, the allocation is roughly proportional to the aggregate band-
widths, and for c = 200, all good requests are served.

and the server, when overloaded, randomly drops requests. With speak-
up, however, the good clients can “pay” more for each of their requests—
because they make fewer—and can thus capture a fraction of the server
roughly in proportion to their bandwidth. �e small di�erence between
the measured and ideal values is a result of the good clients not using as
much of their bandwidth as the bad clients. We discussed this adversarial
advantage in §3.4.4 and further quantify it in §3.8.3 and §3.8.4.

In the next experiment, we investigate di�erent “provisioning regimes”.
We �x G and B, and measure the server’s allocation when its capacity, c, is
less than, equal to, and greater than cid. Recall from §3.4.1 that cid is the min-
imum value of c at which all good clients get service, if speak-up is deployed
and if speak-up allocates the server exactly in proportion to client band-
width. We set G = B by con�guring 50 clients, 25 good and 25 bad, each
with a bandwidth of 2 Mbits/s to the thinner over a LAN. In this scenario,
cid = 100 requests/s (from §3.4.1, cid = g(1 + B

G) = 2g = 2 · 25 · λ = 100),
and we experiment with c = 50, 100, 200 requests/s.

Figure 3.6 shows the results. �e good clients get a larger fraction of the
server with speak-up than without. Moreover, for c = 50, 100, the alloca-
tion under speak-up is roughly proportional to the aggregate bandwidths,
and for c = 200, all good requests are served. (�e bad clients get a larger

53



0.0

0.2

0.4

0.6

0.8

1.0

50 100 200

Pa
ym

en
t T

im
e (

se
co

nd
s)

Capacity of the server (requests/sec)

Mean
90th percentile

Figure 3.7—Mean time to upload dummy bytes for good requests that receive service. c
varies, and G = B = 50 Mbits/s. When the server is not overloaded (c = 200), speak-up
introduces little latency.

share of the server for c = 200 because they capture the excess capacity
a±er the good requests have been served.) Again, one can see that the al-
location under speak-up does not exactly match the ideal: from Figure 3.6,
when speak-up is enabled and c = cid = 100, the good demand is not fully
satis�ed.

3.8.3 Latency and Byte Cost

We now explore speak-up’s byte cost and a pessimistic estimate of its latency
cost for the same set of experiments (c varies, 50 clients, G = B = 50
Mbits/s).

For the pessimistic latency cost, we measure the length of time that
clients spend uploading dummy bytes, as seen at the client. Figure 3.7 shows
the averages and 90th percentiles of these measurements for the served
good requests. �e reasons that this measurement is a pessimistic re�ec-
tion of speak-up’s true latency cost are as follows. First, for the good clients,
speak-up decreases average latency (because speak-up serves more good
requests). Second, even calling this measurement the per-request latency
cost is pessimistic because that view unrealistically implies that, without
speak-up, the “lucky” requests (the ones that receive service) never have to
wait. �ird, any other resource-based defense would also introduce some
latency.

54



 0

 50

 100

 150

 200

 250

50 100 200

A
vg

 p
ay

m
en

t (
KB

yt
es

)

Capacity of the server (requests/sec)

Upper Bound
Good

Bad

Figure 3.8—Average number of bytes sent on the payment channel—the “price”—for
served requests. c varies, and G = B = 50 Mbits/s. When the server is overloaded (c =
50, 100), the price is close to the upper bound, (G+B)/c; see the text for why they are not
equal.

For the byte cost, we measure the number of bytes uploaded for served
requests—the “price”—as recorded by the thinner. Figure 3.8 shows the
average of this measurement for good and bad clients and also plots the
theoretical average price, (G + B)/c, from §3.4.3, which is labeled “Upper
Bound”.

We make two observations about this data. �e �rst is that when the
server is under-provisioned, good clients pay slightly more for service than
bad ones. �e reason is as follows. All contending clients tend to overpay:
the client that will win the next auction continues to pay until the auction
happens rather than stopping a±er it has paid enough to win. And since
good clients pay at a faster rate per request, they tend to overshoot the “true”
price (the second-highest bid) more than the bad clients do. Note, however,
that the overpayment by any client is bounded by 1

c · (bandwidth of a client)
because a client can overpay for at most the time between two auctions.

�e second observation is that the actual price is lower than the theoret-
ical one. �e reason is that clients do not consume all of their bandwidth.
We now explain why they do not, considering the di�erent values of c in
turn.

For c = 50, each good client spends an average of 1.46 Mbits/s (deter-
mined by tallying the total bits spent by good clients over the experiment).

55



�is average is less than the 2 Mbits/s access link because of a quiescent
period between when a good client issues a request and when the thinner
replies, asking for payment. �is period is 0.22 seconds on average, ow-
ing mostly to a long backlog at the thinner of requests and payment bytes
(but a little to round-trip latency). When not in a quiescent period, a good
client consumes most of its access link, delivering 1.85 Mbits/s on average,
inferred by dividing the average good client payment (Figure 3.8) by the av-
erage time spent paying (Figure 3.7). Bad clients, in contrast, keep multiple
requests outstanding so do not have “down time”. For c = 50, they spend
an average of 1.84 Mbits/s.

�e c = 100 case is similar to c = 50.
We now consider c = 200. Recall that the upper bound on price of

(G+B)/c is met only if all clients actually pay all of their bandwidth. How-
ever, if the server is over-provisioned and all of the good clients’ requests are
served, as happens for c = 200, then the good clients do not pay the maxi-
mum that they are able. For each request, a good client pays enough to get
service, and then goes away, until the next request. �is behavior causes a
lower “going rate” for access than is given by the upper bound.

3.8.4 Empirical Adversarial Advantage

As just discussed, bad clients deliver more bytes than good clients in our ex-
periments. As a result of this disparity, the server does not achieve the ideal
of a bandwidth-proportional allocation. �is e�ect was visible in §3.8.2.

To better understand this adversarial advantage, we ask, What is the
minimum value of c at which all of the good demand is satis�ed? To an-
swer this question, we experimented with the same con�guration as above
(G = B = 50 Mbits/s; 50 clients) but for more values of c. We found that
at c = 137, 99.98% of the good demand is satisfed and that at c = 140, all
but one of the good clients’ 30,157 requests is served. c = 137 is 37% more
provisioning than cid, the capacity needed under exact proportional allo-
cation. We conclude that a bad client can cheat the proportional allocation
mechanism but only to a limited extent—at least under our model of bad
behavior.

We now revisit that model. First, we chose w = 20 arbitrarily. It might
be true that with a smaller or larger value for w, the bad clients could cap-
ture more of the server. Second, bad clients do not “optimize”. As one exam-
ple, in the c = 50 experiment, the average time between when the thinner
returns JavaScript to a bad client and when the thinner actually gets bits

56



0.0

0.1

0.2

0.3

0.4

0.5 1.0 1.5 2.0 2.5

Fr
ac

tio
n 

of
 se

rv
er

 al
lo

ca
te

d

Bandwidth (Mbits/sec)

Observed
Ideal

Figure 3.9—Heterogeneous client bandwidth experiments with 50 LAN clients, all good.
�e fraction of the server (c = 10 requests/s) allocated to the ten clients in category i, with
bandwidth 0.5 · i Mbits/s, is close to the ideal proportional allocation.

from that client is roughly two full seconds. During those two seconds, the
bad client is e�ectively paying for w − 1 (or fewer requests) rather than
w requests, so perhaps bad clients are not realizing their full adversarial
advantage. Indeed, one could imagine a bad client setting w adaptively or
concentrating bandwidth on particular requests. Nevertheless, the analy-
sis in §3.4.4 shows that bad clients cannot do much better than the naïve
behavior that we model.

3.8.5 Heterogeneous Network Conditions

We now investigate the server’s allocation for di�erent client bandwidths
and RTTs. We begin with bandwidth. We assign 50 clients to 5 categories.
�e 10 clients in category i (1 ≤ i ≤ 5) have bandwidth 0.5 · i Mbits/s and
are connected to the thinner over a LAN. All clients are good. �e server
has capacity c = 10 requests/s. Figure 3.9 shows that the resulting server
allocation to each category is close to the bandwidth-proportional ideal.

We now consider RTT, hypothesizing that the RTT between a good
client and the thinner will a�ect the allocation, for two reasons. First, at
low prices, a client will have sent the full price—that is, the requisite num-
ber of bytes to win the virtual auction—before TCP has “ramped up” to �ll
the client’s pipe. In these cases, clients with longer RTTs will take longer to
pay. Second, and more importantly, each request has at least one associated

57



0.0

0.1

0.2

0.3

 100  200  300  400  500

Fr
ac

tio
n 

of
 se

rv
er

 al
lo

ca
te

d

RTT (ms)

All-good expt
All-bad expt

Ideal for both expts

Figure 3.10— Two sets of heterogeneous client RTT experiments with 50 LAN clients,
all good or all bad. �e fraction of the server (c = 10 requests/s) captured by the 10 clients
in category i, with RTT 100 · i ms, varies for good clients. In contrast, bad clients’ RTTs
don’t matter because they open multiple connections.

quiescent period (see §3.8.1 and §3.8.3), the length of which depends on
RTT. In contrast, bad clients have multiple requests outstanding so do not
have “down time” and will not be much a�ected by their RTT to the thinner.

To test this hypothesis, we assign 50 clients to 5 categories. �e 10 clients
in category i (1 ≤ i ≤ 5) have RTT = 100·i ms to the thinner, giving a wide
range of RTTs. All clients have bandwidth 2 Mbits/s, and c = 10 requests/s.
We experiment with two cases: all clients good and all bad. Figure 3.10 con-
�rms our hypothesis: good clients with longer RTTs get a smaller share of
the server while for bad clients, RTT matters little. �is result may seem
unfortunate, but the e�ect is limited: for example, in this experiment, no
good client gets more than double or less than half the ideal.

3.8.6 Good and Bad Clients Sharing a Bottleneck

When good clients share a bottleneck link with bad ones, good requests
can be “crowded out” by bad ones before reaching the thinner (see §3.5.2).
We quantify this observation with an experiment that uses the following
topology, depicted in Figure 3.11: 30 clients, each with a bandwidth of 2
Mbits/s, connect to the thinner through a common link, l. �e capacity of
l is 20 Mbits/s. l is a bottleneck because the clients behind l can generate 60
Mbits/s. Also, 5 good and 5 bad clients, each with a bandwidth of 2 Mbits/s,

58



100 Mbits/s

Good client
Bad client

Bottleneck

30 clients

2 Mbits/s

10 clients

20 Mbits/s

Thinner

Figure 3.11—Network topology used to measure the impact of good and bad clients
sharing a bottleneck link (§3.8.6).

connect to the thinner directly through a LAN. �e server’s capacity is c =

30 requests/s. We vary the number of good and bad clients behind l, mea-
suring three cases: �rst, 5 good and 25 bad clients; second, 15 good and 15
bad clients; and third, 25 good and 5 bad clients.

Based on the topology, the clients behind l should capture half of the
server’s capacity. In fact, they capture slightly less than half: in the �rst case,
they capture 43.8%; in the second, 47.7%; and in the third, 47.1%.

Next, we measure the allocation of the server to the good and bad clients
behind l. We also measure, of the good requests that originate behind l,
what fraction receive service. Figure 3.12 depicts these measurements and
compares them to the bandwidth-proportional ideals. �e ideal for the �rst
measurement is given simply by the fraction of good and bad clients behind
l. �e ideal for the second measurement, fid, is 0.25, and it is calculated as
follows. Let Gl be the ideal bandwidth available to the good clients behind
l. Gl = 2 20

60n, where n is the number of good clients behind l. �e fraction
20
60 re�ects the fact that in the ideal case, the bottleneck restricts every client
equally. Further, let gl = nλ be the rate at which the good clients behind l
issue requests. Of the good requests that originate behind l, the ideal frac-
tion that would be served, fid, is the bandwidth-proportional server piece
for the good clients behind l divided by those clients’ demand:

fid =
Gl

G+Bc
gl

=
Gl
40 30
gl

=
2 20

60n30
40nλ

=
2 20

60n30
80n

= 0.25.

�e �gure shows that the good clients behind l are heavily penalized. �e

59



 0
 0.2
 0.4
 0.6
 0.8

 1

5 good, 25 bad 15 good,15 bad 25 good, 5 bad

Fr
ac

tio
n

Number of clients behind shared bottleneck

Actual fraction of ‘bottleneck service’ to good
Actual fraction of ‘bottleneck service’ to bad
Ideal fraction of ‘bottleneck service’ to good

Ideal fraction of ‘bottleneck service’ to bad
Ideal fraction served: bottlenecked good

Actual fraction served: bottlenecked good

Figure 3.12—Server allocation when good and bad clients share a bottleneck link, l. “Bot-
tleneck service” refers to the portion of the server captured by all of the clients behind
l. �e actual breakdown of this portion (le± bar) is worse for the good clients than the
bandwidth-proportional allocation (middle bar) because bad clients “hog” l. �e right bar
further quanti�es this e�ect.

reason is that each bad client keeps multiple connections outstanding so
captures much more of the bottleneck link, l, than each good client. �is
e�ect was hypothesized in §3.5.2.

3.8.7 Impact of Speak-up on Other Tra�c

We now consider how speak-up a�ects other tra�c, speci�cally what hap-
pens when a TCP endpoint, H, shares a bottleneck link, m, with clients that
are uploading dummy bits. �e case when H is a TCP sender is straight-
forward: m will be shared among H’s transfer and the speak-up uploads.
When H is a TCP receiver, the extra tra�c from speak-up a�ects H in two
ways. First, ACKs fromH will be lost (and delayed) more o±en than without
speak-up. Second, for request-response protocols (e.g., HTTP), H’s request
can be delayed. Here, we investigate these e�ects on HTTP downloads.

We experiment with the following setup: 10 good speak-up clients share
a bottleneck link, m, with H, a host that runs the HTTP client wget. m
has a bandwidth of 1 Mbit/s and one-way delay 100 ms. Each of the 11
clients has a bandwidth of 2 Mbits/s. On the other side of m are the thinner
(fronting a server with c = 2 requests/s) and a separate Web server, S. In
each experiment, H downloads a �le from S 100 times.

60



 0

 1

 2

 3

 4

 5

 6

 7

 1  2  4  8  16  32  64

En
d-

to
-e

nd
 la

te
nc

y 
(s

ec
on

ds
)

Size of HTTP Transfer (KBytes)

Without speak-up cross-traffic
With speak-up cross-traffic

Figure 3.13—E�ect on an HTTP client of sharing a bottleneck link with speak-up clients.
Graph shows means of end-to-end HTTP download latencies with and without cross-
tra�c from speak-up, for various HTTP transfer sizes (which are shown on a log scale).
Graph also shows standard deviations for the former measurements (the standard devi-
ations for the latter are less than 1.5% of the means). Cross-tra�c from speak-up has a
signi�cant e�ect on end-to-end HTTP download latency.

Figure 3.13 shows the mean download latency for various �le sizes, with
and without the speak-up tra�c. �e �gure also shows standard deviations
for the former set of measurements. For the latter set, the standard devia-
tions are less than 1.5% of the means.

�ere is signi�cant “collateral damage” to “innocently bystanding” Web
transfers here: download times in�ate between 2 and 3.2× for the various
transfer sizes. However, this experiment is quite pessimistic: the RTTs are
large, the bottleneck bandwidth is highly restrictive (roughly 20× smaller
than the demand), and the server capacity is low. While speak-up is clearly
the exacerbating factor in this experiment, it will not have this e�ect on
every link.

3.8.8 Under-provisioned�inner

We now explore how speak-up performs when condition c2 from §3.3 is
not met. �at is, we measure what happens when the thinner’s incoming
bandwidth is less than the combined bandwidth of its current clients. In this
case, we expect bad clients to claim a disproportionate share of the server.
�e reason is as follows. When the thinner’s access link is overloaded, the

61



0.0

0.1

0.2

0.3

0.4

0.5

506783100117Fr
ac

tio
n 

of
 se

rv
er

 al
lo

ca
te

d 
to

 g
oo

d 
cl

ie
nt

s

Thinner’s bandwidth as % of required (60 Mbits/sec)

Actual allocation
Ideal

No defense (projected)

Figure 3.14—Server allocation as a function of the thinner’s bandwidth provisioning.
G = B = 30 Mbits/s, and c = 30 requests/s. Graph depicts the actual allocation that
we measured under speak-up, as well as the ideal allocation and our prediction of the
allocation that would result if no defense were deployed. As the thinner becomes more
under-provisioned, bad clients capture an increasingly disproportionate fraction of the
server. However, even in these cases, speak-up is far better than having no defense.

thinner will not “hear” all of the incoming requests. �us, not all of the in-
coming requests will receive timely encouragement. Because good clients
make fewer requests and keep fewer requests outstanding, a good client,
relative to a bad client, has a higher probability of having no “encouraged”
requests outstanding. �us, on average, a good client is quiescent more of-
ten than a bad client, meaning that a good client pays fewer bits and hence
gets less service.

To measure this e�ect, we perform an experiment with the following
topology: 15 good and 15 bad clients, each with a bandwidth of 2 Mbits/s,
connect to the thinner over a LAN. Observe that the thinner’s required
bandwidth provisioning is 60 Mbits/s. Our experiments vary the thinner’s
actual access bandwidth from 30 Mbits/s, representing a thinner that is
under-provisioned by 50%, to 70 Mbits/s, representing a thinner that is am-
ply provisioned. For each case, we measure the fraction of the server that
goes to good and bad clients.

Figure 3.14 depicts the results, along with the ideal allocation and the
allocation that we project would result if no defense were deployed. �is
latter allocation is the ratio of the two populations’ request rates: λ = 2 for
a good client and λ = 40 for a bad client (see §3.8.1).

62



As the thinner becomes increasingly under-provisioned, bad clients
capture increasingly more of the server, which is the e�ect that we hypoth-
esized. Nevertheless, even in this case, speak-up is far better than nothing.

3.9 speak-up compared & critiqued

Having shown that speak-up roughly “meets its spec”, we now compare it to
other defenses against application-level DDoS attacks. (For pointers to the
broad literature on other denial-of-service attacks and defenses, in partic-
ular link attacks, see the survey by Mirkovic and Reiher [108] and the bib-
liographies in [82, 109, 178].) Some of the defenses that we discuss below
have been proposed; others are hypothetical but represent natural alterna-
tives. As the discussion proceeds, we will also critique speak-up. Some of
these critiques are speci�c to speak-up; some apply to speak-up’s general
category, to which we turn now.

3.9.1 Resource-based Defenses

�is category was pioneered by Dwork and Naor [46], who suggested, as
a spam defense, having receivers ask senders for the solutions to compu-
tationally intensive puzzles, in e�ect charging CPU cycles to send email.
(Back later proposed a similar idea [11].) Since then, others have done work
in the same spirit, using proof-of-work (as such schemes are known) to de-
fend against denial-of-service attacks [10, 41, 45, 53, 80, 114, 170, 172].
Others have proposed memory, rather than CPU, cycles for similar pur-
poses [2], and still others use money as the scarce resource [98, 148].

One of the contributions of speak-up is to introduce bandwidth as the
scarce resource, or currency. Another contribution is the explicit goal of
a resource-proportional allocation. Many of the other proposals strive for
a notion of fairness, and a few implicitly achieve a resource-proportional
allocation or something close, but none state it as an objective (perhaps
because it only makes sense to state this objective a±er establishing that
no robust notion of host identity exists). An exception is a recent paper by
Parno et al. [114], which was published a±er our work [169].

We do not know of another proposal to use bandwidth as a currency.
However, Sherr, Gunter, and their co-authors [70, 142] describe a related
solution to DoS attacks on servers’ computational resources. In their so-
lution, good clients send a �xed number of copies of their messages, and
the server only processes a �xed fraction of the messages that it receives,

63



thereby diminishing adversaries’ impact. Our work shares an ethos but has
a very di�erent realization. In that work, the drop probability and repeat
count are hard-coded, and the approach does not apply to HTTP. Further,
the authors do not consider congestion control, the implications of deploy-
ment in today’s Internet, and the unequal requests case. Also, Gligor [61]
observes that a hypothetical defense based on client retries and timeouts
would require less overhead but still provide the same qualitative perfor-
mance bounds as proof-of-work schemes. Because this general approach
does not meet his more exacting performance requirements, he does not
consider using bandwidth as a currency.

Bandwidth vs. CPU

We chose bandwidth as a currency because we were originally motivated by
the key observation in §3.1, namely that good clients likely have more spare
upload capacity. However, our resource-proportional goal could just as well
be applied to CPU cycles, so we must ask, “Why bandwidth? Why not use
CPU cycles as the computational currency?” To answer this question, we
now compare these two alternatives. We do not �nd a clear winner. Band-
width strikes us as the more “natural” choice, but it can introduce more
collateral damage.

We begin with a hedge; we discuss contributions of speak-up that are
expressed in the context of bandwidth but could apply to other currencies:

Less mechanism, more desiderata. �e existing CPU-based proposals
[10, 41, 53, 80, 114, 170, 172] incorporate far more mechanism than speak-
up: they require some or all of client modi�cation, protocol modi�cation
(to accommodate the puzzle challenge and response), or a network-wide
puzzle distribution system together with a trusted authority. We conjecture
that this extra mechanism is unnecessary, at least for protecting Web ap-
plications. Consider a hypothetical defense that works just like speak-up,
except instead of clients’ browsers coughing up dummy bits, their browsers
cough up solutions to small, �xed-size CPU puzzles; in each interval, the
thinner admits the client that has solved the most number of puzzles. (Sim-
ilar ideas, with di�erent implementations, are described in [114, 170].) �is
defense would not require the mechanisms mentioned above.

Moreover, this hypothetical defense would, like speak-up, have the fol-
lowing desirable properties: it would �nd the price correctly (by “price”,
we mean the going rate of access, expressed in CPU cycles or puzzle di�-
culty level); it would �nd the price automatically, with no explicit control or
adjustment (in some proposals, either the server sends clients puzzles of a

64



particular di�culty level or clients must guess a di�culty level); it would re-
sist gaming; and it would work with unmodi�ed clients. No existing CPU-
based proposal has all of these properties. �us, even if the reader is not
convinced by the advantages of bandwidth, speak-up’s auction mechanism
is useful in CPU-based schemes too.

Advantages of bandwidth. In a head-to-head comparison, bandwidth has
two advantages compared to CPU:

1. Implementation-independent. A scheme based on bandwidth can-
not be gamed by a faster client implementation.5 In the hypothetical CPU-
based defense just given, good clients would solve puzzles in JavaScript;
bad ones might use a puzzle-solving engine written in a low-level language,
thereby manufacturing an advantage.

2. Bandwidth is attackers’ actual constraint. Today, absent any defense,
the apparent limit on attackers is bandwidth, not CPU power (if a bot, or
any host, issues requests at a high rate, its access link will be saturated long
before its CPU is taxed). Charging the resource that is the actual limiting
factor yields two bene�ts.

First, charging any price in that currency (including one that is be-
low what is needed to achieve a resource-proportional allocation) will have
some e�ect on the attackers. For example, assume that bad clients have
maxed out their bandwidth and that the “correct” price is 50× as many bits
as are in a normal request. In this situation, if the server requires all clients
to spend, say, twice as many bits per request rather than 50× as many bits,
then it will halve the e�ective request rate from the bad clients while very
probably leaving the good clients una�ected. CPU cycles o�er no such ben-
e�t: to a�ect the bad clients at all, the price in CPU cycles must be high. Of
course, in our design of speak-up, servers do not state the price as a �xed
multiple (doing so would not achieve a resource-proportional allocation),
but they could do so in a variant of the scheme.

�e second bene�t to charging in the scarce resource is as follows. If the
server charged in a resource that was not scarce, namely CPU cycles, at-
tackers could use their bandwidth to mount some other attack (e.g., a link
�ooding attack or other malfeasance that requires bandwidth). Granted,
bots today do not, to our knowledge, multiplex themselves over several at-
tacks,6 but in theory bots could do so. And further granted, the protected

5I thank Trevor Blackwell for this observation (August, 2006).
6On the other hand, it is common for a host to be infected by multiple bots [56]; in that case, one
could imagine hosts being multiplexed over several attacks.

65



server likely doesn’t care about preventing bots from wreaking havoc else-
where. However, the server’s ISP might care. More generally, charging the
resource that is scarce limits attackers’ total abilities compared to charging in
a di�erent resource.

Disadvantages of bandwidth. Against the advantages above, bandwidth
has three disadvantages relative to CPU cycles; we believe that none of them
is fatal:

1. CPU is a purely local resource. When a client spends bandwidth, it
may adversely a�ect a client that isn’t “speaking up”. However, an analo-
gous situation holds for any network application that is a heavy bandwidth
consumer. For example, BitTorrent is one of the predominant applications
on the Internet, is a heavy consumer of clients’ upload bandwidth (far more
than speak-up, which is only invoked when the server is under attack), and
likely causes collateral damage. Yet, BitTorrent seems to have gained accep-
tance anyway, so we do not view this disadvantage as fatal for bandwidth.

A possibly more serious concern in this category is that when two
“speaking up” clients share a bottleneck link, they also, as a result, “share”
an allocation at the server. Meanwhile, if the clients were paying in CPU
cycles, they would not have this problem.

2. Asymmetry of CPU puzzles. Solving a puzzle is slow; checking it is
fast. Bandwidth does not have an analogous property: the front-end to the
server must sink all of the bandwidth that clients are spending. However,
we do not view this disadvantage as fatal; see the discussion of condition
c2 in §3.3.

3. Variable bandwidth costs. In some countries, customers pay their ISPs
“per-bit”. For those customers, access to a server defended by speak-up (and
under attack) would cost more than usual. One could address this disad-
vantage by changing the implementation of speak-up slightly so that it gives
humans the opportunity to express whether they want to pay bandwidth
(e.g., one could imagine the thinner exposing the “going rate” in bits and
letting customers choose whether to continue).

Stepping back from the comparison between CPU and bandwidth, we won-
der whether there is a design that combines the two currencies to get the
advantages of both. We leave this question for future work.

66



Drawbacks of Resource-based Schemes

We now discuss critiques of resource-based schemes in general. First, as
discussed in condition c1 in §3.3, any scheme that is trying to achieve a
roughly proportional allocation only works if the good clients have enough
currency (a point made by Laurie and Clayton in the context of proof-of-
work for spam control [92]).

A second disadvantage that inheres in these schemes is that they are
only roughly fair. In the context of speak-up, we call this disadvantage band-
width envy. Before speak-up, all good clients competed equally for a small
share of the server. Under speak-up, more good clients are “better o� ”
(i.e., can claim a larger portion of the server). But since speak-up allocates
the server’s resources in proportion to clients’ bandwidths, high-bandwidth
good clients are “more better o� ”, and this inequality might be problematic.
However, observe that unfairness only occurs under attack. �us, while we
think that this inequality is unfortunate, it is not fatal. A possible solution is
for ISPs with low-bandwidth customers to o�er access to high-bandwidth
proxies whose purpose is to “pay bandwidth” to the thinner.7 �ese prox-
ies would have to allocate their resources fairly—perhaps by implementing
speak-up recursively.

A third critique of resource-based approaches in general, and speak-up
in particular, is that they treat �ash crowds (i.e., overload from good clients
alone) as no di�erent from an attack. �is fact might appear unsettling.
However, observe that, for speak-up at least, the critique does not apply
to the canonical case of a �ash crowd, in which a hyperlink from slash-

dot.org overwhelms a residential Web site’s access link: speak-up would
not have been deployed to defend a low-bandwidth site (see §3.3). For sites
in our applicability regime, making good clients “bid” for access when all
clients are good is certainly not ideal, but the issues here are the same as
with speak-up in general.

A �nal critique of resource-based schemes is that they give attackers
some service so might be weaker than the schemes that we discuss next
that seek to block attackers. However, under those schemes, a smart bot can
imitate a good client, succeed in fooling the detection discipline, and again
get some service.

7Ben Adida suggested this idea.

67



3.9.2 Detect-and-Block Defenses

�e most commonly deployed defense [111] is a combination of link over-
provisioning [25, 120] and pro�ling, which is a detect-and-block approach
o�ered by several vendors [9, 29, 103]. �ese latter products build a histori-
cal pro�le of the defended server’s clientele and, when the server is attacked,
block tra�c violating the pro�le. Many other detect-and-block schemes
have been proposed; we now mention a few. In application-level pro�l-
ing [128, 147], the server gives preference to clients who appear to have
“typical” behavior. Resource containers [15] perform rate-limiting to allo-
cate the server’s resources to clients fairly (more generally, one can use Fair
Queuing [42] to rate-limit clients based on their IP addresses). Defenses
based on captchas [166] (e.g., [109, 151]) use reverse Turing tests to block
bots. Killbots [82] combines captchas and rate-limiting, de�ning a bot as
a non-captcha answering host that sends too many requests to an over-
loaded server.

One critique of detect-and-block methods is that they can err. capt-
chas can be thwarted by “bad humans” (cheap labor hired to attack a site
or induced [118] to solve the captchas) or “good bots” (legitimate, non-
human clientele or humans who do not answer captchas). As mentioned
in Chapter 2 and the beginning of this chapter, schemes that rate-limit
clients by IP address can err because of address hijacking and proxies. Pro-
�ling apparently addresses some of these shortcomings today (e.g., many le-
gitimate clients behind a proxy would cause the proxy’s IP address to have
a higher baseline rate in the server’s pro�le). However, in principle such
“behavior-based” techniques can also be “fooled”: a set of savvy bots could,
over time, “build up” their pro�le by appearing to be legitimate clients, at
which point they could abuse their pro�le and attack.

3.9.3 Mechanisms for Blocking Tra�c

�ere has been a lot of recent research focusing onmechanisms for blocking
tra�c destined to servers under attack; the policies for such blocking are
o±en unspeci�ed. For this reason, we believe that this class of proposals is
orthogonal to, and can be combined with, speak-up and the other members
of the taxonomy presented at the beginning of the chapter. We now give
more detail.

Examples of proposed mechanisms include the recent literature on ca-
pabilities [7, 177, 178]; dFence [95], in which server operators can dynam-
ically deploy middleboxes to �lter problematic tra�c; and an addressing

68



scheme in which hosts that are always clients cannot be addressed [74]
(see the bibliographies of those papers for other examples). �ese propos-
als share a similar high-level structure: they describe systems to keep tra�c
from potential victims—under the assumption that the infrastructure or
the protected host knows which packets are worth receiving. For example,
with capabilities [7, 177, 178], servers are protected by capability allocators
that act on their behalf. �ese allocators give requesting clients tokens, or
capabilities, that routers understand. Clients then place the capabilities in
the packets that they originate, and routers give such packets higher priority
than packets without capabilities.

�ese techniques focus on how to block tra�c, not on which tra�c to
block. For the latter function, the authors generally suggest detect-and-
block techniques (e.g., captchas), but they could easily use speak-up, as
mentioned in §3.3. For example, when a server is over-subscribed, its capa-
bility allocator could conduct a bandwidth auction to decide which clients
receive capabilities. Indeed, under the threat in which good and bad are
indistinguishable, these proposals would have to use speak-up or another
resource-based scheme! As an example, Parno et al. [114] advocate CPU
puzzles for precisely this purpose, but their paper considers bandwidth as
a candidate resource.

3.9.4 Summary

Because detect-and-block defenses can err, we favor resource-based de-
fenses for the threat described in §3.3. We have argued that bandwidth is a
natural (but not the only) choice for the resource and that speak-up’s mech-
anisms may still be useful under other resource choices. Finally, we have
addressed important critiques of resource-based approaches in general and
speak-up in particular.

3.10 plausibility of the threat & conditions

�ough we have argued that speak-up can be an appropriate defense, given
the threat and conditions that we modeled in §3.3, we have so far not said
to what extent the threat and conditions occur in practice. Below we ad-
dress the following questions in turn: (1) How o±en is the threat mani-
fest? (2) How o±en does condition c1 apply, i.e., how o±en are aggregate
good and bad bandwidths roughly equal? (3) Is condition c2 reasonable,
i.e., can we assume that servers have adequate link bandwidth? To answer

69



these questions, we synthesize the research and anecdotes of others, relying
on secondary and tertiary sources.

Our discussion will be with reference to attackers’ current abilities. If
deployed, speak-up would certainly cause attackers to change their tactics;
speci�cally, they would try to acquire more machines. We consider such
dynamics, together with the next response from the academic and security
communities, in §6.1. For now, we simply observe that attackers are already
highly motivated to compromise machines; it follows that compromising
additional machines will be costly for them.

3.10.1 �e�reat

By “the threat”, we mean requests that are (a) application-level (b) legitimate-
looking and (c) of uncertain origin. We address these characteristics in
turn. For (a), reports are mixed. A data set from Shadowserver that covers
DDoS activity by ∼1500 botnets [140] controlled via Internet Relay Chat
(IRC) does not indicate any application-level attacks, but Prolexic Tech-
nologies reportedly sees mostly this type [17]. However, in Prolexic’s case,
the requests are o±en ill-formed, so characteristic (b) does not hold. For (c),
we know that some attackers hijack addresses for sending spam and that
proxies are widespread (see Chapter 2). Also, bots are ever more sophis-
ticated, and botnets are becoming smaller [17, 33, 35, 49, 78, 105, 125],
presumably to �y under the “detection radar” of victims and the mitigation
community. �e combination of smarter but smaller bots will make the
three characteristics above—which require smart bots but which conserve
the adversary’s resources—more likely.

Regardless, this discussion obscures two larger points. First, even if such
attacks have not been observed in their pure form, it is not hard to carry
them out: the vulnerability is real. Second, we believe that it is important to
be proactive, that is, to identify weaknesses before they are exploited. �us,
even if the underground economy does not favor this attack today, we must
ask—and try to answer—the question of how to defend against it.

3.10.2 Relative Sizes of Good and Bad Clientele

We �rst discuss the sizes of botnets and then discuss the implications for
what types of sites speak-up can protect.

We begin by arguing thatmost botnets today consist of fewer than 100,000
hosts, and even 10,000 hosts is a large botnet. Although there have been re-
ports of botnets of over 100,000 hosts [24, 40, 73, 75, 104, 153] (millions in

70



10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rate of incident (Mbps)

F
ra

ct
io

n 
of

 in
ci

de
nt

s

All incidents
Overlapping incidents

Figure 3.15—Rates of potential attack incidents observed by Sekar et al. [138]. �is �gure
is reproduced, with permission, from Figure 16 of their paper.

the case of [153]), most botnets are far smaller. Freiling et al., in a study of
180 botnets in 2005, �nd that the largest botnets were up to 50,000 hosts,
with some being just several hundred strong [56, §5]. Symantec reports
that 2,000 to 10,000 hosts is a common range [104]. Shadowserver [139]
tracks thousands of botnets and reports a total number of bots in the sin-
gle millions, implying that the average botnet size is in the low thousands.
Cooke et al. interviewed operators from Tier-1 and Tier-2 ISPs; their sub-
jects indicated that whereas botnets used to have tens of thousands of nodes
several years before, sizes of hundreds to thousands of nodes became the
norm [35]. Rajab et al. �nd similar numbers—hundreds or thousands—for
the “live populations” of various botnets [124, 125]. Indeed, they point out
that some studies may report the “footprint”—the total number of hosts
that are infected with the bot—which may account for the larger sizes. For
speak-up, we are concerned only with the botnet’s current �repower and
hence with the “live population”.

�e observed sizes of link �ooding attacks back up these rough esti-
mates, as we now argue. First, consider the observations of Sekar et al. [138]
about attacks in a major ISP; the relevant graph from their paper is repro-
duced in Figure 3.15, and the relevant line is the solid one. �e graph shows
that a 100 Mbits/s DoS attack is over the 90th percentile (speci�cally, it is
at the 93rd percentile [137]). And 1 Gbit/s attacks are at the 99.95th per-

71



centile [137]. �eir study, combined with anecdotes [73, 152, 162], suggests
that although a small number of link-�ooding attacks are over 1 Gbit/s, the
vast majority are hundreds of Mbits/s or less. �ese sizes in turn suggest
that the attacks are not being carried out by gigantic botnets. Our reason-
ing is as follows. One study found that the average bot has roughly 100
Kbits/s of bandwidth [143]. �us, even if each bot uses only a tenth of its
bandwidth during an attack, an attack at the 90th (resp., 99.95th) percentile
could not have been generated by a botnet of larger than 10,000 (resp.,
100,000) nodes. Our conclusion is that most attacks are launched from bot-
nets that are under 10,000 hosts. (Of course, it is possible that the attackers
controlled millions of hosts, each of which was sending tra�c very slowly,
but in that case, no defense works.)

Given these numbers, how big does the legitimate clientele have to be
to fully withstand attack? As mentioned in §3.2, the answer depends on
the server’s utilization (or, what is the same thing, its degree of over-
provisioning), as we now illustrate. Recall from §3.4.1 that, for the good
clients to be unharmed in the ideal case, we must have c ≥ g(1+B/G). Let-
ting u = g/c be the usual utilization of the server, we get G/B ≥ u/(1− u).
If the bandwidth of a population is proportional to the number of mem-
bers, then the good clients must have u/(1 − u) as many members as the
bots to fully withstand attack. Putting this result in context, if a service has
spare capacity 90% (i.e., u = 0.1), speak-up can fully defend it (i.e., leave
its good clients unharmed) against a 1,000-host (resp., 10,000-host) bot-
net if the good clients number ∼100 (resp., ∼1,000). If a service has spare
capacity 50%, then the good clients must number∼1,000 (resp.,∼10,000).

Many sites have clienteles of this order of magnitude: observe that these
numbers refer to the good clients currently interested in the service, many of
which may be quiescent. For example, http://www.kayak.com, a compu-
tationally-intensive travel distribution site, o±en claims to have at least tens
of thousands of clients online. Many of these clients are humans pausing
between queries, but, from speak-up’s perspective, their machines count in
the “current clientele”. A more extreme example is Wikipedia, which, ac-
cording to the Web analytics company Alexa [5], is one of the top 10 sites
on the Web (as of August, 2007). According to Wikipedia’s statistics [173],
they get an average of 20,000 requests per second. Assuming (likely pes-
simistically) that a human reading Wikipedia makes a request once every
ten seconds, the number of concurrent clients interested in the service is
200,000.

72

http://www.kayak.com


3.10.3 Costs for the Server

We discussed how to satisfy condition c2 in §3.3 and §3.5.3. And we showed
in §3.8.8 that even if the condition isn’t satis�ed, speak-up still o�ers some
bene�t. Here, we just want to make two points about c2. First, any other
scheme that were to seek a proportional allocation would also need condi-
tion c1. �us, c2 represents the relative cost of speak-up to the server. Sec-
ond, one can regard this cost as paying bandwidth to save application-level
resources. We are not claiming that this trade-o� is worthwhile for every
server, only that speak-up creates such an option and that the option may
appeal to some server owners.

3.11 reflections

We �rst summarize speak-up’s purpose and its costs and then discuss it in
a broader context—how and when it combines with other defenses, and
where else it may apply.

Summary. Our principal �nding in this chapter has been that speak-up
mostly meets the goal in §3.4.1—a roughly fair allocation, based on clients’
bandwidths. �us, speak-up upholds the philosophy in §1.2.

Speak-up certainly introduces costs, but they are not as onerous as they
might appear. �e �rst set of costs, to the victimized server, we discuss im-
mediately above (condition c2). �e second set of costs is to the network,
because speak-up introduces tra�c when servers are attacked. Yet, every
network application introduces tra�c (and some, like BitTorrent, introduce
a whole lot more tra�c). And, as with most other network applications,
the tra�c introduced by speak-up obeys congestion control. �e third set
of costs is to the end-user: there exist variable bandwidth costs (which we
discussed in §3.9.1), and, also, speak-up may edge out other activity on the
user’s upload link. Such an opportunity cost is unfortunate, but opportu-
nity costs apply to all resource-based defenses (e.g., if the server charged in
CPU cycles, the user’s tasks would compute slower).

�us, while speak-up may not make sense for every site or every denial-
of-service attack, we think that it is a reasonable choice for some “pairings”.
�e bene�t is that the implementation, and the overall idea, are ultimately
quite simple. Moreover, the costs that we have been discussing have been
for the “worst-case” threat; when that threat is only partially manifest, the
costs of speak-up are lower, as we now describe.

73



Speak-up combined with other defenses. �e threat described in §1.1
and §3.3 speci�es that the server cannot identify its clients and that the
bad clients can mimic the good ones; it is for this threat that speak-up is
designed. Yet, this threat may not always hold in practice (as mentioned
in §3.10), or it may hold only partially. In these cases, one can use other
defenses, with speak-up being the “fallback” or “backstop”.

We now give two examples of when other defenses would apply. First,
in practice, a server may be able to recognize some of its legitimate clientele
as such. For example, when a client makes a purchase at a Web server, the
server can infer that the client is legitimate and issue a cookie to the client.
�en, when the server is overloaded or attacked, it (a) prioritizes clients
that present valid cookies but does not charge them bandwidth and (b) runs
speak-up for the remainder of its clientele. �is approach saves bandwidth,
both for the known clients and for the server (because the known clients
are not speaking up). �is approach also gives low bandwidth clients a way
to overcome their bandwidth disadvantage (discussed in §3.9.1)—become
known to the server. �e disadvantage of this approach is that the unknown
legitimate clients will be competing for a smaller piece of the server so may
be worse o�, compared to a uniform application of speak-up.

A second example is that if some requests are ill-formed or violate the
protocol, the server should drop them and run speak-up for the remaining
clients. As with the approach above, this one may result in lower costs for
the server—in this case, because fewer bad clients get service.

Other applications of speak-up. While we have discussed speak-up in
the context of defending servers against application-level denial-of-service,
it can apply more broadly. We now list three sample applications. First, one
could use a variant of speak-up to guard against “Sybil attacks” [43] (i.e.,
attacks in which clients manufacture identities) in peer-to-peer networks:
the protocol could require clients to send large and frequent heartbeat mes-
sages; clients would then be unable to “a�ord” many identities [83].

Second, in some contexts, speak-up could defend against link attacks:
a link is fundamentally a resource and could be protected and allocated
just like a server’s computational resources. For instance, consider cases
in which the “link” is a contained channel reserved for a particular class
of tra�c (as in the scenario of capability requests, covered by Parno et
al. [114]). One could allocate such a channel roughly fairly—without need-
ing a thinner—by requiring clients to send as much tra�c as possible
through the channel. �en, the channel would be over-subscribed, and a

74



client’s chances of getting bits through the channel would be in proportion
to the quantity of tra�c that it sends.

�ird, in DQE, the system covered in the next chapter, clients pay for
email quotas. As we will see, DQE works with a range of currencies and
policies; one option is for prospective senders to pay in bandwidth.

We now turn to DQE.

75



4
DQE

In this chapter, we view the attention of all of the world’s email recipients
as one aggregate resource, and we describe a system that regulates the con-
sumption of this resource. �e motivation for such a system is of course
spam, which over-subscribes human attention and is an instance of the ab-
stract problem in §1.1.

Consistent with the philosophy in §1.2, we look for solutions that have
two broad characteristics. First, they should limit the number of messages
sent, rather than try to divine their intent, as is done by spam �lters. (Fil-
tering is a content-based solution and thus inherently unreliable, as argued
in Chapter 1.) Second, the limits on message volume should obey a rough
notion of proportionality: no one sender should be able to send more than
a tiny fraction of all email. Today, in contrast, a small number of spammers
send more than three-quarters of all email [106, 107, 150]. If a system with
both of these characteristics is deployed and adopted, then the world’s in-
boxes will have only a small percentage of spam (unless a large percentage
of email senders are spammers), and email that obeys the volume limits will
be delivered reliably.

To satisfy these requirements, we turn to an approach using quotas or
bankable postage. Several such schemes have been proposed before [1, 13,
89]. In general, these systems give every sender a quota of stamps. How this
quota is determined varies among proposals; options include proof of CPU
or memory cycles [1, 117], annual payment [13], having an email account
with an ISP [89], having a driver’s license [13], etc. �e sending host or
its email server attaches a stamp to each email message, and the receiving
host or its email server tests the incoming stamp by asking a quota enforcer
whether the enforcer has seen the stamp before. If not, the receiving host
infers that the stamp is “fresh” and then cancels it by asking the enforcer to

76



store a record of the stamp. Only messages with fresh stamps are delivered
by the receiving host to the human user’s inbox; used stamps are presumed
to indicate spam.

Later in the chapter, we explain in detail why we prefer this approach
to alternatives and how this approach should be combined with other de-
fenses (see §4.10.1). For now, observe that it upholds our requirements and
philosophy: neither quota allocation nor enforcement uses content-based
discrimination; the allocation of quotas is supposed to be such that no one
sender is “allowed” to send outsized volumes; and quota enforcement en-
sures that only quota-obeying emails are seen by humans, thereby conserv-
ing human attention. However, for the approach to be viable, two things
are required: (1) pragmatic policies for allocating quotas (really, allocating
human attention) to achieve the rough proportionality goal; and (2) a tech-
nical mechanism for quota enforcement that can handle the volume of the
world’s email, without much cheating.

In this chapter, we focus on the second of these requirements, quota en-
forcement, though we brie�y cover quota allocation (see §4.7). �e reason
for this imbalance of focus is that these two are di�erent concerns: the for-
mer is a purely technical matter while the latter involves social, economic,
and policy factors. In fact, our speci�c aim is to show that many technical
hurdles in quota-based systems can be overcome.

To that end, this chapter describes the design and implementation
of DQE (Distributed Quota Enforcement), a quota-based spam con-
trol system. DQE adopts and augments a proposal by Balakrishnan and
Karger [13]. �eir architecture meets desired properties not met by pre-
vious work, including separating allocation and enforcement, not trusting
the enforcer, and preserving privacy (see §4.2.1). DQE’s augmentation is
the design, implementation, analysis, and experimental evaluation of an
enforcer that meets a second set of challenges. �ese challenges include
scaling to the volume of the world’s email, tolerating faults, resisting at-
tack, and achieving high throughput (see §4.2.2). Our experimental results
suggest that, in addition to meeting these challenges, our implementation
of the enforcer could handle 200 billion messages daily (a multiple of the
world’s email volume) with a few thousand dedicated PCs (see §4.6). Our
work on the enforcer leads us to conclude that large-scale quota enforce-
ment is practical and viable; that conclusion is this chapter’s contribution
to the spam control literature.

A second set of contributions in this chapter is independent of spam
control. We believe that the enforcer is an interesting distributed system

77



in its own right. It is designed to store billions of key-value pairs (canceled
stamps, in the spam context) over a set of mutually untrusting nodes (§4.4).
It relies on just one trust assumption, common in distributed systems: that
the constituent hosts are determined by a trusted entity. It tolerates Byzan-
tine and crash faults in its nodes, but it does not need to be “Byzantine
Fault Tolerant” [28], for it is allowed to give wrong answers sometimes. It
achieves fault-tolerance by “replicating on demand” in response to such
wrong answers (§4.4.1, §4.4.2). Each node uses, for its internal key-value
map, a novel data structure that balances storage and speed (§4.4.3). Nodes
prevent the enforcer’s aggregate throughput from degrading under load—
a phenomenon that we call “distributed livelock” and that we conjecture
exists in many other distributed systems—by making only local decisions
about which requests to drop (§4.4.4). And the enforcer is a candidate for
protection by speak-up! (See §4.4.5.)

Apart from these techniques, what is most interesting to us about the
enforcer is that it does a fairly large job with fairly little mechanism: it is
designed to handle millions of requests per second and is fault-tolerant,
yet the nodes do not need to maintain replicas, keep track of other nodes,
route requests for each other, or trust each other. In fact, we believe that
the enforcer is viable precisely because of its absence of mechanism. As we
discuss in §4.11, the enforcer is likely to be a useful building block in other
contexts.

* * *
�is chapter’s organization follows an argument that DQE can achieve our
top-level goal of proportionally allocating human attention. �e outline of
the argument is as follows:

–– We �rst consider quota enforcement (§4.2–§4.6). We wish to show
that, given some allocation, DQE can enforce it. We do so by:

∗ De�ning technical goals that must be met for DQE to be viable
(§4.2).
∗ Describing the architecture of DQE, some of which is inherited

from [13] (§4.3).
∗ Detailing the enforcer’s design, its implementation, and our eval-

uation of that implementation. We show that the enforcer can
ensure, roughly, that any given allocation holds (i.e., the possi-
ble cheating is limited). We also show that our implementation

78



could handle the volume of the world’s email with a few thou-
sand machines. �ese two results demonstrate that DQE is vi-
able (§4.4–§4.6).

–– We then argue that pragmatic policies for allocation exist and that
the total consumption of human attention is appropriately bounded
(§4.7–§4.8).

–– We next discuss possible paths to deployment and adoption (§4.9).

–– Having argued that DQE is technically viable and that the non-
technical aspects (allocation, adoption) are at least not insurmount-
able, we compare DQE to alternatives; we also state how DQE should
be combined with other defenses (§4.10).

–– Finally, we critique DQE and consider its applicability in other con-
texts (§4.11).

4.1 the threat

We de�ne spammers to be either authors or distributors of spam. Spam-
mers may send spam either from their own computers or from botnets that
they control. �ey can also use these botnets to attack DQE. Any spam-
sending computer may temporarily hijack addresses (as discussed in Chap-
ter 2 and observed in [126]). Also, we will regard spam as principally an
economic activity (so it will be reasonable for us to consider a spammer’s
pro�t-per-message, in §4.7). For more detail about the problem of spam
and the many solutions that have been proposed (some of which we cover
in §4.10) see [37, 58, 64, 68, 157].

4.2 technical requirements & challenges

We begin with architectural requirements and then discuss challenges that
are speci�c to the enforcer. �e former set of goals was articulated in [13]
and satis�ed by the architecture described in that paper, as we show in §4.3.
�e latter set of goals is unmet by previous proposals.

4.2.1 Protocol Requirements

Separate allocation and enforcement. Allocating quotas of stamps is a
social, economic, and policy function; it requires great care; it does not re-

79



quire much computation; and it needs to happen at very coarse-grained
timescales, such as once per year per sender. Enforcement is the exact op-
posite: it is a technical function; it can be performed “sloppily”; it requires
signi�cant computation; and it needs to happen once per email message.
Given this contrast, Balakrishnan and Karger argue [13], and we concur,
that allocation and enforcement should be performed separately—that is,
at separate times, by separate entities, and in a way that allows any alloca-
tion policy to work with the enforcement mechanism.

No false positives. We want email to be reliable again. We assume reused
stamps indicate spam. �us, a fresh stamp must never appear to have been
used before.

Untrusted enforcer. We do not know the likely economic model of the
enforcer, whether monolithic (i.e., owned and operated by a single entity)
or federated (i.e., many organizations with an interest in spam control do-
nate resources to a distributed system). No matter what model is adopted,
it would be wise to design the system so that clients place minimal trust in
this infrastructure.

Privacy. To reduce (already daunting) deployment hurdles, we seek to
preserve the current “semantics” of email. In particular, queries of the quota
enforcer should not identify email senders (otherwise, the enforcer knows
which senders are communicating with which receivers, violating email’s
privacy model), and a receiver should not be able to use a stamp to prove
to a third party that a sender communicated with it.

4.2.2 Challenges for the Enforcer

Scalability. �e enforcer must scale to current and future email volumes.
Studies estimate that 80-90 billion emails will be sent daily this year [77,
123]. (We admit that we have no way to verify these claims.) We set an
initial target of 200 billion daily messages (an average of about 2.3 million
stamp checks per second) and strive to keep pace with future growth. To
cope with these rates, the enforcer must be composed of many hosts.

Fault-tolerance. Given the required number of hosts, it is highly likely
that some subset will experience crash faults (e.g., be down) or Byzantine
faults (e.g., become subverted). �e enforcer should be robust to these faults.
In particular, it should guarantee no more than a small amount of stamp
reuse, despite such failures.

80



EnforcerQuota

Allocators

Outgoing Mail 
Server

Portal

Incoming Mail 
Server

Certificate
with quota

(or mail sender) (or mail recipient)

Mail with certificate 
and stamp

1. TEST
3. SET

2. RESP

Client

Figure 4.1—DQE architecture.

High throughput. To control management and hardware costs, we wish
to minimize the required number of machines, which requires maximizing
throughput.

Attack-resilience. Spammers will have a strong incentive to cripple the
enforcer; it should thus resist denial-of-service (DoS) and resource exhaus-
tion attacks.

Mutually untrusting nodes. In both federated and monolithic enforcer
organizations, nodes could be compromised. In the federated case, even
when the nodes are uncompromised, they may not trust each other. �us,
in either case, besides being untrusted (by clients), nodes should also be
untrusting (of other nodes), even as they do storage operations for each
other.

We now show how the above requirements are met, �rst discussing the gen-
eral architecture in §4.3 and then, in §4.4, focusing on the detailed design
of the enforcer.

4.3 dqe architecture

�e architecture is depicted in Figure 4.1. We begin by discussing the for-
mat and allocation of stamps (§4.3.1), how stamps are checked and canceled
(§4.3.2), and how that process satis�es the requirements in §4.2.1. �ese
pieces—the high-level architecture, stamps, and the protocols in §4.3.2—
are what DQE inherits from [13]. Indeed, most (but not all) of the ideas in
§4.3.1 and §4.3.2 appeared in [13].

81



We also give an overview of the enforcer (§4.3.3) and survey vulnerabil-
ities (§4.3.4). Although we will refer to “sender” and “receiver”, we expect
those will be, for ease of deployment, the sender’s and receiver’s respective
email servers.

4.3.1 Stamp Allocation and Creation

�e quota allocation policy is the purview of a few globally trusted quota
allocators (QAs), each with distinct public/private key pair (QApub,QApriv);
theQApub are well known. A participant S constructs public/private key pair
(Spub, Spriv) and presents Spub to a QA. �e QA determines a quota for S and
returns to S a signed certi�cate (the notation {A}B means that string A is
signed with key B):

CS = {Spub, expiration time, quota}QApriv
.

Anyone knowingQApub can verify, by inspectingCS, that whoever owns Spub
has been allocated a quota. expiration time is when the certi�cate expires (in
our implementation, certi�cates are valid for one year), and quota speci�es
the maximum number of stamps that S can use within a well-known epoch
(in our implementation, each day is an epoch). Epochs free the enforcer
from having to store canceled stamps for long time periods. Obtaining a
certi�cate is the only interaction that participants have with a QA, and it
happens on long time scales (e.g., yearly). As a result, allocation is separate
from enforcement—one of the requirements in §4.2.1—and the QA can
allocate quotas with great care.

Participants use the quota attribute of their certi�cates to create up to
quota stamps in any epoch. A participant with a certi�cate may give its
stamps to other email senders, which may be a practical way for an organi-
zation to acquire a large quota and then dole it out to individual users.

Each stamp has the form

{CS, {i, t}Spriv}.

Each i in [1, quota] is supposed to be used no more than once in the current
epoch. t is a unique identi�er of the current epoch. Because email can be
delayed en route to a recipient, receivers accept stamps from the current
epoch and the one just previous.

Quotas and stamps are reminiscent of micropayment systems [26, 60,
132]. In those systems, buyers get blocks of cash and mint payments from
the blocks. We compare DQE and micropayments in §4.10.

82



1. S constructs stamp = {CS, {i, t}Spriv}.

2. S→ R : {stamp,msg}.

3. R checks that i ≤ quota (in CS), that t is the current or previous epoch,
that {i, t} is signed with Spriv (Spub is in CS), and that CS is signed with a
quota allocator’s key. If not, R rejects the message; the stamp is invalid.
Otherwise, R computes postmark = hash(hash(stamp)).

4. R→ enforcer : test(postmark). Enforcer replies with x. If x is
hash(stamp), R considers stamp used. If x is “not found”, R continues
to step 5.

5. R→ enforcer : set(postmark, hash(stamp)).

Figure 4.2—Stamp cancellation protocol followed by sender (S), receiver (R), and the en-
forcer. �e protocol upholds the design goals in §4.2.1: it gives no false positives, preserves
privacy, and does not trust the enforcer.

An alternative to senders creating their own stamps would be QAs dis-
tributing stamps to senders. We reject this approach because it would re-
quire a massive computational e�ort by the QAs.

4.3.2 Stamp Cancellation Protocol

�is section describes the protocol followed by senders, receivers, and the
enforcer. Figure 4.2 depicts the protocol.

For a given stamp attached to an email from sender S, the receiver R
must check that the stamp is unused and must prevent reuse of the stamp
in the current epoch. To this end, R checks that the value of i in the stamp
is less than S’s quota, that t identi�es the current or just previous epoch,
and that the signatures are valid. If the stamp passes these tests, R commu-
nicates with the enforcer using two UDP-based Remote Procedure Calls
(RPCs): test and set. R �rst calls test to check whether the enforcer has
seen a �ngerprint of the stamp; if the response is “not found”, R then calls
set, presenting the �ngerprint to be stored.1 �e �ngerprint of the stamp

1One might wonder why receivers will set a±er they have already received “service” from the en-
forcer in the form of a test reply. Our answer is that executing these requests is inexpensive, auto-
matic, and damaging to spammers.

83



is hash(stamp), where hash is a one-way hash function that is hard to
invert.2

For this approach to work, signatures must be deterministic. If each mes-
sage had many valid signatures, then senders could create many di�er-
ent values of stamp for the same logical stamp. Each of the stamp val-
ues would of course lead to a di�erent value of hash(stamp), giving re-
ceivers no way to detect the multiple use. To get deterministic signatures
that have provable cryptographic security, our implementation uses Full
Domain Hash3 with a large modulus [20, 36].4

Note that an adversary cannot cancel a victim’s stamp before the vic-
tim has actually created it: the stamp contains a signature, so guessing
hash(stamp) requires either �nding a collision in hash or forging a sig-
nature.

We now return to the requirements in §4.2.1. First, we discussed
the separation of allocation and enforcement in §4.3.1. Second, false
positives are impossible: because hash is one-way, a reply of the
�ngerprint—hash(stamp)—in response to a test of the postmark—
hash(hash(stamp))—proves that the enforcer has seen the (postmark,
�ngerprint) pair. �us, the enforcer cannot falsely cause an email with a
novel stamp to be labeled spam. (�e enforcer can, however, allow a reused
stamp to be labeled novel; see §4.4.) �ird, receivers do not trust the en-
forcer: they demand proof of reuse (i.e., the �ngerprint). Finally, the pro-
tocol upholds current email privacy semantics: the enforcer sees hashes of
stamps and not stamps themselves, so it cannot infer who sent the message
corresponding to a given stamp. More details about this protocol’s privacy
properties are in [13].

2Our implementation uses sha-1, which has recently been found to be weaker than previously
thought [171]. We don’t believe this weakness signi�cantly a�ects our system because DQE stamps
are valid for only two days, and, at least for the near future, any attack on sha-1 is likely to require
more computing resources than can be marshaled in this time. Moreover, DQE can easily move to
another hash function.

3Public-key signature schemes o±en work as follows. �ey (a) hash the message to be signed, to-
gether with some randomness, thereby producing a non-deterministic digest and (b) apply the
“sign” operation to this digest. In Full Domain Hash, one does not use randomness but, as with the
other schemes, does take care that the hash function produces digests that are roughly uniformly
distributed over the full domain of the signing function. Under a particular model of how hash func-
tions work (the random oracle model [19]), breaking this approach is at least as hard (roughly) as
breaking the underlying problem (e.g., RSA). �e di�erence is that, with the randomness, breaking
the signature scheme is a little “harder”. To compensate for this e�ect, we choose a larger domain
for the signing function.

4I am grateful to Shabsi Wal�sh for pointing me to these papers.

84



4.3.3 �e Enforcer

�e enforcer stores the postmarks and �ngerprints of stamps canceled (i.e.,
set) in the current and previous epochs. It comprises thousands of un-
trusted storage nodes (which we o±en call just “nodes”), with the list of
approved nodes published by a trusted authority. �e nodes might come
either from a single organization that operates the enforcer for pro�t (per-
haps paid by organizations with an interest in spam control) or else from
multiple contributing organizations.

Clients, typically incoming email servers, interact with the enforcer by
calling its interface, test and set. �ese two RPCs are implemented by
every storage node. For a given test or set, the node receiving the client’s
request is called the portal for that request. Clients discover a nearby portal
either via hard-coding or via DNS.

4.3.4 Remaining Vulnerabilities

As discussed in §4.3.2, attackers cannot forge stamps, cancel stamps that
they have not seen, or induce false positives. DQE’s remaining vulnerabil-
ities are in two categories: unauthorized stamp use (i.e., the±) and stamp
re-use. Since the purpose of the enforcer is to prevent reuse, we address the
second category when describing the enforcer’s design in §4.4. We discuss
the �rst category in the remainder of this section.

Spammers can steal stamps from (1) the bots that they control; and (2)
email servers along the path from the sending email client to the receiving
email client. We now address these two cases. �e gist of our argument is
that the e�ect of such stealing is limited.

Stamp the± from “botted” computers. �is the± can take three forms.
First, assume that the human user of a “botted” host stores his stamps on
the email server. �en, if the spammer intercepts the server’s authentica-
tion of the user (e.g., by installing a key logger to discover a password), the
spammer can compromise the email account and send stamped spam from
there. However, the user’s quota would be depleted, possibly alerting him
to the compromise of his account. Moreover, out-of-band contact between
the email provider and the customer could detect the the±, in analogy with
credit card companies contacting customers to verify anomalous activity.

Next, assume that the end-user stores her stamps directly on her com-
puter (which is “botted”) and that her computer, rather than the email
server, performs the stamp checks. �e second form of the± is the bot sim-
ply stealing the user’s stamps directly from the computer. �e third form

85



is stealing stamps from inbound email before the DQE client so±ware can
cancel the stamps. In both of these cases, the human would again realize
that something was wrong, either because she faced a depleted quota or
found all of her legitimate email labeled spam. Moreover, we expect both
of these forms of the± to be very rare because most people will not manage
their stamps; doing so requires administration (to integrate stamps with
the email client, etc.), which most users will prefer to delegate to the email
server.

Note, also, that even if a spammer succeeds in stealing stamps from all of
the hosts in his botnet—using any of the three attacks just mentioned—such
the± is unlikely to increase spam much: a botnet with 100,000 hosts and a
daily quota of 100 stamps per machine leads to 10 million extra spams, a
small fraction of the tens of billions of daily spams today. We discuss this
point in further depth when considering DQE’s end-to-end e�ectiveness,
in §4.8.

Stamp the± from email servers and relays. �is the± can take three
forms. First, the spammer can compromise a source email server, allowing
the spammer to steal stamps directly. Second, the spammer can compro-
mise a destination email server (in practice many email servers perform the
source and destination roles), allowing him to steal stamps from inbound
email. In both of these cases, the users of the compromised server would
realize that something was wrong. �ird, the spammer can compromise
an intermediate relay between sender and receiver, allowing him to steal
stamps from email passing through the relay. To thwart this attack, senders
can encrypt emails (including the header that contains the stamp). We be-
lieve that these three forms of the± will not lead to much extra spam because
(a) no single email server or relay is likely to carry a signi�cant fraction of
the world’s email volume; and (b) email servers, being relatively hardened
and supervised machines, are unlikely to be compromised en masse.

4.4 detailed design of the enforcer

�e enforcer, depicted in Figure 4.3, is a high-throughput storage ser-
vice that replicates immutable key-value pairs over a group of mutually
untrusting, infrequently changing nodes. It tolerates Byzantine faults in
these nodes. We assume a trusted bunker, an entity that communicates
the system membership to the enforcer nodes. �e bunker assigns random
identi�ers—whose purpose we describe below—to each node and infre-

86



idC IPC

idB IPB

IPAidA
index

in-list
node A

B

C

D

TEST(k)

SET(k,v)

GET(k)

GET(k)

GET(k)

{idB, idC, idD}k

PUT(k,v)

Bunker in-list

in-list

Figure 4.3—Enforcer design. A test induces multiple gets; a set induces one put.
Here, A is the portal. �e ids (idA, idB, etc.) are in a circular identi�er space; their values
are determined by the bunker.

quently (e.g., daily) distributes to each node an in-list, a digitally signed,
authoritative list of the members’ identi�ers and IP addresses.5

Given the required size of the system—thousands of nodes (§4.6.5)—we
believe that the bunker is a reasonable assumption. If a single organization
operates the enforcer, the bunker can be simply the human who deploys
the machines. If the enforcer is federated, a small number of neutral people
can implement the bunker: managing a list of several thousand relatively
reliable machines that are donated by various organizations is a “human
scale” job. Moreover, because the enforcer is robust to failed nodes, adding
machines to the in-list requires only light vetting, and removing crashed
or compromised machines from the in-list can happen lazily (e.g., as the
result of background auditing by the bunker or by other nodes). Of course,
the bunker is a single point of vulnerability, but observe that humans, not
computers, execute most of its functions. Nevertheless, to guard against a
compromised bunker, nodes accept only limited daily changes to the in-list.

Clients’ queries—e.g., test(hash(hash(stamp)))—are interpreted by
the enforcer as queries on key-value pairs, i.e., as test(k) or set(k, v),
where k = hash(v). (�roughout, we use k and v to mean keys and values.)

Portals implement test and set by invoking at other nodes a UDP-
based RPC interface, internal to the enforcer, of get(k) and put(k, v). To

5�e bunker is a con�guration server. We use the term bunker because it connotes an entity that can
do its work without being connected. For example, if the bunker were attacked, it could disseminate
the in-list by fax.

87



ensure that get and put are invoked only by other nodes, the in-list can
include nodes’ public keys, which nodes can use to establish pairwise shared
secrets for lightweight packet authentication (e.g., hmac [88]).

�e rest of this section describes the detailed design of the enforcer. We
�rst specify test and set (§4.4.1) and show that even with crash failures
(i.e., down or unreachable nodes), the enforcer guarantees little stamp reuse
(§4.4.2). We then show how nodes achieve high throughput with an e�-
cient implementation of put and get (§4.4.3) and a way to avoid degrad-
ing under load (§4.4.4). We then consider attacks on nodes (§4.4.5–§4.4.6)
and attacks by nodes, and we argue that a Byzantine failure reduces to a
crash failure in our context (§4.4.7). Our design decisions are driven by the
challenges in §4.2.2, but the mapping between them is not clean: multiple
challenges are relevant to each design decision, and vice versa.

4.4.1 test and set

Each key k presented to a portal in test or set has r assigned nodes that
could store it; these nodes are a “random” subset (determined by k) of en-
forcer nodes. We say below how to determine r. To implement test(k), a
portal invokes get(k) at k’s r assigned nodes in turn. �e portal stops when
either a node replies with a v such that k = hash(v), in which case the por-
tal returns v to its client, or else when it has tried all r nodes without such a
reply, in which case the portal returns “not found”. To implement set(k, v),
the portal chooses one of the r assigned nodes uniformly at random and
invokes put(k, v) there. Pseudo-code for test and set is shown in Fig-
ure 4.4. �e purpose of 1 put and r gets—as opposed to the usual r puts
and 1 get—is to conserve storage.

A key’s assigned nodes are determined by consistent hashing [84] in a
circular identi�er space using r hash functions.6 �e bunker-given identi-
�er mentioned above is a random choice from this space. To achieve near-
uniform per-node storage with high probability, each node actually has
multiple identi�ers [149] deterministically derived from its bunker-given
one.

Churn

Churn generates no extra work for the system. To handle intra-day churn
(i.e., nodes going down and coming up between daily distributions of the

6�is use of consistent hashing [84] is reminiscent of DHTs [12], but the enforcer and DHTs have
di�erent structures and di�erent goals; see §4.10.3.

88



procedure test(k)
v← get(k) // local check
if v 6= “not found” then return (v)
// r assigned nodes determined by in-list
nodes← assigned_nodes(k)
for each n ∈ nodes do {

v← n.get(k) // invoke RPC
// if RPC times out, continue
if v 6= “not found” and k == hash(v) then return (v)

}
// all nodes returned “not found” or timed out
return (“not found”)

procedure set(k, v)
put(k, v) // local store
nodes← assigned_nodes(k)
n← choose random n ∈ nodes
n.put(k, v) // invoke RPC

Figure 4.4—Pseudo-code for test and set in terms of get and put.

in-list), portals do not track which nodes are up; instead they apply to each
put or get request a timeout of several seconds with no retry, and inter-
pret a timed-out get as simply a “not found”. (A few seconds of latency is
not problematic for the portal’s client—an incoming email server—because
sender-receiver latency in email is o±en seconds and sometimes minutes.)
Moreover, when a node fails, other nodes do not “take over” the failed
node’s data: the invariant “every (k, v) pair must always exist at r locations”
is not needed for our application.

To handle inter-day churn (i.e., in-list changes), the assigned nodes for
most (k, v) pairs must not change; otherwise, queries on previously set
stamps (e.g., “yesterday’s” stamps) would fail. �is requirement is satis�ed
because the bunker makes only minor in-list changes from day-to-day and
because, from consistent hashing, these minor membership changes lead
to proportionately minor changes in the assigned nodes [84].

4.4.2 Fault-Tolerance Analysis

We now show how to set r to prevent signi�cant stamp reuse. As mentioned
at the beginning of this chapter, we view everyone’s attention as one aggre-
gate resource. For this reason, we need only bound total stamp reuse; it is

89



acceptable if some stamps are reused more than others or some recipients
get more spam than others.

We will assume that nodes, even subverted ones, do not abuse their por-
tal role; we revisit this assumption in §4.4.7.

Our analysis depends on a parameter p, the fraction of the n total ma-
chines that fail during a two-day period (recall that an epoch is a day and
that nodes store stamps’ �ngerprints for the current and previous epochs).
We do not require that failures are independent, only that p is a reasonably
small fraction (e.g., one-tenth or one-�±h). To avoid highly correlated fail-
ures (the most extreme of which is p = 1), we imagine each node choosing
one of several di�erent so±ware implementations. We believe that it is rea-
sonable to presume a few active implementations: an enforcer node’s func-
tions, being only a few thousand lines of code (see §4.5), are not hard to
re-implement.

We don’t distinguish the causes of failures—some machines may be sub-
verted, while others may simply crash. To keep the analysis simple, we also
do not characterize machines as reliable for some fraction of the time—
we simply count in p any machine that fails to operate perfectly over the
two-day period. Nodes that do operate perfectly (i.e., remain up and follow
the protocol) during this period are called good. We believe that carefully
chosen nodes can usually be good so that p = 0.1, for example, might be a
reasonably conservative estimate. Nevertheless, observe that this model is
very pessimistic: a node that is o�ine for a few minutes is no longer good,
yet such an outage would scarcely increase total spam.

We �rst consider each stamp’s expected reuse and then show that, with
very near certainty, the actual total stamp reuse is close to the expected
total—regardless of which subset of np nodes fails.

Bounding Expected Reuse Per Stamp

We now give some intuition for why a stamp’s expected reuse is small. For
a given stamp, reuse stops once the corresponding (k, v) pair is put on a
good node (at that point, future tests will “�nd” (k, v)). If most enforcer
nodes are good, this event usually happens quickly, limiting the total reuse
per stamp. �ere is a possibility (with probability less than pr) that none of
the r assigned nodes is good. In this case, an adversary can reuse the stamp
once at each of the n portals. (In�nite reuse is prevented by the “local put”
in the �rst line of set in Figure 4.4.) However, these “lucky” stamps do not
worry us: recall that our goal is to keep small the total number of reuses

90



across all stamps. While such “lucky” stamps contribute to this total, they
do so in a limited way.

We now make the preceding intuition more precise:

�eorem 4.1 Under the assumptions above, the expected number of uses
of a stamp is less than 1/(1− p)2 + prn.

Proof: Observe that each apparently fresh use of a stamp induces a put to
an assigned node (because of the receiver-enforcer protocol; see lines 4 and
5 in Figure 4.2). And, as mentioned above, once the stamp is put to a good
assigned node, the adversary can no longer reuse that stamp successfully.
Since puts are random, some will be to a node that has already received a
put for the stamp (in which case the node is bad), while others are to “new”
nodes. Each time a put happens on a new node, there is a 1−p chance that
the node is good.

Now, consider a single stamp. We make a worst-case assumption that
an adversary tries to reuse this stamp an in�nite number of times.

Let Ii be an indicator random variable for the event that the stamp needs
to be put to at least i− 1 distinct nodes before hitting a good one, and let
Ti be the number of puts, a±er i−1 distinct nodes have been tried, needed
to get to the ith distinct node. As a special case, let Tr+1 = n −

∑r
j=1 Tj to

re�ect the fact that if all r assigned nodes are bad, an adversary can reuse
the stamp once at each portal. E[Ii] = Pr[Ii = 1] ≤ pi−1. (�e inequality
enters because p is the fraction of bad nodes, so a key’s choice of “bad” nodes
happens without replacement.) For i ∈ {1, . . . , r}, E[Ti] = r/(r − i + 1),
since each put attempt for the stamp has a (r− i+1)/r chance of selecting
a new node. Finally, for i ∈ {1, . . . , r + 1}, the random variables Ii and
Ti are independent. �en, assuming adversaries try to reuse each stamp ad
in�nitum, the expected number of puts (i.e., uses of the stamp) is:

E[I1T1 + I2T2 + · · ·+ IrTr + Ir+1Tr+1]

= E[I1]E[T1] + E[I2]E[T2] + · · ·+ E[Ir]E[Tr] + E[Ir+1]E[Tr+1]

≤ 1 + p
r

r − 1
+ p2 r

r − 2
+ · · ·+ pr−1 r

1
+ pr

n−
r∑

j=1

r
r − j + 1


=

r−1∑
i=0

pi
r

r − i
+ pr

n−
r∑

j=1

r
r − j + 1

 (4.1)

91



<
r−1∑
i=0

pi
r

r − i
+ prn. (4.2)

Applying the inequality r/(r − i) ≤ i + 1 and taking the in�nite sum, we
can bound (4.2):

<

∞∑
i=0

(i + 1)pi + prn =
d
dp

∞∑
i=0

pi + prn,

giving the claimed upper bound of 1/(1− p)2 + prn.

If we set r = 1 + log1/p n and take p = 0.1, then, applying the theorem, a
stamp’s expected number of uses is less than 1/(1−p)2 +p ≈ 1+3p = 1.3,
close to the ideal of one use per stamp.

Bounding Total Reuse

Having considered a given stamp’s expected reuse, we now aim to show that
the actual total reuse stays close to the expected total reuse—regardless of
which subset of nodes fails. �is result means that an adversary can “choose”
which np nodes fail, with little e�ect on the total stamp reuse. To establish
this result, we �rst state a theorem and then re�ect on what the theorem
means in our context. We prove the theorem in Appendix d.

�eorem 4.2 Let K be the number of stamps that are active in a given day.
If K > (6n2 + 300n)/ε2, then, with probability at least 1− e−100, there is no
subset of size npwhose failure leads to more than (1+ε) times the expected
total use across all stamps.

We anticipate n ≈ 1500 (see §4.6.5). If we want ε = 0.05 (i.e., 5% more use
than is given by the expectation), then how large must K be for the theorem
to hold? We need K > (6 · (1500)2 + 300 · 1500)/(0.05)2 = 5.6 billion
stamps. We are in fact designing for K to be in the hundreds of billions, so
the theorem holds for our scenario. �us, we can be con�dent that there
does not exist an unfortunate subset, that is, one whose failure leads to 5%
more than the expected stamp reuse.

* * *
�e above assumes that the network never loses RPCs (packet loss leads
to extra stamp uses). If packets are lost o±en enough to substantially a�ect
the enforcer’s accuracy, then clients and portals can retry RPCs. Doing so

92



procedure get(k)
b← index.lookup(k)
if b == null then return (“not found”)
a← disk.read(b) // array a gets disk block b
if k /∈ a then // scan all keys in a

return (“not found”) // index gave false location
else return (v) // v next to k in array a

procedure put(k, v)
if hash(v) 6= k then return (“invalid”)
b← index.lookup(k)
if b == null then

b← disk.write(k, v) // write is sequential
// b is disk block where write happened
index.insert(k, b)

else // we think k is in block b
a← disk.read(b) // array a gets disk block b
if k /∈ a then // false location: k not in block b

b′ ← disk.write(k, v)
index.overflow.insert(k, b′)

Figure 4.5—Pseudo-code for get and put. A node switches between batches of writes
and reads; that asynchrony is not shown.

will lower the e�ective drop rate and make the false negatives from dropped
packets a negligible contribution to total spam. Our implementation does
not currently issue such retries.

4.4.3 Implementation of get and put

In our early implementation, nodes stored their internal key-value maps in
memory, which let them give fast “found” and “not found” answers to gets.
However, we realized that the total number of stamps that the enforcer must
store makes RAM scarce. (For more detail, see Appendix f, which compares
the total hardware cost of our current design to the total hardware cost of a
design in which keys and values are stored fully in RAM.) �us, nodes must
store keys and values in a way that conserves RAM yet, as much as possible,
allows high put and get throughput. �e rest of this section describes how
they do so. In particular, their key-value stores have the following proper-
ties, which we justify below:

93



(k1,v1) (k2,v2) (k3,v3)

(k4,v4)  ... (k100,v100)
Disk

 (k101,v101)      ...

      ...        (k200,v200)

Hash Table Overflow Table

8-bit cksum

24-bit offset

20-byte key

Index

24-bit offset

Figure 4.6—In-RAM index mapping from k to log block that holds (k, v ).

1. puts are fast;
2. A±er a crash, nodes can recover most previously canceled stamps;
3. Each key-value pair costs 5.5 bytes rather than 40 bytes of RAM;
4. “Not found” answers to gets are almost always fast;
5. “Found” answers to gets require a disk random access.

As in previous systems [93, 122, 134], nodes write incoming data—key-
value pairs here—to a disk log sequentially and keep an index that maps
keys to locations in the log. In our system, the index lives in memory and
maps keys to log blocks, each of which contains multiple key-value pairs.
Our index can return false locations: it occasionally “claims” that a given
key is on the disk even though the node has never stored the key.

When a node looks up a key k, the index returns either “not stored” or a
block b. In the latter case, the node reads b from the on-disk log and scans
the keys in b to see if k is indeed stored. Pseudo-code describing how gets
and puts interact with the index is shown in Figure 4.5.

We now describe the structure of the index, depicted in Figure 4.6. �e
index has two components. First is a modi�ed open addressing hash table,
the entries of which are divided into an 8-bit checksum and a 24-bit pointer
to a block (of size, e.g., 4 Kbytes). A key k, like in standard open addressing
as described by Knuth, “determines a ‘probe sequence,’ namely a sequence
of table positions that are to be inspected whenever k is inserted or looked
up” [86], with insertion happening in the �rst empty position. When inser-
tion happens, the node stores an 8-bit checksum of k as well as a pointer to
the block that holds k. (�e checksum and probe sequence should be un-
predictable to an adversary.) A false location happens when a lookup on key

94



k �nds an entry for which the top 8 bits are k’s checksum while the bottom
bits point to a block that does not hold k. �is case is handled by the index’s
second component, an over�ow table storing those (k, v) pairs for which k
wrongly appears to be in the hash table. index.lookup(), in Figure 4.5,
checks this table.

Analysis. Our analysis of the index focuses on the memory cost and the
lookup speed.

We use the standard assumption that hash functions map each key to
a random output, and in particular that the probe sequence for each key
is an independent random sequence. We also assume that the checksum is
an independent random value. Let α < 1 be the load factor (i.e., ratio of
non-empty entries to total entries) of the hash table. Let N be the number
of keys that a node will store. We pessimistically assume that all N keys are
already in the index.

We �rst calculate the probability that a key will be inserted in the over-
�ow table. Consider a key, k, that the node is about to insert in the index.
Each position in the probe sequence is empty with probability 1−α. If the
entry is not empty, then it has a matching checksum with probability 1/c,
where c is the number of distinct checksum values (256 in our case). �us,
a probe has one of three possible outcomes: empty (with probability 1−α),
matching checksum (with probability α/c) and non-matching checksum
(with probability α(1−1/c)). �e node stops probing when one of the �rst
two cases applies. �e probability of the second case (matching checksum,
which forces k into the over�ow table), conditioned on the event that the
node stopped probing, is equal to the probability of the second case divided
by the probability of the �rst two cases, namely α/c

1−α+α/c = α
c+(1−c)α . �us,

under our pessimistic assumption, k has probability α
c+(1−c)α of winding up

in the over�ow table.
�en, if the node stores N keys, the expected number of keys in the

over�ow table is at most Nα
c+(1−c)α . Each entry in the over�ow table takes up

32 bytes (20 bytes for the key, 4 bytes for the disk o�set, and 8 bytes for
pointers to maintain the data structure; in our implementation, that data
structure is a red-black tree). Since the hash table has size N/α and since
each entry is exactly 4 bytes, the expected total size of the structure in bytes
is

N
(

4
α

+
32α

c + (1− c)α

)
.

95



Taking c = 256 and α < 1, the expression above is minimized at α∗ =

.85. At this value of α, the expression equals 5.54N. (We took c as a �xed
quantity because the 8-bit checksum was easy to implement. We could have
optimized further by minimizing the expression over values of c and α.)

We now calculate the expected number of lookups per key. Since each
entry is empty with probability 1− α, a node expects to inspect 1/(1− α)

entries before �nding the desired key or discovering it is absent. For α =

0.85, 1/(1− α) = 6.66.

* * *
We now return to the properties above. For property 1, puts are fast be-
cause the node, rather than interleaving reads and writes, does each in
batches, yielding sequential disk writes. Property 2 holds because on boot-
ing, a node scans its log to rebuild the index. For property 3: as calculated
above, the total expected size of the structure is 5.54N bytes, meaning that
each of the N (k, v) pairs that the node stores costs 5.54 bytes. Property 4
holds because for negative get(k) requests (i.e., k not found), nodes inspect
an average of 6.66 entries in the probe sequence (as calculated above), and
the rare false location incurs a disk random access. For a�rmative gets
(i.e., reused stamps), the node visits an average of 6.66 entries to look up
the block, b, that holds v; the node then does a disk random access to get b,
as property 5 states.

�ese disk accesses are one of the enforcer’s principal bottlenecks, as
shown in §4.6.3. To ease this bottleneck, nodes cache recently retrieved
(k, v) pairs in RAM.

Nodes use the block device interface rather than the �le system. With
the �le system, the kernel would, on retrieving a (k, v) pair from disk, put
in its bu�er cache the entire disk block holding (k, v). However, most of
that cached block would be a waste of space: nodes’ disk reads exhibit no
reference locality.

4.4.4 Avoiding “Distributed Livelock”

�e enforcer must not degrade under high load. Such load could be from
heavy legitimate use or from attackers’ spurious requests (as in the next
section). In fact, our implementation’s capacity, measured by total correct
test responses, did originally worsen under load. �is section describes
our change to avoid this behavior. See §4.6.6 for experimental evidence of
the technique’s e�ectiveness.

Observe that the packets causing nodes to do work are UDP RPC re-

96



quests or responses and that these packets separate into three classes. �e
classes are: (1) test or set requests from clients; (2) get or put requests
from other enforcer nodes; and (3) get or put responses. To achieve the
enforcer’s throughput goal, which is to maximize the number of successful
puts and gets, we have the individual nodes prioritize these packet classes.
�e highest priority class is (3), the lowest (1).

When nodes did not prioritize and instead served these classes round-
robin, overload—de�ned as the CPU being unable to do the work induced
by all arriving packets—caused two problems. First, each packet class ex-
perienced drops, so many gets and puts were unsuccessful since either
the request or the response was dropped. Second, the system admitted too
many tests and sets, i.e., it overcommitted to clients. �e combination
was distributed livelock: each node spent cycles on tests and sets and
meanwhile dropped get and put requests and responses from other nodes.

Prioritizing the three classes, in contrast to round-robin, improves
throughput and implements admission control: a node, in its role as portal,
commits to handling a test or set only if it has no other pending work in
its role as node. We can view the work induced by a test or set as a dis-
tributed pipeline; each stage is the arrival at any node of a packet related to
the request. In this view, a put response, for example, indicates that the en-
forcer as a whole has done most of the work for the underlying set request;
dropping such a packet wastes work.

To implement the priorities, each of the three packet classes goes to its
own UDP destination port and thus its own queue (socket) on the node.
�e node reads from the highest priority queue (socket) with data. If the
node cannot keep up with a packet class, the associated socket bu�er �lls,
and the kernel drops packets in that class.

An alternate way to avoid distributed livelock might be for a node to
maintain a set of windows, one for every other node, of outstanding RPCs.
With this approach, each node’s incoming request queue would be bounded
by the window size times the number of nodes, and hence no node would
be overloaded. �e reason that we rejected this approach is that we did not
know how to set the size of the window.

�e general approach described in this section—which applies the prin-
ciple that, under load, one should drop from the beginning of a pipeline
to maximize throughput—could be useful for other distributed systems.
�ere is certainly much work addressing overload: see, e.g., SEDA [175,
176], LRP [44], and Defensive Programming [121] and their bibliographies;
these proposals use �ne-grained resource allocation to protect servers from

97



overload. Other work (see, e.g., Neptune [141] and its bibliography) fo-
cuses on clusters of equivalent servers, with the goal of proper allocation
of requests to servers. All of this research concerns requests of single hosts,
unlike the simple priority scheme described here, which concerns logical
requests happening on several hosts.

Discussion. In re�ecting on the technique just presented, we make two
points. First, we have discussed only how to maintain throughput in the
face of heavy load; we have said nothing about which requests and clients
are served. In particular, one could imagine that, under attack, the enforcer
keeps constant throughput but spends most of its resources on bad clients.
�e next section describes our defense to this situation.

Our second point is that the technique, as described, is a heuristic. It
achieves a particular goal (maximizing the number of successful puts and
gets), and that goal serves our purpose, which is to prevent the number
of correct test responses from decreasing under load. However, the real
goal should be to maximize the correct test responses under load—giving
such responses is the whole purpose of the enforcer. To achieve this other
goal, a di�erent priority scheme is likely needed. In particular, it is not at
all clear that puts and gets should have the same priority, that tests and
sets should have the same priority, or that all get responses should have
the same priority (e.g., perhaps responses from di�erent “stages” of a given
test request should be prioritized di�erently). However, there are di�cult
questions here because the priority scheme will in turn a�ect the ratio of
tests and sets that are presented, and, also, adversaries might try to game
the scheme to thwart the enforcer. We are leaving to future work the ques-
tion of what priority scheme is optimal.

4.4.5 Resource Exhaustion Attacks

Several years ago, a popular DNS-based block list (DNSBL) was forced of-
�ine [69], and a few months later another such service was attacked [159],
suggesting that e�ective anti-spam services with open interfaces are tar-
gets for denial-of-service (DoS) attacks. If successful, DQE would be a ma-
jor threat to spammers, so we must ensure that the enforcer resists attack.
We do not focus on packet �oods, in which attackers exhaust the enforcer’s
bandwidth with packets that are not well-formed requests. �ese attacks
can be handled with various commercial (e.g., upstream �rewalls) and aca-
demic (see [108] for a survey) solutions. We thus assume that enforcer
nodes see only well-formed RPC requests.

98



�e attack that we focus on in this section is a �ood of spurious RPCs,
which we call a resource exhaustion attack. �e aim is to waste nodes’ re-
sources, speci�cally: disk random accesses on a�rmative gets, entries in
the RAM index (which is exhausted long before the disk �lls) for puts,
and CPU cycles to process RPCs. �is attack is di�cult because one cannot
di�erentiate “good” from “bad”: requests are test(k) and set(hash(v), v)
where k, v are any 20-byte values. Absent further mechanism, handling this
attack requires the enforcer to be provisioned for the legitimate load plus
as many tests and sets as the attacker can send.

Resource exhaustion attacks appear di�cult. Indeed, they have all of the
vexing characteristics of the abstract problem in §1.1. Yet, resource exhaus-
tion attacks are a kind of application-level DDoS, so we can apply speak-up!

We said in §3.3 that speak-up works best under conditions c1 and c2.
We now revisit those conditions in the context of attacks on the enforcer.
We begin with c2, which says that the enforcer should have ample band-
width.

Attacks on the enforcer could be far larger than the attacks on individ-
ual servers that we discussed in Chapter 3. �ose attacks are conducted
by one or a small number of botnets. In contrast, the enforcer, if deployed,
would be a threat to spammers’ livelihood and could very well cause them to
“join forces” and launch large aggregate attacks. If there are 20 million bots
worldwide (see §2.2), and each has an average bandwidth of 100 Kbits/s (as
mentioned in §3.10.2 based on a study [143]), then the adversaries could
launch 2 Tbits/s of attack tra�c. �is amount is daunting, but the enforcer
already needs to comprise roughly a thousand nodes (see §4.6.5). If each
node has a bandwidth of 1 Gbit/s, then the enforcer would have an aggre-
gate bandwidth of at least 1 Tbit/s, which is in striking distance of the largest
possible attack. Observe that nodes need not have this bandwidth “year-
round”; they could acquire it temporarily, when needed. So condition c2
seems within reach.

Condition c1, on the other hand, might go unmet: the good clients of
the enforcer, the world’s email servers, may not in aggregate have, or want to
spend, terabits of bandwidth. But this unmet condition does not necessarily
disqualify speak-up in this scenario. �e reason is as follows. Recall that the
purpose of condition c1 is to ensure that a server protected by speak-up
need not over-provision much, relative to the good demand, to give all of
its good clients service (see §3.4.1). However, in this scenario, the enforcer
plans on most of its work being caused by adversarial behavior—because
most email is spam. Moreover, as a result of this planning, we might be

99



able to dispense not only with c1 but also with a bandwidth-proportional
allocation. We make these points more concrete below.

Defending the Enforcer with Options Inspired by Speak-up

We have claimed that speak-up can defend the enforcer. More accurately,
the enforcer can employ any of several defenses that are inspired by speak-
up. �e choices are as follows, and we discuss them in turn:

1. Every node always charges a �xed bandwidth price for a test or a set.
2. When overloaded, and only when overloaded, a node charges a �xed

bandwidth price for a test or a set.
3. When overloaded, and only when overloaded, a node conducts band-

width auctions, i.e., it applies speak-up as described in Chapter 3.

Fixedbandwidthprice. To explain why the �rst choice can defend against
resource exhaustion attacks, and to see why both c1 and a bandwidth-
proportional allocation are dispensable, let us make an assumption—which
we revisit shortly—that attackers are sending as much spam as they can.
Speci�cally, let us assume that they are limited by bandwidth. As in Chap-
ter 3, this limit re�ects either a constraint like access links or some threshold
above which the attacker fears detection by the human owner of a compro-
mised machine.

Observe that, independent of our assumption, the enforcer is indi�er-
ent between the attacker sending (1) a spurious test and (2) a single spam
message, thereby inducing a legitimate test (and, rarely, a set); the re-
sources consumed by the enforcer are the same in both cases. Now, under
the assumption above, we can neutralize resource exhaustion attacks by ar-
ranging for a test or a set to require the same amount of bandwidth as
sending a spam. Our reasoning is as follows. If attackers are “maxed out”
and if sending a test and a spam costs the same bandwidth, then attack-
ers cannot cause more tests and sets than would be induced anyway by
current email volumes—for which the enforcer must already be provisioned.

Of course, despite our assumption above, today’s attackers are unlikely
to be “maxed out”. However, they have some bandwidth limit. If this limit
and current spam volumes are the same order of magnitude, then the ap-
proach described here means that the enforcer’s required provisioning, rel-
ative to what is already required to handle the world’s spam volume, is a
small constant factor.

100



If, however, a more pessimistic case materializes—the most extreme
of which is our back-of-the-envelope calculation above of 2 Tbits/s of at-
tack tra�c—then the enforcer needs more provisioning or else needs to
charge a price higher than the average number of bits in a spam. Con-
cretely, if we assume that the enforcer is 1500 nodes and that each node
has worst-case capacity 320·4 requests/s (see §4.6.5), then the aggregate
capacity is ∼2 million requests/s, so the average price per request needs
to be roughly (2 Tbits/s) / (2 million requests/s), which is approximately 1
Mbit, or 125 Kbytes, per request. If legitimate DQE clients cannot a�ord
this price, then the enforcer needs more provisioning, which would lower
the required price. For perspective, we now compare this fully pessimistic
case to the optimistic baseline under this variant of speak-up. �at baseline,
as described above, is to set the price of a test equal to the average size of
a spam. Many spams are on the order of 10 Kbytes. �us, the optimistic
price, roughly 10 Kbytes, is about 10× better than the fully pessimistic sce-
nario, in terms of its e�ect on either the bandwidth cost to legitimate clients
(125 Kbytes, assuming the same provisioning) or on the required enforcer
over-provisioning.

In any case, all of this estimated over-provisioning is an upper bound:
the most damaging spurious request is a test that causes a disk access by
asking a node for an existing stamp �ngerprint (§4.6.3), yet nodes cache
key-value pairs (§4.4.3). If, for example, half of spurious tests generate
cache hits, the required provisioning halves.

Fixed bandwidth price only under overload. �e advantage of this ap-
proach is that when the enforcer is not under attack, good clients and the
enforcer do not consume extra bandwidth. �e disadvantage is that attack-
ers can induce more tests and sets, compared to the previous approach.
�e reason is as follows. Before a node is overloaded, tests and sets at
that node are “cheap”. �us, attackers can (a) make test and set requests
at each of the nodes, stopping just short of pushing them into overload and
(b) spend their remaining bandwidth budget on sending spam (here, the
attacker is “paying retail” for the tests and sets induced by the spam).
�e result of this strategy is that attackers get some tests and sets “at a
discount”, thereby allowing them to induce more than they could in the
previous approach.

�is disadvantage is limited because attackers can only get this bargain
when consuming the spare capacity at each of the nodes. And the enforcer
can compensate for this e�ect with increased provisioning.

101



Full-blown speak-up. �e advantage of full-blown speak-up is that it may
induce a much higher price, causing attackers to have even less impact. �e
disadvantage is that this higher price costs more bandwidth for the legiti-
mate clients and the enforcer. Observe that charging less than this price still
restricts attackers (as we argued for the previous two approaches) though
gives them more than a bandwidth-proportional share. Yet, as mentioned
earlier in this section, we probably do not need to restrict attackers to a
bandwidth-proportional share because the enforcer is provisioned to give
bad clients—and the requests that they induce—a disproportionate share
anyway.

* * *
So far, we have not speci�ed how enforcer nodes charge bandwidth. �ey
have several options, including asking for long requests or demanding many
copies of each request. In fact, the enforcer need not charge bandwidth: the
discussion above could apply to a currency of CPU or memory cycles.

We have not yet addressed hotspots. Recall that we are not discussing
link attacks in this section, so the type of hotspot that we now consider is
a portal overloaded by spurious RPCs. If any particular portal is attacked,
clients can use another one. Moreover, a bandwidth-limited attacker may
not want to overload a portal because doing so amounts to wasting work
that could be better spent issuing spurious tests and sets to other por-
tals. And, this adversarial strategy of not wasting work is precisely what the
enforcer as a whole is already provisioned for, regardless of whether the
spurious requests are concentrated at individual portals.

Finally, we note that even if the enforcer is knocked o�ine temporarily,
the system can recover. During periods of enforcer outage, email servers
can fall back on other spam defenses in the whitelisting family (see §4.10.1,
page 126), perhaps queuing for later veri�cation the emails that must go
through the DQE checks.

4.4.6 Widespread, Simultaneous Stamp Reuse

One might imagine an attack in which the adversary simultaneously sends
the same stamp to many recipients, in the hope of overloading the assigned
nodes or otherwise thwarting the enforcer. However, we believe (but have
not experimented to verify) that the enforcer will handle this attack prop-
erly. Consider a single portal that receives test(k), where k corresponds to
the stamp in question. If the test arrives before any client has submitted
set(k, v), then the portal will return “not found”. However, the window in

102



which portals are “ignorant” of the stamp is small: any client that receives
“not found” will set the (k, v) pair that corresponds to the stamp, at which
point all future calls of test(k) will “�nd” (k, v).

�is scenario does not overload the assigned nodes, for two reasons.
First, the main bottleneck for an assigned node is disk random accesses
(see §4.6.3), yet only one disk access per assigned node is required because
the node will store the (k, v) pair in its RAM cache (§4.4.3). Second, portals
cache in RAM the responses to tests and also perform “local puts” when
clients call set (§4.4.1). As a result, when a portal receives test(k) for a
“popular” k, the portal will likely not need to contact the assigned node in
the �rst place.

4.4.7 Adversarial Nodes

We now argue that for the protocol described in §4.4.1, a Byzantine failure
reduces to a crash failure. Nodes do not route requests for each other. A
node cannot lie in response to get(k) because for a false v, hash(v) would
not be k (so a node cannot make a fresh stamp look reused). A node’s only
attack is to cause a stamp to be reused by ignoring put and get requests,
but doing so is indistinguishable from a crash failure. �us, the analysis
in §4.4.2, which applies to crash failures, captures the e�ect of adversarial
nodes. Of course, depending on the deployment (federated or monolithic),
one might have to assume a higher or lower p.

However, the analysis does not cover a node that abuses its portal role
and endlessly gives its clients false negative answers, letting much spam
through. Note, though, that if adversarial portals are rare, then a random
choice is unlikely to �nd an adversarial one. Furthermore, if a client re-
ceives much spam with apparently fresh stamps, it may become suspicious
and switch portals, or it can query multiple portals.

Another attack for an adversarial node is to execute spurious puts and
gets at other nodes, exhausting their resources. In defense, nodes main-
tain “put quotas” and “get quotas” for each other, which relies on the fact
that the assignment of (k, v) pairs to nodes is balanced. Deciding how to
set and apply these quotas is future work. �e challenge is that a node will
need to make instantaneous decisions yet will need to allocate fairly an ag-
gregate resource—its capacity (total number of disk accesses and total RAM
consumed) over the course of a day.

103



4.4.8 Limitations

�e enforcer may be clustered, wide-area, or a combination of the two. Be-
cause our present concern is throughput, our implementation and evalu-
ation are geared only to the fully clustered case. We brie�y consider the
wide-area case now. If the nodes are separated by low capacity links, dis-
tributed livelock avoidance (§4.4.4) is not needed, but congestion control
is. Options include long-lived pairwise DCCP [87] connections or a scheme
like STP in Dhash++ [39].

4.5 implementation

We describe our implementation of the enforcer nodes and DQE client
so±ware; the latter runs at email senders and receivers, and handled the
inbound and outbound email of several users for over six months.

4.5.1 Enforcer Node So±ware

�e enforcer is a 5000-line event-driven C++ program that exposes its in-
terfaces via XDR RPC over UDP. It uses libasync [101] and its asynchronous
I/O daemon [93]. We modi�ed libasync slightly to implement distributed
livelock avoidance (§4.4.4). We have successfully tested the enforcer on
Linux 2.6 and FreeBSD 5.3. We play the bunker role ourselves by con�g-
uring the enforcer nodes with an in-list that speci�es random identi�ers.
We have not implemented per-portal quotas to defend against resource ex-
haustion by adversarial nodes (§4.4.7), a speak-up-related defense against
resource exhaustion by adversarial clients (§4.4.5), hmac for inter-portal
authentication (§4.4), or rate-limiting of inbound puts (§4.6.3).

4.5.2 DQE Client So±ware

�e DQE client so±ware is two Python modules. �e sender module is in-
voked by a sendmail hook; it creates a stamp (using a certi�cate signed by
a virtual quota allocator) and inserts it in a new header in the departing
message. �e receiver module is invoked by procmail; it checks whether
the email has a stamp and, if so, executes a test RPC over XDR to a portal.
Depending on the results (no stamp, already canceled stamp, forged stamp,
etc.), the module adds a header to the email for processing by �lter rules.
To reduce client-perceived latency, the module �rst delivers email to the
recipient and then, for fresh stamps, asynchronously executes the set.

104



�e analysis (§4.4.2) accurately re�ects how actual failures a�ect
observed stamp reuse. Even with 20% of the nodes faulty, the aver-
age number of reuses is under 1.5.

§4.6.2

Microbenchmarks (§4.6.3) predict the enforcer’s performance ex-
actly. �e bottleneck is disk accesses. §4.6.4

�e enforcer can handle 200 billion emails per day (a multiple of the
current email volume) with a few thousand PCs. More speci�cally,
the enforcer needs ∼5400 disks to handle this volume, provided
that the peak:average ratio is 1.

§4.6.5

�e scheme to avoid livelock (§4.4.4) meets its goal of preventing
the rate of correct test responses from degrading under load. §4.6.6

Table 4.1—Summary of evaluation results.

4.6 evaluation of the enforcer

In this section, we evaluate the enforcer experimentally. We �rst investigate
how its observed fault-tolerance—in terms of the average number of stamp
reuses as a function of the number of faulty machines—matches the analysis
in §4.4.2. We next investigate the capacity of a single enforcer node, mea-
sure how this capacity scales with multiple nodes, and then estimate the
number of dedicated enforcer nodes needed to handle 200 billion emails
per day (our target volume; see §4.2.2). Finally, we evaluate the livelock
avoidance scheme from §4.4.4. Table 4.1 summarizes our results.

All of our experiments use the Emulab testbed [47]. In these experi-
ments, between one and 64 enforcer nodes are connected to a single LAN,
modeling a clustered network service with a high-speed access link.

4.6.1 Environment

Each enforcer node runs on a separate Emulab host. To simulate clients and
to test the enforcer under load, we run up to 25 instances of an open-loop
tester, U (again, one per Emulab host). All hosts run Linux fc4 (2.6 kernel)
and are Emulab’s “pc 3000s”, which have 3 GHz Xeon processors, 2 GBytes
of RAM, 100 Mbits/s Ethernet interfaces, and 10,000 rpm scsi disks.

Each U follows a Poisson process to generate tests and selects the por-
tal for each test uniformly at random. �is process models various email
servers sending tests to various enforcer nodes. (As argued in [115], Pois-

105



son processes appropriately model a collection of many random, unrelated
session arrivals in the Internet.) �e proportion of reused tests (stamps7

previously set byU) to fresh tests (stamps never set byU) is con�gurable.
�ese two test types model an email server receiving a spam or non-spam
message, respectively. In response to a “not found” reply—which happens
either if the stamp is fresh or if the enforcer lost the reused stamp—U issues
a set to the portal that it chose for the test.

Our reported experiments run for 12 or 30 minutes. Separately, we ran a
12-hour test to verify that the performance of the enforcer does not degrade
over time.

4.6.2 Fault-Tolerance

We investigate whether failures in the implemented system re�ect the fault-
tolerance analysis. Recall that this analysis (in §4.4.2) upper bounds the
expected number of stamp uses in terms of the fraction of bad nodes, p.
�e analysis also shows that the worst-case stamp reuse is very close to the
expectation. For this reason, we focus on the expectation in this section.

Recall that a node is considered bad if it is ever down while a given
stamp is relevant (two days). Below, we model “bad” with crash faults, only.
We do not model Byzantine faults explicitly because, as mentioned in §4.4.7,
a Byzantine fault has the same e�ect as a crash fault—causing a stamp to be
reused.

We run two experiments in which we vary the number of bad nodes.
�ese experiments measure how o±en the enforcer—because some of its
nodes have crashed—fails to “�nd” stamps it has already “heard” about.

In the �rst experiment, called crashed, the bad nodes are never up. In the
second, called churning, the bad nodes repeat a 90-second cycle of 45 sec-
onds of down time followed by 45 seconds of up time. Both experiments
run for 30 minutes. �e Us issue tests and sets to the up nodes, as de-
scribed in §4.6.1. Half of the tests are for fresh stamps, and the other half
are for a reuse group—843,750 reused stamps that are each queried 32 times
during the experiment. �is group of tests models an adversary trying to
reuse a stamp. �e Us count the number of “not found” replies for each
stamp in the reuse group; each such reply counts as a stamp use. We set
n = 40, and the number of bad nodes is between 6 and 10, so p varies
between 0.15 and 0.25. For the replication factor (§4.4.1), we set r = 3.

7In this section, we o±en use “stamp” to refer to the key-value pair associated with the stamp.

106



1.0

1.2

1.4

1.6

1.8

2.0

15.0 17.5 20.0 22.5 25.0

A
vg

. #
 u

se
s/

sta
m

p

% nodes bad (40 nodes total)

upper bound
crashed, analytic

crashed, observed
churning, observed

Figure 4.7—E�ect of “bad” nodes on stamp reuse for two types of “bad”. Observed uses
obey the upper bound from the analysis (see §4.4.2). �e crashed case can be analyzed
exactly; the observations track this analysis closely.

�e results are depicted in Figure 4.7. �e two “observed” lines plot the
average number of times a stamp in the “reuse group” was used successfully.
�ese observations obey the model’s least upper bound. �is bound, from
equation (4.1) in §4.4.2, is 1+ 3

2p+3p2+p3 [40 (1− p)−
(

1 + 3
2 + 3

)]
and

is labeled “upper bound”. (We take n = 40(1−p) instead of n = 40 because,
as mentioned above, the Us issue tests and sets only to the “up” nodes.)
�e crashed experiment is amenable to an exact expectation calculation.
�e resulting expression8 is depicted by the line labeled “crashed, analytic”;
it matches the observations well.

4.6.3 Single-node Microbenchmarks

We now examine the performance of a single-node enforcer.

RAM. We begin by considering RAM and asking how it limits the num-
ber of puts. Each key-value pair consumes roughly 5.5 bytes of memory
in expectation (§4.4.3), and each is stored for two days (§4.3.3). �us, with
one GByte of RAM, a node can store slightly fewer than 200 million key-

8�e expression is as follows. Let m = 40(1 − p). �e expression is (1 − p)3(1) +

3p2(1 − p)α + 3p(1 − p)2β + p3m
“

1−
`m−1

m

´32
”

. α is
Pm

i=1 i
` 2

3

´i−1 1
m

`
1 + m−i

3

´
, and β isPm−1

i=1 i
` 1

3

´i−1 m−i
m(m−1)

`
2 + 2

3 (m− i− 1)
´

. See Appendix e.1 for a derivation.

107



value pairs, which, over two days, is roughly 1,100 puts per second. A node
can certainly accept a higher average rate over any given period but must
limit the total number of puts it accepts each day to 100 million for every
GByte of RAM.

Disk. We next ask how the disk limits gets. (�e disk does not bottle-
neck puts because writes are sequential and because disk space is ample.)
Consider a key k requested at a node d. We call a get slow if d stores k on
disk (if so, d has an entry for k in its index) and k is not in d’s RAM cache
(see §4.4.3). We expect d’s ability to respond to slow gets to be limited by
disk random accesses. To verify this belief, an instance of U sends tests
and sets at a high rate to a single-node enforcer, inducing local gets and
puts. �e node runs with its cache of key-value pairs disabled. �e node re-
sponds to an average of 400 slow gets per second (measured over 5-second
intervals, with standard deviation less than 10% of the mean).

To understand this performance, we benchmarked the disk as follows.
We wrote a utility that sits in a tight loop, doing random access disk reads
within a contiguous “blob”; the size of this blob is con�gurable. To get disk
parallelism, we run eight instances of the utility (which models the eight
async I/O daemons used by our implementation; see §4.5). We �nd that
when the size of the blob is small (e.g., 2 GBytes), a node can do 400 ran-
dom accesses per second, which matches the single-node local get rate
observed above. But this number is quite high!9 �e reason that the disk
can do so many accesses per second is that, with only 2 GBytes of data, the
“blob” is a narrow band on the disk, so the disk head (which is presumably
following an elevator scheduling algorithm) can read multiple key-value
pairs per rotation. Likewise, in the local get experiment, U was not run-
ning for long, so the universe of reused keys was small, so nodes were not
doing random accesses over a large chunk of the disk.

A more appropriate blob size for our purposes is 16 GBytes: this size
models a node with 2 GBytes of RAM storing 400 million key-value pairs
on a single disk. �is blob size is pessimistic, �rst, because nodes could have
multiple disks, thereby storing fewer key-value pairs per disk. Second, 400
million key-value pairs is likely far beyond what a node needs to store: our
back-of-the-envelope in §4.6.5 �nds 50 billion new key-value pairs per day.
Divided over 1000 nodes (an under-estimate), the per-node total is only

9I am grateful to Bill Bolosky for observing that 400 accesses per second is much larger than would
be expected, given a disk that spins at 10,000 RPM, or∼167 rotations per second.

108



Operation Ops/sec Bottleneck

put 1,100 RAM
slow get 320 disk
fast get 38,000 CPU

Table 4.2—Single-node performance, assuming 1 GByte of RAM.

100 million key-value pairs in storage (because nodes store key-value pairs
from two days). In any case, when the blob size is 16 GBytes, the bench-
mark is limited to 320 random accesses per second. We will use this more
pessimistic disk capacity when estimating the required size of the enforcer
later in this section.

CPU. We next consider fast gets, which are gets on keys k for which
the node has k cached or is not storing k. In either case, the node can reply
quickly. For this type of get, we expect the bottleneck to be the CPU. To
test this hypothesis, U again sends many tests and sets. Indeed, CPU us-
age reaches 100% (again, measured over 5-second intervals with standard
deviation less than 10% of the mean), a±er which the node can handle no
more than 38,000 RPCs. A pro�le of our implementation indicates that the
speci�c CPU bottleneck is malloc().

Table 4.2 summarizes the above �ndings.

4.6.4 Capacity of the Enforcer

We now measure the capacity of multiple-node enforcers and seek to ex-
plain the results using the microbenchmarks just given. We de�ne capac-
ity as the maximum rate at which the system can respond correctly to the
reused requests. Knowing the capacity as a function of the number of nodes
will help us, in the next section, answer the dual question: how many nodes
the enforcer must comprise to handle a given volume of email (assuming
each email generates a test).

�e measured capacity will depend on the workload. Speci�cally, which
resource is the bottleneck—RAM or disk—depends on the ratio of fresh
to reused tests. �e reason is that fresh tests consume RAM (the sets
that follow these tests induce puts) while reused tests may incur a disk
random access.

Note that the resources consumed by a test are di�erent in the multiple-
node case. A test now generates r (or r−1, if the portal is an assigned node)

109



get RPCs, each of which consumes CPU cycles at the sender and receiver.
A reused test still incurs only one disk access in the entire enforcer (since a
portal issues gets sequentially and stops once a node replies a�rmatively).
�e resources consumed by a set are also di�erent in the multiple-node
case: a set now induces two puts (one remote and one local).

32-node experiments. We �rst determine the capacity of a 32-node en-
forcer. To emulate the per-node load of a several thousand-node deploy-
ment, we set r = 5. We set r to this value because, from §4.4.2, r = 1 +

log1/p n; we take p = 0.1 and n to be several thousand, which is the upper
bound in §4.6.5. Note that this reasoning is not circular: the upper bound
on n is not determined by r but rather by disk or RAM capacity.

We run two groups of experiments in which 20 instances of U send
half fresh and half reused tests at various rates to this enforcer. In the �rst
group, called disk, the nodes’ LRU caches are disabled, forcing a disk ran-
dom access for every a�rmative get (§4.4.3). In the second group, called
CPU, we enable the LRU caches and set them large enough that stamps
will be stored in the cache for the duration of the experiment. �e �rst
group of experiments is fully pessimistic and models a disk-bound work-
load whereas the second is (unrealistically) optimistic and models a work-
load in which RPC processing is the bottleneck. We ignore the RAM bot-
tleneck in these experiments but consider it at the end of the section.

Each node reports how many reused tests it served over the last 5 sec-
onds (if too many arrive, the node’s kernel silently drops). Each experiment
run happens at a di�erent test rate. For each run, we produce a value by
averaging together all of the nodes’ 5-second reports. Figure 4.8 graphs the
positive response rate as a function of the test rate. �e le± and right y-axes
show, respectively, a per-node per-second mean and a per-second mean
over all nodes; the x-axis is the aggregate sent test rate. (�e standard de-
viations are less than 9% of the means.) �e graph shows that maximum
per-node capacity is 400 reused tests/sec when the disk is the bottleneck
and 1,875 reused tests/sec when RPC processing is the bottleneck; these
correspond to 800 and 3,750 total tests/sec (recall that half of the sent
tests are reused).

�e microbenchmarks explain these numbers. �e per-node disk ca-
pacity is exactly what we observed in the single-node case (in both the ex-
periment just done and the single-node experiment, the “blob” size is not
large, so the per-node capacity is high, relative to what one would expect
from a 10,000 RPM disk). We now connect the per-node test-processing

110



 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0  50  100  150  200  250  300
 0

 20

 40

 60

 80

 100

 120

Po
sit

iv
e T

ES
T 

re
sp

on
se

s
(p

kt
s/

se
c/

no
de

)

(1
00

0s
 p

kt
s/

se
c)

Sent "fresh"+"reused" TESTs
(1000s pkts/sec)

CPU workload
disk workload

Figure 4.8—For a 32-node enforcer, mean response rate to test requests as function of
sent test rate for disk- and CPU-bound workloads. �e two y-axes show the response
rate in di�erent units: (1) per-node and (2) over the enforcer in aggregate. Here, r = 5,
and each reported sample’s standard deviation is less than 9% of its mean.

 0

 20

 40

 60

 80

 100

 120

 8  16  32  64

M
ax

. P
os

iti
ve

 T
ES

T 
re

sp
on

se
s

(1
00

0s
 p

kt
s/

se
c)

Number of nodes

CPU workload
disk workload

Figure 4.9—Enforcer capacity under two workloads as a function of number of nodes
in the enforcer. �e y-axis is the same as the right-hand y-axis in Figure 4.8. Standard
deviations are smaller than 10% of the reported means.

rate (3,750 per second) to the RPC-processing microbenchmark (38,000
per second). Recall that a test generates multiple get requests and multi-

111



ple get responses (how many depends on whether the test is fresh). Also,
if the stamp was fresh, a test induces a set request, a put request, and
a put response. Taking all of these “requests” together (and counting re-
sponses as “requests” because each response also causes the node to do
work), the average test generates 9.95 “requests” in this experiment, as
shown in Appendix e.2. �us, 3,750 test requests per node per second
is 37,312 “requests” per node per second, which is within 2% of the mi-
crobenchmark from §4.6.3 (last row of Table 4.2).

One might notice that the CPU line in Figure 4.8 degrades a±er 1,875
positive responses per second per node (the enforcer’s RPC-processing ca-
pacity). �e reason is as follows. Giving the enforcer more tests and sets
than it can handle causes it to drop some. Dropped sets cause some future
reused tests to be seen as fresh by the enforcer—but fresh tests induce r
or r − 1 gets while reused tests induce roughly (r + 1)/2 gets on aver-
age since a portal stops querying when it gets a positive response. �us, the
degradation happens because extra RPCs from fresh-looking tests con-
sume capacity. �is degradation is not ideal, but it does not continue indef-
initely.

Scaling. We now measure the enforcer’s capacity as a function of the num-
ber of nodes, hypothesizing near-linear scaling. We run the same experi-
ments as for 32 nodes but with enforcers of 8, 16, and 64 nodes. Figure 4.9
plots the maximum point from each experiment. (�e standard deviations
are smaller than 10% of the means.) �e results con�rm our hypothesis
across this (limited) range of system sizes: an additional node at the mar-
gin lets the enforcer handle, depending on the workload, an additional 400
or 1,875 tests/sec—the per-node averages for the 32-node experiment.

We now view the enforcer’s scaling properties in terms of its request
mix. Assume pessimistically that all reused test requests cost a disk ran-
dom access. �en, doubling the rate of spam (reused test requests) will
double the required enforcer size.

Doubling the rate of non-spam, however, (i.e., fresh test requests) will
only a�ect the required enforcer size if there is enough non-spam so that
the enforcer’s resource bottleneck is RAM. To be concrete, assume that
each node in the enforcer has 1 GByte of RAM and receives 200 reused
tests/second and 550 fresh tests/second. �en, the enforcer is correctly
provisioned, but RAM is the resource that is driving the provisioning. For
in this case, each node processes an average of 550 sets/second (recall
that each fresh test is followed by a set) and 1,100 puts/second (recall

112



200 billion emails daily (target from §4.2.2)
× 75% spam [106, 107, 150]

150 billion disk random accesses / day (pessimistic)
÷ 320 disk random accesses / second / disk (§4.6.3)
÷ 86400 seconds / day

5425 disks needed
÷ 4 disks / node (as one possibility)

1356 nodes needed

Table 4.3—Estimate of enforcer size (based on average rates), and assuming each node
has 4 disks.

that each set induces a remote put and a local one), which is the single-
node performance limit (see Table 4.2). More generally, RAM becomes a
bottleneck—and the rate of non-spam drives the required enforcer size—
when the ratio of fresh tests to reused tests is greater than or equal to the
ratio of a single node’s performance limits, namely 550 fresh tests/sec for
every GByte of RAM to 320 reused tests/sec for every disk. (We assume
320, rather than 400, disk random accesses per node per second, because
320 better models a node that is under load; see §4.6.3.)

4.6.5 Estimating the Enforcer Size

We now give a rough estimate of the number of dedicated enforcer nodes
required to handle current email volumes. We will assume that putting four
disks in a node (a) is a reasonable thing to do; and (b) quadruples the node’s
capacity to handle disk random accesses. We believe that (a) is true based
on server con�gurations and the cost of disks. We did not experiment to
verify (b).

�e calculation is summarized in Table 4.3. Our target is 200 billion
messages daily. Current estimates suggest that the percentage of all email
that is spam is roughly 75% [106, 107, 150].10 We make the worst-case as-
sumption that every reused test—each of which models a spam message—
causes the enforcer to do a disk random access.

With this assumption and at this spam rate, the scaling bottleneck is
disk capacity, not RAM. To show why, we follow the discussion at the end
of the last section. For RAM to be the bottleneck, the node must have fewer

10�e estimates vary somewhat. Some of them are as high as 90% (and in other months, the estimates
have been as low as 60%).

113



than x GBytes of RAM, where x satis�es the following inequality: 1/3 >

550x/(320 · 4). (�is inequality says that the ratio 25% fresh to 75% reused
test requests is greater than the ratio of a single node’s RAM bottleneck to
its random access disk capacity.) �is inequality holds for x < 0.78. Most
modern machines have much more RAM than 0.78 GBytes, so we conclude
that disk, not RAM, is the scaling bottleneck (even with 4 disks per node).

�e enforcer must do 150 billion disk random accesses per day and,
since the required enforcer size scales linearly with the number of required
disk accesses (§4.6.4), a straightforward calculation gives the required num-
ber of machines. For the disks in our experiments, the number is about
1,300 machines.

* * *
So far we have considered only average request rates. We must ask how
many machines the enforcer needs to handle peak email loads while bound-
ing reply latency. To answer this question, we would need to determine the
peak-to-average ratio of email reception rates at email servers (their work-
load induces the enforcer’s workload). As one data point, we analyzed the
logs of our research group’s email server, dividing a �ve-week period in early
2006 into 10-minute windows. �e maximum window saw 4 times the vol-
ume of the average window. Separately, we veri�ed with a 14-hour test that
a 32-node enforcer can handle a workload of like burstiness with worst-case
latency of 10 minutes. �us, if global email is this bursty, the enforcer would
need 5,400 machines (the peak-to-average ratio times the 1,300 machines
derived above) to give the same worst-case latency.

However, global email tra�c is likely far smoother than one server’s
workload. And spam tra�c may be smoother still: the spam in Jung et al.’s
2004 data [81] exhibits—over ten minute windows, as above—a peak-to-
average ratio of 1.9:1. Also, Gomes et al. [62] claim that spam is less variable
than legitimate email. �us, many fewer than 5,400 machines may be re-
quired. On the other hand, the enforcer may need some over-provisioning
for spurious tests (§4.4.5). For now, we conclude that the enforcer needs
“a few thousand” machines and leave to future work a study of email bursti-
ness and attacker ability.

4.6.6 Avoiding “Distributed Livelock”

We now brie�y evaluate the scheme to avoid livelock (from §4.4.4). �e goal
of the scheme is to prevent the rate of correct test responses from degrad-
ing under high load. To verify that the scheme meets this goal, we run the

114



 10
 20
 30
 40
 50
 60
 70

 0  50  100  150  200  250  300  350

Po
sit

iv
e T

ES
T 

re
sp

on
se

s
(1

00
0s

 p
kt

s/
se

c)

Sent TEST rate (1000s pkts/sec)

with scheme
without scheme

Figure 4.10—E�ect of livelock avoidance scheme from §4.4.4. As the sent test rate in-
creases, the ability of an enforcer without the scheme to respond accurately to reused tests
degrades.

following experiment: 20 U instances send test requests (half fresh, half
reused) at high rates, �rst, to a 32-node enforcer with the scheme and then,
for comparison, to an otherwise identical enforcer without the scheme.
Here, r = 5 and the nodes’ caches are enabled. Also, each stamp is used
no more than twice; tests thus generate multiple gets, some of which
are dropped by the enforcer without the scheme. Figure 4.10 graphs the
positive responses as a function of the test rate. At high test rates, an
enforcer with the scheme gives twice as many positive responses—that is,
blocks more than twice as much spam—as an enforcer without the scheme.

4.6.7 Limitations

Although we have tested the enforcer under heavy load to verify that it does
not degrade, we have not tested a �ash crowd in which a single popular
stamp s is tested at all (several thousand) of the enforcer nodes. However,
as discussed in §4.4.6, we do not believe that this case will be problematic.

We have also not addressed heterogeneity. For static heterogeneity, i.e.,
nodes that have unequal resources (e.g., CPU, RAM), the bunker can adjust
the load-balanced assignment of keys to values.Dynamic heterogeneity, i.e.,
when certain nodes are busy, will be handled by the enforcer’s robustness
to unresponsive nodes and by the application’s insensitivity to latency.

115



4.7 quota allocation

Recall that our top-level objective is to allocate human attention to senders
in rough proportion to their numbers, meaning that no sender should
be able to claim an outsized portion of aggregate human attention. To
achieve this goal, we need to make validly stamped spam—i.e., the spam
that reaches inboxes and claims human attention—a small fraction of all
email. In this section, we consider how to do so. We begin with a basic
analysis of what is required to limit spammers, then discuss the e�ect on
legitimate senders, and �nally address some policy questions brie�y.

Limiting spammers. Stamps can only limit spammers if a stamp costs a
scarce resource. For simplicity, we view stamps as costing money and do not
discuss how to translate currencies like CPU [1], identity [13], or human
attention [166] into money. We now ask what per-stamp monetary price
would be required.

Assume that the spam industry has pro�t function p(m), which it cur-
rently maximizes by sending m = m∗ emails. If DQE is deployed and in-
duces a stamp cost of c per email, then setting c ≥ p(m∗)/m′ will make it
uneconomical for the industry to send more than m′ emails, because for
m > m′, the added costs m · p(m∗)/m′ will exceed the entire possible pro�t
p(m∗). �us, to reduce spam by a factor f > 1, i.e., to make m′ = m∗/f , it
su�ces to set c = p(m∗)

m∗/f = f · p(m∗)/m∗. �at is, to reduce spam by a factor
f > 1, a su�cient price per message is f times the pro�t-per-message.11

Although we will use this estimate of c below, the above analysis is very
pessimistic. Roughly speaking, the analysis assumes that p(m) attains the
maximum, p(m∗), for many m < m∗. �is assumption implies an improb-
able shape for the function p(m) and is likely false. For consider a variety
of scams, each with a di�erent pro�t-per-message when sent in the optimal
amount. If, as we expect, most scams yield low pro�t, and few yield high
pro�t, then setting a price c will prevent all scams with rate-of-return less
than c. For example, if each scam sends the same amount, and if the number
of scams returning more than a given amount q exponentially decays with
q, then additive price increases in stamps result in multiplicative decreases
in spam.

11I am grateful to James Grimmelmann for this paragraph. A±er observing that the previous version
of this paragraph, in [168], was not fully explicit, he suggested the current wording, nearly verbatim
(March, 2007).

116



We now give a rough estimate for c. First, consider spammers’ pro�t per
message. Goodman and Rounthwaite [65] survey media reports and �nd a
wide range of purported values for spammers’ revenues. �e most conser-
vative (i.e., the highest) per-message revenue that they survey is $300 for
sending a million messages (.03 cents per message). Assuming (pessimisti-
cally) that this report applies to all spammers and that spammers have no
costs, then reducing spam by a factor f > 1 requires a cost of .03f cents per
message. But what value of f is appropriate? As mentioned earlier, a rough
estimate of current spam rates is 75% of all email [106, 107, 150]. To make
spam 5% of the email that people receive, f needs to be approximately 50.
(f needs to satisfy 75/f

(75/f )+25 = 0.05.) �us, based on these pessimistic es-
timates, the per-email cost to spammers should be roughly 1.5 cents per
message.

�e analysis above holds even if DQE causes spammers to change tactics
drastically (e.g., they might now create more appealing spams). �e analy-
sis assumes only that spammers are pro�t-maximizing and therefore incor-
porates all possible spammer strategies. (If creating more appealing spams
actually resulted in more than 1/f as much spam, then this new strategy
must be more pro�table than their old one, contradicting our assumption
that spammers are currently optimizing.)

E�ect on legitimate senders. Although Laurie and Clayton [92] argue, in
the context of computational puzzles, that no price exists that a�ects spam-
mers while leaving legitimate users mostly una�ected, their analysis does
not take into account “refunds” of computational work [1]. In our context,
such “refunds” correspond to a social protocol in which receivers do not
demand stamps from known senders. With such a social protocol, senders
would need very few stamps (most people do not send large quantities of
unsolicited email to strangers; doing so is the de�nition of spamming!)

If a legitimate sender directs one out of every 100 emails to a stranger
and emails 100 recipients per day, then legitimate senders would have to
pay on average 1.5 cents per day. �is price is $5.50 per year per sender. Of
course, we cannot prove that this rough estimate of cost would be negligi-
ble for legitimate senders, but perhaps the bundled allocation policy brie�y
mentioned below will be helpful.

Policy questions. One policy question is how to translate per-email prices
into quotas, which are allocated in blocks. If the quotas have much “head-
room” to account for days of heavy sending, then (1) quotas might be more

117



expensive than is necessary for legitimate senders (in e�ect, they will have
to pay for more than they actually send); and (2) if adversaries compromise
machines (see §4.8), they will be able to send more emails than the hu-
man owner of the machine would normally send, leading to extra emails.
One possible answer is simply to plan for little headroom in users’ quotas,
say because quotas are actually allocated to organizations, not individuals,
and organizations might send similar rates of email each day, even if their
constituent senders are bursty. Another option is for the quota allocator to
“bump up” a sender’s quota temporarily by selling a quota that expires in
the near future.

A more di�cult policy question is: how can quota allocation give the
poor fair sending rights without allowing spammers to send? We are not
experts in this area and just mention one possibility. Perhaps a combination
of explicit allocation in poor areas of the world, bundled quotas elsewhere
(e.g., with an email account comes free stamps), and pricing for additional
usage could impose the required price while making only heavy users pay.

4.8 synthesis: end-to-end effectiveness

To complete the argument that we previewed at the beginning of the chap-
ter, we now consider DQE’s end-to-end e�ectiveness, taking into account
the combined e�ect of allocation, enforcement, and cheating. We aim to
show that, under DQE, the spam that consumes human attention is, com-
pared to all email that consumes human attention, a manageable fraction.
To do so, we simply tally how much spammers can send.

First, as described in the previous section, the quota allocator should
arrange for stamps to limit spammers to 5% of the total email volume. Sec-
ond, spammers can steal stamps. As mentioned in §4.3.4, this e�ect is likely
to be limited and is manageable via out-of-band communication between
email providers and senders. However, even if we put aside these points
and give the adversary tremendous power, stamp the± still has only a lim-
ited e�ect. Our reasoning is as follows. Assume pessimistically that spam-
mers steal stamps from every bot. �ere are roughly 1 billion computers in
the world [34], and a high estimate of the total number of bots is 20 mil-
lion (see §2.2), or 2% of the world’s computers. If we make an even more
pessimistic assumption that spammers can steal all of the quota from 5% of
the hosts on the Internet, they can still send only roughly 10% of the world’s
email. (We are assuming little headroom in quotas.)

118



�e third and last contribution to the tally is cheating via stamp reuse.
As we have argued, this cheating is limited (see §4.4.2 and §4.6.2). For ex-
ample, if 15% of the nodes in the enforcer are bad, then each stamp can be
used 1.3 times in expectation. And, as mentioned in §4.4.2 (page 92), the
actual total use is almost certainly no more than 5% of the expected total,
so we can bound the uses per stamp by 1.3 · 1.05 = 1.37. �us, if spam-
mers reuse all of the stamps to which they have access, then their 10% (5%
legitimately allocated, 5% stolen) becomes 13.7/(13.7 + 90) = 13.2% of all
email. �is fraction is still manageable.

4.9 adoption & usage

In this section, we brie�y discuss pragmatic concerns, including how DQE
could gain adoption, how quota allocators could be established, and how
DQE could be integrated with existing systems.

Adoption. We now speculate about paths to adoption. First, large email
providers have an interest in reducing spam. A group of them could agree
on a stamp format, allocate quotas to their users, and run the enforcer co-
operatively. If each provider ran its own, separate enforcer, our design still
applies: each enforcer must cope with a large universe of stamps.

Two other possibilities are organization-by-organization adoption and
individual-by-individual adoption. In the former case, the incremental ben-
e�t is as follows. Currently, many organizations whitelist email from their
organization (e.g., someone at MIT might accept all email with source ad-
dress matching the pattern *.mit.edu). However, spammers take advan-
tage of such whitelists by spoo�ng the source email address to match the re-
cipient’s domain. With DQE deployed in an organization, recipients would
expect email from within their organization to be stamped, eliminating the
need for these whitelists.12

In the latter case—individual-by-individual adoption—the incremental
bene�t is that stamping one’s email and sending to another DQE-enabled
user ensures that one’s email will not be caught in a spam �lter. In both of
these cases, the deployment challenge is agreeing on a quota allocator and
establishing an enforcer. �e local changes (to email servers; email clients
need not change) are less daunting.

12DQE does not uniquely bring this bene�t, but our purpose here is only to show a bene�t to incre-
mental adoption.

119



Quota allocators. �e DQE architecture relies on globally trusted alloca-
tors (§4.3.1), which raises some questions, including:

–– Where do quota allocators come from? Who performs the function?

–– How can we ful�ll the requirement that quota allocators are globally
trusted?

–– How can we make sure that the quota allocators “do the right thing”
(i.e., charge the right prices, do not cheat, do not become hacked)?

We do not have de�nitive answers but suggest possibilities. For each of
the possibilities, we answer the questions above.

�e �rst alternative is that a consortium of email providers establishes a
non-pro�t allocator, with a charter that would legally bind the allocator to
“do the right thing” (charging an appropriate quantity for stamps but not
pro�teering). �e trust in this organization would derive from the fact of
its legal charter and observers’ belief that the organization was adhering to
its charter.

A second alternative is that an organization like icann or Verisign op-
erates the allocator (in icann’s case, the allocator could be a non-pro�t).
Although icann and Verisign are favorite targets of disapproval, the fact is
that these organizations are implicitly trusted by almost all Internet users.
As in the above case, the protection against the allocator cheating would be
public scrutiny, mainly.

Another possibility is for each country to establish a quota allocator.
Because some nations’ allocators might “cheat” (by assigning huge quotas)
recipients would need to apply reputation mechanisms to the set of alloca-
tors. Quota allocators would gradually lose trust if recipients received high
volumes of spam with valid stamps from that allocator. Such a reputation
scheme would reduce the general “detection” or “reputation” problem of
“How can any given recipient trust any given sender?” to the problem of
deciding which of a set of 200 allocators is trustworthy. �is reduced prob-
lem seems tractable.

A �nal possibility is a competitive market in which anyone could estab-
lish an allocator. In such a market, allocators might have an incentive to
cheat somewhat (e.g., charging “too much” for stamps). However, reputa-
tion systems are needed here anyway (as in the case above), and we hypoth-
esize that these mechanisms could limit such abuse.

120



Usage. �e amount of stamped spam will be tolerable, as we have argued.
�us, following the “no false positives” goal, stamped email should always
be passed to the human user. For unstamped email: before DQE is widely
deployed, this email should go through content �lters (again risking false
positives), and under widespread DQE deployment, this email can be con-
sidered spam. We expect that DQE will incorporate whitelists, where peo-
ple agree not to cancel stamps from people they know (indeed, our rough
analysis of the cost to good clients depends on such whitelists; see §4.7).
With whitelists, senders should still stamp their emails to prevent spoo�ng,
but these stamps should not “count” against the sender’s quota. (�is social
protocol is similar to the refunds that are proposed by [1].) In §4.10.1, we
further discuss how one may combine DQE with other defenses.

Mailing lists. For moderated lists, senders can spend a single stamp, and
the list owner can then either sign the message or spend stamps for each
receiver. Unmoderated, open mailing lists are problematic: spammers can
multiply their e�ect while spending only one stamp. Partially-moderated
lists might become more common under DQE. Here, messages from new
contributors would be moderated (requiring only a glance to determine
if the email is spam), and messages from known valid senders—based on
past contributions and identi�ed by the public key in the stamp—would be
automatically sent to the list, again using either the list owner’s public key
or stamps for each recipient. In such lists, the moderation needed would
be little (it would be proportional to the number of messages from new
contributors), so more lists could convert to this form.

4.10 related work

We �rst survey work on spam control to justify both our choice of quota-
based spam control (or bankable postage) in general and the architecture of
DQE in particular; we also say how DQE can be combined with other de-
fenses. We then describe how DQE’s architecture relates to micropayments
(which share a similar purpose) and �nally compare the enforcer to related
distributed systems.

4.10.1 Spam Control

In this section, we cover only technical solutions, not legal ones. For surveys
that include both kinds of solutions, see [68, 157].

121



We take as a starting point that labeling valid email as spam is unac-
ceptable. To some extent, this stance is a matter of taste.

Filtering. �e dominant defense to spam today is spam �lters (e.g., [66,
144]), which analyze incoming email to classify it as spam or legitimate.
A variant is collaborative �ltering, in which the �ltering logic has access to
many users’ email, allowing it to detect mass mailings. �ese tools certainly
o�er inboxes relief, but their decisions are error-prone and sometimes cause
valid email to be labeled spam, as discussed in Chapter 1. Moreover, we
believe that spammers have the motive and ability to fool �lters reliably,
thereby making �lters ine�ective in the long run—regardless of one’s tol-
erance for errors. Given this weakness, many have proposed solutions that
do not examine message content; we discuss some of them now.

Heuristics that do not examine message content. Blacklists (e.g., [158])
are collections of IP addresses that are suspected of originating spam. (�e
intent is that �lters would consult these lists in deciding how to classify a
message.) However, such lists are also prone to error. First, spammers can
o±en acquire new IP addresses, as our threat model presumes (see Chap-
ter 2 and §4.1). Second, blacklists routinely include innocent hosts. �is
“impugning” happens for various reasons, including blacklisting of an en-
tire netblock, dynamic assignment of an IP address to a bot and subsequent
reassignment to an innocent host, and a NAT situation in which an inno-
cent host and a bot appear to have the same IP address.

Whitelisting, in contrast, explicitly seeks reliability. For example, the re-
cently proposed (and brilliantly named) Re: [59] uses friend-of-friend rela-
tionships to let correspondents whitelist each other automatically, at which
point all email that they send to each other will be delivered to the receiving
human. However, whitelisting still allows some errors (for non-whitelisted
senders).

Of course, whitelisting can be combined with other approaches. One
example of a complementary approach is challenge/response. Here, the re-
ceiver’s email server or client asks non-whitelisted senders to respond to
a challenge, such as a proof-of-humanity test [166]; if the sender responds
successfully, the sender’s email will be delivered, and the sender will then be
whitelisted. We believe that there are several problems with this approach.
First, as mentioned in the previous chapter (§3.9.2), spammers might pay
people to respond to proof-of-humanity challenges. Second, some non-
human senders, (e.g., some so±ware programs) are legitimate. �ird, this

122



approach changes the “social dynamics”: the sender now has to do work,
even if the sender was the one “doing the favor”.

A related tactic is for a receiver to make it hard for people to send him
email, say by requiring potential senders to register on a Web page (e.g.,
[100]). Such an approach undoubtedly reduces the spam to the recipient
(though it might not if everyone deployed it). However, it also changes the
social dynamics of email drastically, and the recipient may not feel com-
fortable asking potential senders to exert more e�ort than is usual.

Another technique is exempli�ed by the Sender Policy Framework (SPF)
[146]. With this approach, administrative domains publish in DNS a list of
IP addresses that are allowed to send email from that domain. Receiving
email servers can then query DNS to verify that the sending email server’s
IP address actually matches the envelope header on the email. Systems like
Mail Avenger [102] use SPF (and other techniques) to detect email from
bots that have installed “illegal” email servers on desktop machines. How-
ever, SPF provides only a heuristic and cannot stop spam on its own. One
reason is that spammers can invent bogus envelope headers and can adopt
IP addresses temporarily. Either or both of these things thwarts the pur-
pose of SPF. A related check, also performed by Mail Avenger, is to verify
that the sending email server can receive email, the purpose being to screen
out illegal email servers that are running on bots behind �rewalls and NATs.
However, this check is again a heuristic: not all of spammers’ hijacked ma-
chines are behind �rewalls and NATs, and, moreover, spammers need not
send from bots.

Most of the approaches in this category are helpful (and meet our re-
quirement of not labeling legitimate email as spam). However, we seek a
“backstop”—a solution that, if heuristics fail, limits volumes explicitly.

Explicit limits on volume. A strawman in this category is a world in which
ESPs (Email Service Providers) become known as “good”; “good” means
that they limit their users’ outbound emails (e.g., using techniques like those
in [65]). However, we believe that some kind of global accounting system—
something like DQE’s enforcer, for example—is required to guarantee that
ESPs (of which there could be thousands) actually limit their users’ out-
bound emails. Templeton [154] also focuses explicitly on volumes. He en-
visions an infrastructure formed by cooperating ISPs to handle worldwide
email; the infrastructure throttles email from untrusted sources that send
too much. Unlike DQE, this proposal assumes a trusted enforcement in-
frastructure. Moreover, it assumes that, given an email, the actual network

123



address of the source can be identi�ed, yet in our threat model, such iden-
ti�cations are not reliable.

Given the above, we believe that limiting volumes explicitly requires
attaching a cost to sending. �us, we turn to the general category of email
postage.

Postage

We �rst discuss the various proposals in this category and then compare
pairwise postage to bankable postage; DQE is in the latter category.

Pairwise postage. �e high-level idea of email postage is that senders
should pay to send email, the hope being that no sender will be able to af-
ford to send vast quantities of unsolicited email (see §4.7 for our basic eco-
nomic arguments). �ere have been many variations of email postage and
a lot of debate about how best to implement it and in what currency to set
the price. Some have suggested that senders pay receivers in money, letting
receivers set the price of their attention [50, 94, 131]. To implement such a
scheme, one would presumably use micropayment systems, described be-
low in §4.10.2. Zmail [91] is a variation of this idea: the parties, represented
by their ESPs, settle once per day. �is proposal avoids some infrastructure
(namely a system to handle transactions online) but at the following cost:
given a discrepancy between two parties’ accounts, the bank cannot prove
which of the two parties cheated. (In Zmail, ESPs are supposed to be certi-
�ed as “compliant”, but such certi�cation does not guarantee good behav-
ior.) �e proposal contrasts with DQE in two ways: �rst, DQE is not in the
business of certifying email participants as good or bad (anyone can obtain
a quota), and second, DQE, as a system, is robust to cheating.

Others have suggested that senders pay receivers in CPU cycles [11, 46]
or memory cycles [2, 45] (the latter being fairer because memory band-
widths are more uniform than CPU bandwidths): to send an email viewed
as valid, a sender must exhibit the solution to an appropriate computational
puzzle (as in proof-of-work, discussed in the last chapter; see §3.9.1). Still
others have suggested that senders pay human attention (e.g., [145]); this
suggestion is related to challenge/response schemes, mentioned above.

Bankable postage. As a variation on postage, Abadi et al. pioneered bank-
able postage [1], in which senders buy tickets from a third party (called a
“Ticket Server”, or TS) and attach these tickets to emails. Receivers check
with the TS to verify that tickets are fresh, cancel tickets with the TS, and

124



optionally refund them. �e proposal is agnostic to the currency in which
tickets are sold.

�ough DQE and TS export a similar high-level interface to clients,
they have very di�erent realizations. TS does not meet most of our goals
(see §4.2). Speci�cally, it relies on a trusted, central server for the enforce-
ment function so does not meet our requirements that the enforcement
function scale to the volume of the world’s email and that it be fault-tolerant,
attack-resilient, and untrusted. Also, TS does not separate allocation and
enforcement or preserve sender-receiver email privacy.

Another bankable postage scheme, SHRED [89], also has a trusted, cen-
tral cancellation authority. And Goodmail [63]—now used by two major
email providers [32]—resembles TS. (See also Bonded Sender [22], which
is not a postage proposal but has the same goal as Goodmail.) Goodmail
accredits bulk emailers, trying to ensure that they send only solicited email,
and tags their email as “certi�ed”. �e providers then bypass �lters to deliver
such email to their customers directly. However, Goodmail does not elimi-
nate the problem of valid email labeled spam because only “reputable bulk
emailers” get this favored treatment. Moreover, like TS, Goodmail com-
bines allocation and enforcement, does not preserve privacy, and presum-
ably does not o�er a large-scale enforcement solution.

Bankable Postage vs. Pairwise Postage

Advantages of bankable postage. Bankable postage has four advantages
compared to pairwise postage; we use citations to indicate which authors
�rst made the observation:

1. Asynchrony [1]. In a pairwise proposal, senders have to “purchase”
the right to send every time they want to send email. But this requirement
is problematic, as we now show by considering two di�erent currencies. If
the currency is money, then a micropayment infrastructure that can pro-
cess requests “online” is needed, at which point the system would resem-
ble DQE; see §4.10.2 below. If the currency is CPU cycles, then the pay-
ment will disrupt the sender’s work�ow. To see why, let us consider what
price in CPU cycles might restrict spam. �e answer, roughly speaking, is
that the price has to be high enough so that a bot, even one whose CPU
works around the clock, cannot send signi�cantly more spam than a legit-
imate client. Most legitimate clients send fewer than 200 emails per day;
to limit bots even to that number requires an average CPU price of (1440
minutes/day)(1 day/200 emails) ≈ 7 CPU minutes/email. �is price is un-
acceptably high to be incurred “online”. Human attention does not have the

125



problems just mentioned; however, it has others, as listed above during our
description of challenge/response.

2. Separation of allocation & enforcement [13]. Bankable postage cre-
ates the possibility of separating allocation and enforcement. �at possibil-
ity, which DQE seizes for reasons discussed in §4.2.1, leads to the following
bene�t: DQE can support a range of currencies and policies (in the pairwise
case, in contrast, the currency and policy are “hard-coded” into the system).
�us, one way to view DQE is as a general platform that can accommodate
the debate about which currency or platform is correct.

3. Stockpiling [1]. Senders can get tickets from various sources, e.g.,
their ISPs, rather than paying for every ticket.

4. Refunds [1]. If payment is incurred online and if senders use a non-
recoverable resource like CPU cycles, then refunds are impossible. If pay-
ment is incurred o�ine, then receivers can let friendly senders reuse their
tickets. Such refunds give a higher e�ective price to spammers, whose re-
ceivers would not refund.

Disadvantages of bankable postage. Against the above advantages, bank-
able postage has the following disadvantage:

Less infrastructure required (possibly). Bankable postage, and DQE in
particular, require infrastructure that does not yet exist: globally trusted
quota allocators, the enforcer, and the bunker. We have argued throughout
that the enforcer is practical, and we have indicated in §4.7 and §4.9 why
we think that a quota allocator could come into being. However, there is no
question that it would be preferable to avoid this extra infrastructure.

Unlike DQE, many of the schemes described above (e.g., whitelisting,
SPF, connecting back to the email server) can be adopted either in grass-
roots pairwise fashion or unilaterally. And pairwise postage likewise does
not require infrastructure—if the currency is CPU cycles or human atten-
tion. However, if the currency is money, then a third party is needed, namely
a bank to implement micropayments. And in that case, a system like the
enforcer is called for, as we show below in §4.10.2. �is fact means that
bankable postage may be a way to implement pairwise postage.

Combining DQE with Other Defenses

DQE may work better in conjunction with other defenses. Indeed, our
rough economic analysis in §4.7 presumes that senders and receivers make
heavy use of whitelists, allowing them to see a far lower per-email price than
spammers do.

126



More generally, DQE works with any algorithm in the “whitelisting fam-
ily”, meaning any algorithm that, given an email, outputs either “yes, this
email is valid” or “I don’t know”. Except for the transition period, DQE
ought not work with an algorithm that can output “no” (e.g., �ltering or
blacklisting)—such algorithms may sometimes label valid email as spam,
an error that we view as unacceptable. �us, here is how DQE can combine
with other defenses: imagine that the recipient has deployed n defenses in
the whitelisting family,D1, . . . ,Dn. Given an email, the recipient’s algorithm
is as follows. Run each of the Di. If any outputs “yes”, stop and accept the
email. (We are assuming that the Di do not output “yes” wrongly.) If all out-
put “I don’t know”, then invoke DQE’s checks. Accept the email if and only
if the email is stamped and all of the stamp checks (valid signatures, under
quota, fresh stamp, etc.) pass.

�is description makes explicit that DQE may function best as a “back-
stop” when other defenses fail.

4.10.2 Micropayments

�e architecture and protocols of DQE, as described in §4.3, resemble a
micropayment or digital cash system. In some of those schemes, a bank
(corresponding to our allocator) allocates a block of “cash” (corresponding
to our quota) to a user, who then spends the cash in units of “digital coins”
(corresponding to our stamps). �ere has been a lot of work in the area of
micropayments and digital cash (see [26, 60, 132] and citations therein).

One of the main problems in these systems is preventing users from
spending a given digital coin twice; this attack is known as double-spending.
�e existing solutions for preventing double-spending at large scale do so
in an o�ine fashion—at the end of the day, vendors turn over their coins
to the bank, which detects double-spending by looking at the set of coins
presented to it. However, for many applications (e.g., [18]), once-per-day
timescales are too coarse-grained. Indeed, in our context, double-spending
corresponds to stamp reuse, which of course DQE must detect as it hap-
pens.

Large-scale online detection of double-spending is currently viewed by
the digital cash literature as technically infeasible: it is too computationally
expensive for the bank to be involved in millions of transactions per sec-
ond [26, 60]. Meanwhile, such online detection is the whole point of the
enforcer! And because the enforcer is untrusted and presumed to fault, the
bank needn’t spend much to guarantee perfect correctness or even operate
the infrastructure itself.

127



�us, we believe that DQE makes a contribution to the digital cash lit-
erature: we show how to build an inexpensive, untrusted system that de-
tects double-spending at intra-day timescales and handles millions of re-
quests per second. To incorporate the enforcer, the designers of digital cash
systems could arrange that, when digital coins are spent, vendors hash,
test, and set them. �ese checks would be a hint, to prevent gross double-
spending. �en, at the end of the day, the bank and vendors could run the
protocols that actually exchange digital coins for cash, thereby detecting
double-spending precisely.

4.10.3 Related Distributed Systems

Because the enforcer stores key-value pairs, distributed hash tables (DHTs)
[12] seemed a natural substrate, and our �rst design used one. However,
we abandoned them because (1) most DHTs do not handle mutually un-
trusting nodes and (2) in most DHTs, nodes route requests for each other,
which can decrease throughput if request handling is a bottleneck. Castro
et al. [27] address (1) but use considerable mechanism to handle untrusting
nodes that route requests for each other. Conversely, one-hop DHTs [71, 72]
eschew routing, but nodes must trust each other to propagate membership
information. In contrast, the enforcer relies on limited scale to avoid rout-
ing and on a trusted entity, the bunker (§4.4), to determine its membership.

Such static con�guration is common; it is used by distributed systems
that take the replicated state machine approach [135] to fault-tolerance (e.g.,
the Byzantine Fault Tolerant (BFT) literature [28], the recently proposed
BAR model [4], and Rosebud [133]) as well as by Byzantine Quorum Sys-
tems (e.g., [96, 97]) and by cluster-based systems with strong semantics
(e.g., [67]).

What makes the enforcer unusual compared to the work just mentioned
is that, to tolerate faults (Byzantine or otherwise), the enforcer does not
need mechanism beyond the bunker: enforcer nodes do not need to know
which other nodes are currently up (in contrast to replicated state machine
solutions), and neither enforcer nodes nor enforcer clients try to protect
data or ensure its consistency (in contrast to the Byzantine quorum litera-
ture and cluster-based systems with strong semantics). �e reason that the
enforcer gets away with this simplicity is weak semantics. It stores only im-
mutable data, and the entire application is robust to lost data.

128



4.11 critique & reflections

We �rst critique DQE and re�ect on its ability to handle spam, then give
examples of where else DQE may apply, and �nally re�ect on the enforcer
as an independently interesting system that may be a useful building block
in other contexts.

DQE and spam. We have argued in this chapter that DQE can meet our
goal of controlling spam via a roughly fair allocation of human attention;
see §4.8 for a summary of the argument. At a high level, the way DQE is
supposed to work is that (1) the economic mechanism of quotas will arrive
at a proper allocation, and (2) a technical mechanism—the enforcer—will
ensure that this allocation mostly holds in practice.

�e principal critique of DQE is that the �rst part of this supposition,
the non-technical part, may be improbable. �e top-level challenge is adop-
tion: to be fully e�ective, DQE must be in use everywhere, and achiev-
ing ubiquitous adoption is a tall order. Second, it may be unreasonable to
suppose the existence of a small number of globally trusted quota alloca-
tors (though we discussed in §4.9 how such allocators might arise). Finally,
we may be underestimating the di�culty of a quota allocation policy that
meets the goal of reducing spam while leaving legitimate senders mostly
una�ected (though we discussed this topic in §4.7).

We are more con�dent, however, about the second part of the supposi-
tion, the technical part. Based on our work, we believe that an enforcer com-
prising several thousand dedicated, mutually untrusting hosts can handle
stamp queries at the volume of the world’s email. Such an infrastructure,
together with the other technical mechanisms in DQE, meets the design
goals in §4.2—and shows that large-scale quota enforcement is practical.
Indeed, the cost of the enforcer in hardware, single millions of dollars, is
low and could be shared among many organizations and email providers
that have an interest in reducing spam.

DQE and other applications. As Abadi et al. [1] note, the general ap-
proach of issuing and canceling stamps can apply to any computational ser-
vice. In particular, one could imagine using DQE to regulate consumption
of the resources of OpenDHT [130], Coral [55], or S3 [6], all of which are
distributed systems that are intended to have large clienteles.

�eenforcer. We believe that, apart from quotas, the enforcer is useful by
itself in other contexts. As discussed in §4.10.2, the various digital cash sys-

129



tems could use the enforcer as a hint to prevent intra-day double-spending.
Indeed, one of the authors of a recent e-cash proposal agrees that the en-
forcer could likely �ll that void (i.e., online prevention of cheating) in his
context [18, 79].

�e enforcer’s simplicity—particularly the minimal trust assumptions—
encourages our belief in its practicality, both in the spam context and in
others. Nevertheless, the enforcer was not an “easy problem”. �ough its
external structure is now spare, it is the end of a series of designs—and a
few implementations—that we tried. Its internal structure is, we believe,
of independent interest. �e enforcer is fault-tolerant but stores only one
copy (roughly) of each key-value pair, it introduces a novel data structure
that implements a dictionary interface, it avoids livelock (a problem that
we conjecture exists in many other distributed systems if they are over-
loaded), and it resists a range of attacks. More generally, we believe that
the enforcer is a novel design point: a set of nodes that implement a simple
storage abstraction but avoid neighbor maintenance, replica maintenance,
and mutual trust. And, the “price of distrust” in this system—in terms of
what extra mechanisms are required because of mutual distrust—is zero.

130



5
Comparisons & Connections

In abstract terms, speak-up and DQE are two very di�erent ways of allocat-
ing scarce resources. �eir side-by-side inclusion in this dissertation raises
several questions:

–– What other abstract approaches to resource allocation are there, and
what are the key di�erences and similarities among the various ap-
proaches?

–– Why have we applied speak-up to the problem of DDoS and DQE to
the problem of spam, rather than vice-versa?

–– What are the fundamental connections between speak-up and DQE?

�is chapter answers these questions in turn. To answer the �rst one, and to
develop an informal vocabulary for discussing the others, we now consider
a taxonomy of abstract resource allocation methods.

5.1 taxonomy

In any question of resource allocation, there is some set of scarce resources,
some set of requesters of those resources, and some entity—an allocator—
that decides which requests to ful�ll. �e entity’s decisions may be explicit
(e.g., “requester A gets 5 units”) or implicit (e.g., “the resources go to the one
who asks �rst”), and the entity may be the direct owner of the resources or a
delegate that controls them. �e taxonomy that we give in this section con-
cerns (1) how the entity makes its decisions and (2) when the requester may
consume the allocated resource. We will certainly not break new ground in
economics; rather, our purpose is to establish a simple framework for com-
paring many possible approaches, including DQE and speak-up.

131



Time of Consumption
Moment of Allocation Appointed Future Moment During Some Window

Ad
m
iss
io
n
M
et
ho

d First come, �rst served (∗) over-subscribed server free movie tickets free gi± certi�cates
Explicit, constant pricing highway tolls most sports tickets DQE, snail-mail stamps
Explicit, variable pricing grocery airfares stock options

Auction speak-up auction of any tickets auction of stock options
Fair allocations (∗) fair queuing graduation tickets disk quotas

Historical pro�ling (∗) restaurant seating club membership whitelisting
Blocking undesirables (∗) captchas club membership blacklisting

(∗) Clients must be reliably identi�able for the discipline to be e�ective.

Figure 5.1—Taxonomy of abstract methods for resource allocation, with examples for
each point. �e taxonomy has two axes: the admission discipline (le±) and the time at
which the resources are consumed, relative to when they are allocated (top).

Our taxonomy is depicted in Figure 5.1 and has two axes. �e �rst cov-
ers the actual admission rule, and the second concerns whether the allo-
cated resource is consumed by requesters at the moment of allocation, at
a speci�c point in the future, or at many possible points in the future. We
have no proof that this taxonomy is complete, but it seems to capture many
approaches used by computer systems and processes in “everyday life”. Our
elaboration of this taxonomy, below, will be abstract, but for each of the
categories, we will give examples, both technical and “real world”.

5.1.1 Axis 1: Admission Discipline

First come, �rst served. �e easiest allocation policy is simply to give the
resource to the requester that “gets there �rst”. Examples include an over-
subscribed Web server that does not aim for a fair allocation and someone
giving out free movie tickets to the �rst takers. When other disciplines re-
sult in over-subscription, they may wind up incorporating this one. For ex-
ample, if the allocator intends to charge a price but sets the price too low,
then demand will be too high, and the resource will be allocated to the �rst
requesters that pay.

Explicit, constant pricing. �e allocator charges requesters in some cur-
rency. Of course, the price decided by the allocator may result in under- or
over-subscription of the resource. In the latter case, some other discipline
is also in e�ect implicitly (such as �rst come, �rst served, as mentioned
above). One example in this category is consumer goods, sold at retail; in
these cases, stores charge �xed prices for items but may run out of the item
or be stuck with surplus. Other examples include highway tolls, snail-mail
postage, and a pairwise email postage system (§4.10.1) in which the price

132



to send email, in CPU cycles or money, is �xed. A �nal example is quota al-
location in DQE under the policy, discussed in §4.7, in which senders pay
a �xed price to the quota allocator for the right to send a certain number of
emails.

Explicit, variable pricing. �is discipline is similar to the previous one,
except that in this case the allocator adjusts the price frequently. “Every-
day life” examples include trading posts, airline fares, and bookies in Las
Vegas adjusting the price of a sports bet based on the existing “betting
market”. Technical examples include pairwise postage proposals for email
(see §4.10.1) in which recipients adjust the price of sending them email
based on how busy they are [50, 94].

Auction. Auctions have many incarnations (English auctions, Dutch auc-
tions, Vickrey auctions, etc.). �ey free the allocator from having to “guess”
or “estimate” a price because the auction mechanism �nds an appropriate
price. Two technical examples are as follows. First, recall that in one incar-
nation of speak-up (§3.4.3), the thinner uses a type of auction to decide
which request to admit. Second, one could imagine a pairwise postage pro-
posal for email in which recipients auction o� the right to interrupt them
(that is, the sender whose email gets through to the recipient is the one who
is willing to pay the most). “Everyday life” examples of auctions are many
(e.g., Treasury auctions to price new issues of U.S. government debt, selling
famous works of art, etc.).

Fair allocations. In this discipline, the allocator gives every requester a
“fair share” of the resources, meaning that if there are n requesters, each
one should be able to claim a fraction 1/n of the resources (under max-
min fairness, heavy requesters can get more than this fraction, by getting
the resources not claimed by light requesters). Technical examples include
Fair Queuing [42] and its many variants. An “everyday life” example is the
way that universities allocate tickets to their graduation ceremonies: every
student can claim several tickets.

Historical pro�ling. As mentioned in §3.9.2, pro�ling as a DDoS defense
gives service to “regulars”. Another technical example is whitelisting in the
case of spam (previous legitimate clients of a given human’s attention are al-
lowed to consume that person’s attention in the future). One “everyday life”
example is club membership: “last year’s” members typically have priority in
becoming members the following year. Another is restaurant seating when
the host chooses to give priority to regulars.

133



Blocking undesirables. As discussed in Chapter 1, §3.9.2, and §4.10.1, al-
locations in this category block “unwelcome” requests outright (e.g., capt-
chas [166] block requests from non-humans and spam �lters block email
that appears to be spam). Non-technical examples are many: admission to
nightclubs on a busy night, accepting papers to conferences, etc.

Observe that some of the disciplines require that clients or requests be
identi�able; if they are not, then the allocation method cannot work. �ese
disciplines are �rst come �rst served, fair allocations, historical pro�ling,
and blocking undesirables.

5.1.2 Axis 2: Permissible Consumption Times

�is axis is orthogonal to the one above: one can incorporate any of the
disciplines above into any of the approaches below.

During some window. We will call these approaches during-window ap-
proaches. Here, the allocator gives requesters a “right”, and that right is good
for a period of time. For example, under DQE, senders may mint a certain
number of stamps (i.e., may consume a certain amount of human atten-
tion) at any point during the day. Another technical example is disk quotas
for UNIX users. “Everyday life” examples include cellular telephone min-
utes, subway tokens (having purchased a token, a rider can use the token for
as long as the fare hasn’t increased), snail-mail postage stamps, gi± certi�-
cates, and stock options (because, having purchased the stock option, the
holder may convert it to the underlying equity at any time before the option
expires).

At an appointed future time. We will call these approaches appointed-
future approaches. Here, the allocator gives requesters the ability to con-
sume a resource at an appointed time. For example, tickets to sporting events
give the holder the right to attend at a speci�c time on a speci�c day. As
another “everyday life” example, dormitory assignments generally happen
before the academic year begins, but the assignment is good for a partic-
ular time (in this case, the following academic year). Technical examples
include situations in which using scarce computing resources (e.g., a high
performance cluster) requires an advance reservation for a particular time.

At the moment of allocation. We will call these approaches moment-of-
allocation approaches. �is case is similar to the one above, except that the
allocator is making its decisions for the current moment. “Everyday life”

134



examples include restaurant seating, paying a toll to enter a highway, and
situations in which a customer exchanges cash for ownership of a good.

Technical examples are as follows. First, consider speak-up: when the
server is overloaded, it simultaneously charges clients, makes its allocation
decisions, and ful�lls requests. Second, in capability systems (see §3.9.3),
clients use the requested capabilities in the near future. Also, consider how
providers like Gmail and Yahoo give out free email accounts: a±er having
decided that the client is acceptable (usually because the client correctly an-
swered a captcha), the provider immediately issues a new email account.
Last, consider pairwise postage for email (see §4.10.1) when senders incur
the cost in “real time”, for example, by paying CPU cycles.

5.2 reflections on the taxonomy

For each of the axes, we now discuss which scenarios call for which choices.

5.2.1 Axis 1 (Admission Discipline)

One of the main questions here is whether to charge requesters, that is
whether to use one of the pricing methods (constant, variable, or auction)
or whether to use one of the disciplines that requires identifying clients or
their requests. Which decision is appropriate of course depends on context.
Given the de�nition of the abstract problem in §1.1, and the speci�c instan-
tiations that we have addressed in this dissertation, identifying clients is not
reliable,1 so we turn to pricing methods. In other contexts, one might pre-
fer not to charge clients (e.g., if one is o�ering a “free” service and can �lter
out “bad” requests). On the other hand, in some contexts, charging clients
is obviously desirable (e.g., if one is selling a product).

5.2.2 Axis 2 (Permissible Consumption Times)

�e advantages of the during-window approaches are as follows. First, they
might be a natural �t, given the social context. For example, it would be
awkward to give a gi± certi�cate that denied its recipient control over when
to spend it. Second, these approaches o±en permit fungibility, because a
given requester’s right to claim future resources is o±en re�ected in a “ticket”
or “token” that the requester can transfer to another entity. �ird, these ap-

1We discuss this point in §1.2, Chapter 2, and Chapter 3.

135



proaches, being essentially options, give the requester more �exibility com-
pared to the other approaches.

�e advantages of appointed-future approaches are as follows. First,
there is no uncertainty about when the resource is consumed, so the alloca-
tor does not have to worry that too many “claims” or “rights to consume” are
outstanding. Second, separating consumption from allocation might be far
more convenient for both the allocator and requesters than decisions made
“in the heat of the moment”. For example, if the Red Sox were to sell tickets
to their World Series games right before the game started, the result would
be mayhem.

Moment-of-allocation approaches require less overhead so are appro-
priate when there is no need for the other two approaches. �e reason that
they require less overhead is that, with the other two approaches, the al-
locator must give a requester a token—a ticket, stamp, etc.—that is valid
in the future (either at a particular moment or for a period of time). Im-
plementing this token and ensuring that it is not counterfeit requires some
mechanism. For example, consider nightclubs: they take guests’ money and
then let them inside, whereas using advance tickets would require a ticket
o�ce. Moreover, moment-of-allocation approaches may be required if the
demand becomes manifest shortly before consumption occurs. For exam-
ple, if human Web users want access to a Web site right now, not in the
future, then the server has no choice but to allocate for the current mo-
ment.

5.2.3 Other Considerations

�ere are of course other considerations besides the ones above. For exam-
ple, with respect to the �rst axis, social convention may dictate which pric-
ing method—auction or constant pricing—is acceptable. Another example
is with respect to the second axis: if an allocator cannot make decisions
until all of the demand has become manifest (e.g., deciding which 1,000
people gain admission out of 10,000 people who have expressed interest),
then moment-of-allocation does not work.

5.3 our choices

In this section, we re�ect on why we chose (1) speak-up to defend against
denial-of-service (2) DQE to defend against spam, and (3) speak-up again
to defend the enforcer against resource exhaustion attacks (see §4.4.5).

136



Why speak-up for DDoS defense? In the taxonomy in §5.1, speak-up is
given by (auction, moment-of-allocation). We now explain why this design
point is appropriate for our context. Consider the second axis in the tax-
onomy. In our context, the server needs to allocate itself instantaneously;
nothing is gained by separating allocation and consumption. Now, con-
sider the admission discipline (axis 1). For this function, we require one of
the “pricing” methods because we presume that clients are not identi�able
(see §2.3). We chose auctions (as opposed to variable or constant prices) be-
cause they are a simple way to match the aggregate demand to the server’s
capacity. Of course, the preceding does not explain why we chose speak-up
out of all possible (auction, moment-of-allocation) defenses; for this rea-
soning, see §3.9.1.

Why DQE for spam defense? In the taxonomy in §5.1, DQE is given
by (constant pricing, during-window). For the �rst axis, we require some
pricing scheme because the other approaches do not meet our require-
ment from §1.2 of not examining the contents of messages. Of the pricing
schemes, we choose �xed per-email prices because it permits a simple ar-
gument that the total volume of spam would decrease to a manageable level
(see §4.7). However, other policies for axis 1 would also work; indeed, DQE
works with any quota allocation policy.

For axis 2, our reason for choosing during-window is as follows. Con-
sider the alternatives. First, appointed-future approaches do not apply be-
cause senders cannot predict exactly when they are going to send email. �e
second alternative is to have senders pay when they want to send email, cor-
responding to moment-of-allocation approaches. Yet, we already addressed
the disadvantages of senders incurring costs in real time; see §4.10.1. As
we argued in that section, senders buying stamps “in advance”—which is a
during-window approach—gives more �exibility.

Another option that might appear to be a moment-of-allocation ap-
proach is senders paying receivers in digital cash. However, this option is
actually a during-window approach because the digital cash is valid for a
some (possibly long) period of time. Indeed, because of this extended va-
lidity, digital cash schemes, like DQE, need to prevent double-spending.
�e enforcer is one way to do so; see §4.10.2.

Why speak-up to protect DQE’s enforcer? As discussed in §4.4.5, we
suggest defending the enforcer against resource exhaustion attacks by using
speak-up or a variant. Our reasons are as follows; we again argue in terms of

137



the taxonomy in §5.1. First, consider axis 1. �e discussion in §4.4.5 calls for
one of the pricing approaches because we presume that clients are not iden-
ti�able. Moreover, even if clients were identi�able, the distributed nature of
the enforcer would make it di�cult to apply a discipline that depends on
tracking how many requests each client sends to the enforcer in aggregate.

For axis 2, we call for a moment-of-allocation approach. �e reasons
are as follows. First, appointed-future approaches do not apply because
DQE clients do not know in advance the speci�c moments when they
need to contact the enforcer. Second, consider during-window approaches.
Here, some entity would have to allocate tokens—tickets or stamps or
certi�cates—giving DQE clients the right to make test and set requests.
Yet, what would prevent clients from reusing these tokens? �is problem is
the same as preventing stamp reuse for email. �us, one would need an-
other enforcer, and what would protect that enforcer against resource ex-
haustion attacks? To put this reasoning another way, a during-window ap-
proach would require a mechanism to prevent double-spending, and that
mechanism would tax precisely the resources that we are trying to defend.
For this reason, we must defend the enforcer with an approach in which
clients “pay” for service “directly” without intermediating tokens, tickets,
stamps, certi�cates, etc.

But then why use DQE at all? Given our argument that speak-up (or a
variant) is required to protect DQE’s enforcer, one might wonder, “Why
not cut out the middleman and use speak-up to defend against spam di-
rectly?” For example, email servers could require prospective senders to
attach dummy bytes to the end of messages. �e reason that we do not fa-
vor this approach is that it would be similar to receivers charging senders
pairwise in CPU cycles, the disadvantages of which we cover in §4.10.1. (As
a side point, our arguments do not rule out a scenario in which a quota al-
locator doles out certi�cates based on bandwidth payments from clients. In
that scenario, bandwidth, or some other resource, would be used twice—
once to procure the quota and once to protect the enforcer.)

5.4 connections

We now discuss the fundamental connection between DQE and speak-
up. More generally, we illustrate a connection between during-window ap-
proaches and moment-of-allocation approaches.

Any-time approaches require a mechanism that mediates between the

138



act of allocation and the act of consumption. �is mechanism can be to-
kens, tickets, stamps (in the case of DQE), certi�cates, signed attestations,
etc. Because requesters have latitude in when they spend these tokens—that
is, because the tokens are valid at many points in time—the system must
prevent double-spending. As examples, retail stores collect gi± certi�cates
a±er the customer spends them, and DQE’s enforcer controls stamp reuse.
If the scale of the system is limited, then tracking clients’ spending does not
require a separate infrastructure. For example, a “real world” store can keep
track of the gi± certi�cates that it issues, and an operating system can keep
track of its users’ disk quotas.

However, if the scale of the system is very large, as in the case of the
world’s email load, then a distributed system for preventing token reuse is
very likely required. Once such a system is called for, the resources of that
system must be allocated properly. And for this latter function, a moment-
of-allocation approach is required. Why? Because, as illustrated in the pre-
vious section, a during-window approach would reintroduce the problem:
it would require another set of tokens, which would require an infrastruc-
ture to prevent double-spending, which would have to be protected, etc.
(Appointed-future approaches do not apply because they would require
that participants know in advance when they need to make requests of the
distributed system.)

In summary, then, a during-window allocation method of su�cient
scale needs an enforcement mechanism, and such an enforcement mecha-
nism must protect its resources using a moment-of-allocation approach.
�is high-level relationship explains why DQE’s enforcer depends on
speak-up or something like it.

139



6
Critiques & Conclusion

A recapitulation of this dissertation’s narrative is as follows. We de�ned an
abstract problem, namely, good and bad clients making requests for some
scarce resource, with the good and bad requests indistinguishable. We ar-
gued that the abstract problem is motivated by criminals perpetrating at-
tacks that are hard to �lter. We advanced a philosophy to guide any solution
to the abstract problem, namely, that solutions should not try to di�erenti-
ate among clients and should instead aim to allocate the scarce resources in
proportion to clients’ numbers. We presented solutions to two instances of
the abstract problem and argued that they uphold the philosophy. Specif-
ically, we presented speak-up as a defense against DDoS and DQE as a
defense against spam. We justi�ed our choices of speak-up and DQE by
comparing them within the same framework. �is framework also allowed
us to articulate a fundamental connection between the two defenses or,
more accurately, between their general approaches.

* * *
�is narrative brings to mind two high-level critiques. (We critiqued speak-
up and DQE individually in §3.9 and §4.11, respectively.)

�e �rst critique is as follows: our philosophy says to avoid solutions
that examine the contents of requests because such heuristics err, yet any
allocation discipline can err. For example, under speak-up, a low-bandwidth
legitimate client may get less of the server than it demands; this shortfall is a
form of error. And under DQE, if the quota allocator sets the wrong price,
unsavory clients can purchase too many stamps. Moreover, both systems
permit some gaming (though, as we proved, only to a limited extent).

Our response to this �rst critique concerns the degree of the error. If
bad requests look exactly like good ones, then heuristics are no better than

140



random guessing and thus introduce a vast amount of error. In that case, the
only defenses that work are those based on over-provisioning or on charg-
ing clients (like speak-up and DQE). Of course, one might well ask whether
bad and good requests actually are hard to di�erentiate, which brings us to
the second critique.

�is next critique is about the abstract problem itself and about our
view of the present and the future. �e threat that this dissertation defends
against is one in which adversaries issue totally convincing, legitimate-
looking requests. Yet, what if this view is too pessimistic? Indeed, as we
discussed at the end of Chapter 3, today’s application-level attacks are prim-
itive. Perhaps tomorrow’s adversaries will be no more advanced than to-
day’s. Or perhaps the economics of the Internet underworld will shi± so
that spam and denial-of-service no longer a�ict the Internet.

Our response to this second critique is to ask: what if the pessimal future
that motivated DQE and speak-up does become fact? What if, as we suspect,
bad requests continue to evolve until they are indistinguishable from good
requests? What if spam and denial-of-service increase in frequency and in-
tensity? We need to be prepared for that world. In that world, the best that
we can hope for is rough proportionality: if 10% of the clients are bad, we
hope to limit them to 10% of the scarce resources.

�is ethos is appealing, for it is egalitarian. A seeming weakness is that
if 90% of the clients are bad, then they get 90% of the scarce resources. How-
ever, this fact is independent of our philosophy. Indeed, if the bad clients
outnumber the good ones ten to one, and the two populations are indistin-
guishable, the only way to ensure that all good clients get service is heavy
over-provisioning (so that the “slice” that the good clients can claim meets
their demand) together with proportional allocation (so that the bad clients
can’t deny the good ones even this “slice”).

6.1 looking ahead

Such predictions about the future as we make above invite questions about
how the dynamics between adversaries and “good guys” will evolve. For
example, even if we grant ourselves that future defenses need to strive for
rough proportionality, as argued just above, it does not follow that the par-
ticular required defenses will include DQE and speak-up: couldn’t the “good
guys” change the landscape so that some other proportional allocation de-
fense su�ces? We now discuss this question and others about the future.

141



Speak-up andDQE aremotivated by a speci�c threat. If future responses from
various “good guy” communities—academics, security professionals, law en-
forcement, etc.—mitigate that threat, are these two defenses still needed? We
�rst consider how the threat could be mitigated. For our current purposes,
the threat in §1.1 has three components: (1) adversaries issue legitimate-
looking requests; (2) the Internet’s notion of identity is fuzzy; and (3) adver-
saries use bots as a low-cost computing platform. It is of course impossible
to predict future solutions, but we believe that (1) is unavoidable (a smart
adversary will always be able to imitate a good client) whereas (2) and (3)
could be substantially mitigated by the community.

With respect to (2), changes to the Internet architecture could eliminate
address hijacking and the need for proxies and NATs (in fact, if all providers
applied today’s “best practices”, address hijacking would be more di�cult
than it is right now). For (3), the bot population could be curtailed substan-
tially by a combination of two thrusts. �e �rst is “botnet hunting”, which
law enforcement and other security professionals do today but which could
and would be ampli�ed if the political will were in place. �e second is to
continue the trend of so±ware architecture changes that make operating
systems and applications harder to compromise.

But would such responses eliminate the need for DQE and speak-up?
Our belief is that, regardless of these responses, DQE, or some other form of
email postage, would still be required. �e reason is that mitigating (2) and
(3) would not fundamentally restrict spammers from sending bulk email.
In this scenario, they might need to send email from their own computers
and to spend more on computing resources, but those changes are not the
kind of inherent restrictions that result from per-email costs.

Speak-up, in contrast, would likely not be needed to defend Web servers
against application-level DDoS. �e reason is that with (2) mitigated, the
server would be able to map each request to some client identi�er. �us,
when overloaded, the server could achieve a fair allocation explicitly, with-
out needing to use bandwidth payments as a proxy for identity.

However, speak-up or some other resource-based defense (see §3.9.1)
would still be needed in at least one context—defending a distributed re-
source like DQE’s enforcer (as discussed in §4.4.5 and §5.3). If each enforcer
node allocated itself “fairly” across all requesting clients but did not charge
clients, then an attacker could claim a piece of every enforcer node, result-
ing in a globally unfair allocation. In contrast, making clients “pay” for ser-
vice in some currency ensures that any client’s share of the total enforcer is
bounded by that client’s share of the total client currency.

142



Assuming that some proportional allocation defense is deployed and e�ective,
how are the adversaries likely to respond? If the author were in the adver-
sary’s position, he would attack speak-up and DQE in particular by trying to
amass as many resources as possible (Chapters 3 and 4 show that these sys-
tems resist many other attacks). More generally, if a proportional allocation
defense is deployed, then an attacker’s power is given by the number of hosts
that he controls, so the attacker’s response will be to try to acquire more
hosts. �us, attackers may concentrate less on cra±ing legitimate-looking
requests and even more on compromising machines.

And how will the “good guys” respond to those e�orts? �ey will respond
by trying to minimize the number of machines available to adversaries. As
mentioned above, they can do so via “botnet hunting” and architectural
changes to operating system and application so±ware. �eir e�orts will not
be perfect: even if they could eliminate compromised machines altogether,
adversaries could still use their own computers to mount attacks.

Given all of this back-and-forth, how can we argue that DQE and speak-up
will have a positive e�ect? We cannot predict the future. However, if the cur-
rent economics of computer crime—the cost to compromise a machine, the
pro�t from spamming, etc.—remain roughly the same, then we can in fact
make predictions about adversaries even if we cause them to change tactics.
For example, we showed in §4.7 that a per-email cost of f times the pro�t
per-email would limit validly stamped spam to a fraction 1/f of today’s
spam volume. Our only assumption in that (highly pessimistic) analysis is
that spammers are pro�t-maximizing. Under that assumption, DQE could
“disrupt the market” for spam or push spammers to new strategies, but their
total volume would still be limited to the 1/f fraction. (If spammers’ new
strategies actually allowed them to buy more stamps, then the new strate-
gies yield more pro�t than the old ones, contradicting our assumption that
spammers are currently following the optimal strategy.)

For speak-up, the case is less clear because we do not understand the
economics of DoS as clearly as the economics of email. However, we can
still consider how speak-up a�ects attackers’ costs. Recall that speak-up
forces attackers to acquire many more machines to conduct the same level
of service-denial as they can under the status quo (as stated in §3.2). �us,
the question becomes: how hard is it for an adversary to compromise or
control orders of magnitude more machines?

We believe that such compromises would in fact be costly for attackers,

143



if not downright crippling. Our reasons are twofold. First, compromising
machines is already a competitive activity; bot herders compete with each
other based on how many machines they control. �us, any given adver-
sary today already has an incentive to compromise as many machines as
he can. Second, compromising machines happens automatically (e.g., two
ways that worms spread are by scanning and as users open attachments
that email themselves to the users’ contact lists). �us, we can assume that
for any known exploit, all of the vulnerable machines are already compro-
mised (roughly speaking). �e implication is that compromising further
machines requires identifying further vulnerabilities. Yet, doing so cannot
be easy: if a vulnerability were easy to �nd, it would have been found al-
ready, given the competition mentioned above.

To sum up our predictions about speak-up: while we cannot predict
attackers’ next steps, we do know that speak-up has increased their costs—
and that the increase is likely to be signi�cant.

Of course, the economics of computer crime could change, causing adver-
saries to adopt new tactics—and this point is independent of whether DQE
and speak-up are adopted as defenses. For this reason, our re�ections above
should be recognized as speculations.

6.2 looking back

At the end of the day, we do not wish to sell short speak-up and DQE. Even
if the pessimal scenarios that motivated these systems do not materialize,
we believe that they are interesting for concrete technical reasons.

Speak-up introduces the idea that bandwidth could be a computational
currency and presents several mechanisms for charging in this currency.
�ese mechanisms are simple (both conceptually and in implementation),
resist gaming, �nd the correct price automatically without requiring ex-
plicit server-client communication, and likely apply to other currencies.
And, speak-up admits a practical implementation.

DQE illustrates that large-scale, distributed quota enforcement is prac-
tical, in part because its enforcer can handle the volume of the world’s
email with just several thousand machines. As we discussed at the end of
Chapter 4, DQE can apply to other contexts, and the enforcer by itself is
likely to be a useful building block when one needs a system to prevent
double-spending of “tokens”—stamps, digital coins, etc. �e enforcer’s spe-

144



ci�c techniques (summarized in §1.4 and §4.11, and at the beginning of
Chapter 4) are interesting. And, more generally, it occupies a novel design
point for distributed systems. Speci�cally, its weak semantics permit it to
shed many mechanisms—including neighbor maintenance, replica mainte-
nance, and heavyweight cryptography—that are required of other systems.
�e result is a system that can scale to a workload of hundreds of billions
of requests per day.

145



Appendix

A
Questions about Speak-up

a.1 the threat

How o±en do application-level attacks occur?
We do not know how o±en they occur. �ey seem to be less common than
other forms of DDoS but, according to anecdote, the trend is toward such
attacks. See §3.10.1 for more detail.

Why would an adversary favor this type of attack?
Such attacks are harder to �lter (because existing DDoS-prevention tools al-
ready have the ability to �lter other kinds of attacks). Moreover, application-
level attacks require less bandwidth (because the request rate needed to de-
plete an application-level resource is o±en far below what is needed to sat-
urate a server’s access link). �is latter characteristic would attract adver-
saries who have access to small botnets or who need to conserve resources,
and indeed there are reports that botnets are becoming smaller [17, 33, 35,
49, 78, 105, 125].

If such attacks are not yet common, why bother thinking about the defense?
We answer this question in §3.10.1 and Chapter 6. Brie�y, there are a few
reasons. First, the vulnerability still exists and thus could be exploited in the
future. Second, we believe that the trend is toward such attacks. Last, we
believe that it is important to be proactive, that is, to identify and defend
against weaknesses before they are exploited.

146



Howo±enare the attacking clients’ requests actually indistinguishable from
the legitimate clients’ requests?
We do not know. According to anecdote, many application-level attacks
are primitive and hence easily �ltered. However, as argued just above,
we believe that the trend is toward smarter attacks and smaller botnets.
See §3.10.1.

What makes you think that bad clients send requests at higher rates than
legitimate clients do?
If bad clients weren’t sending at higher rates, then, as long as their numbers
didn’t dominate the number of good clients, the server could restore service
to the good clients with modest over-provisioning. (If the number of bad
clients is vastly larger than the number of good clients, and requests from
the two populations are indistinguishable, then no defense works.)

Aren’t there millions of bots? Aren’t current DDoS attacks 10 Gbits/s? How
can speak-up possibly defend against that?
See §3.2, §3.3, and §3.10.2. In short: �rst, only a few botnets are of this size
and only a minuscule fraction of attacks are 10 Gbits/s (§3.10.2). Second,
speak-up (or any resource-based defense) works best when the adversarial
and good populations are roughly the same order of magnitude. As men-
tioned in the answer to the previous question, if the adversarial population
vastly outnumbers the good population, and if requests from the two pop-
ulations are indistinguishable, then no defense works.

Can speak-up defend tiny Web sites?
Yes and no. Speak-up helps no matter what. However, speak-up cannot
leave the legitimate clientele unharmed by an attack unless the legitimate
population and the attacking population are of the same order of magnitude
(or unless the server is highly over-provisioned). See §3.2.

a.2 the costs of speak-up

Doesn’t speak-up harm the network, a communal resource?
See §3.2, §3.5.1, and §3.11. Our brief answer is that speak-up introduces ex-
tra tra�c only when a server is attacked, that speak-up’s tra�c is congestion-
controlled, that the network core appears to be over-provisioned, and that
one should regard speak-up as simply a heavy user of the network. However,

147



as with any application (e.g., BitTorrent), there might be collateral damage
from the extra tra�c introduced by speak-up.

But bad guys won’t control congestion!
True. However, a bad client refusing to control congestion is carrying out a
link attack, which speak-up does not defend against (a bad client can carry
out such an attack today); see §3.3. And, if a bad client does �ood, the bad
client won’t get much more of the server than it would if it obeyed conges-
tion control (see §3.4.4). �us, speak-up does its job regardless of whether
bad clients control congestion.

What is the e�ect of speak-up when links are shared?
See §3.5.2.

Bandwidth is expensive, so why would a site want to use speak-up, given
that speak-up requires the site to allocate a lot of inbound bandwidth?
�e economics of every site are di�erent. For some sites, speak-up is cer-
tainly less economical than over-provisioning the server’s application-level
resources to handle every good and bad request. However, we believe that
there are other sites for which bandwidth is not terribly expensive; see con-
dition c2 in §3.3 and §3.5.3.

Doesn’t speak-up introduce opportunity costs for end-users?
Yes, but such costs are introduced by any network application and, indeed,
by any resource-based defense. See §3.2 and §3.11.

a.3 the general philosophy of speak-up

Won’t speak-up cause adversaries to acquire more resources (i.e., compro-
mised hosts)? For example, if speak-up has nulli�ed a 100-node botnet,
won’t an adversary just build a 10,000-node botnet? �us, won’t speak-up
in�ame the bot problem?
It is true that speak-up (or any resource-based defense) creates additional
incentive for adversaries to compromise machines. However, the cost to
doing so is likely quite high: we believe that many of the computers world-
wide that could be compromised cheaply already have been. �us, speak-up
increases the adversary’s costs, thereby resulting in a “higher fence”. We dis-
cuss this point in §3.2 and §6.1.

148



Doesn’t speak-up give ISPs an incentive to encourage botnets as a way to
increase the bandwidth demanded by good clients?
Such misalignment of incentives can happen in many commercial relation-
ships (e.g., investment managers who needlessly generate commissions),
but society relies on a combination of regulation, professional norms, and
reputation to limit harmful conduct.

If the problem is bots, then shouldn’t researchers address that mess instead
of encouraging more tra�c?
Our answer to this philosophical question is that cleaning up bots is crucial,
but even if bots are curtailed by orders of magnitude, a server with scarce
computational resources must still limit bots’ in�uence. Speak-up is a way
to do so.

a.4 alternate defenses

Instead of charging clients bandwidth and allocating the server in a way
that is roughly fair, why not allocate the server in a way that is explicitly
fair by giving every client the same piece?
Doing so requires that the server be able to identify its clients. However,
our threat model presumes that, given a request, the server cannot be sure
which client originated it. �e reasons for such uncertainty are address hi-
jacking, proxies, and NAT. For more detail, see §1.2, §2.3, §3.3, and page
26.

Why does speak-up make clients consume bandwidth? Why doesn’t speak-
up simply determine how much bandwidth each of its clients has (say, by
using a bandwidth-probing tool) and then allocate the server according to
this determination?
Doing so would again require that the server be able to identify its clients.
For example, if an adversary adopts several IP addresses, each of these ad-
dresses would appear to have the same bandwidth, thereby giving the ad-
versary a bandwidth advantage.

Instead of charging clients bandwidth, why not charge them CPU cycles?
Such a defense would be a reasonable alternative. For a detailed comparison
of bandwidth and CPU cycles as computational currencies, see §3.9.1.

149



Sites need to protect themselves against link attacks (and speak-up does not
serve this purpose, as you state in §3.3). So why not regard the application
as being connected to a virtual link, and use existing link defenses to protect
the application?
Depending on the scenario, this approach may work. However, deploying
link defenses o±en requires network modi�cation or help from ISPs; it may
be easier to deal with application-level attacks on one’s own. Also, many de-
fenses against link attacks work by detecting very high amounts of aggregate
tra�c, and an e�ective application-level attack needs far less bandwidth so
may not trigger these defenses. Finally, adversaries may move away from
link attacks, removing the need for link defenses.

How does speak-up compare to ... ?
Please see §3.9. In that section, we compare speak-up to many other de-
fenses.

a.5 details of the mechanism

Can bandwidth be faked? For example, can a client compress its bandwidth
payment to give the illusion that it is paying more bits? Or, could a client
get a proxy to pay bits on its behalf?
�e thinner counts the bits that arrive on behalf of a request, so a client con-
necting directly to the thinner cannot fake its bandwidth payment. And,
proxies generally relay what clients send, so if a client compresses its pay-
ment en route to the proxy, then the proxy will submit a compressed request
to the thinner.

By how much does speak-up increase bandwidth consumption?
Assume that the bad clients were �ooding independent of speak-up. In
the worst case, the good clients need to spend all of their bandwidth. In
this case, the extra bandwidth consumption is G/(gn), where G is the total
bandwidth of the good clients expressed in bits/s, g is the good clients’ le-
gitimate demand expressed in requests/s, and n is the size of a request, in
bits. However, if the good clients do not need to spend all of their band-
width, the bandwidth consumption may be far smaller; see the discussion
of “price” in §3.4.2.

Does speak-up allow bad clients to amplify their impact? For example, if
bad clients attack a site, they can trigger speak-up, causing the good clients

150



to pay bandwidth.Don’t adversaries therefore have a disproportionate abil-
ity to increase tra�c under speak-up?
At a high level, the answer is no. �e “price”—that is, the extra tra�c intro-
duced by speak-up—varies with the attack size. Roughly, if the bad clients
do not spend much bandwidth, then they do not make the good clients
spend much bandwidth. Like the previous question, this one is related to
the discussion of “price” in §3.4.2.

Can the bad clients amplify their impact by cycling through a population
of servers, driving each into overload but spending only a little bit of time
at each server?
No. �e purpose of speak-up is exactly to give clients service in proportion
to the bandwidth that they spend. �us, if the bad clients go from site to site,
never spending much bandwidth at any site, then they will not get much
service. Moreover, if they follow this pattern, then the price at each of the
sites will be low, so the good clients will not spend much bandwidth either.
If the bad clients do spend many bits and temporarily drive up the price at
a site, that price will subside once those bad clients leave.

a.6 attacks on the thinner

What happens if the thinner gets a lot of clients or connections at once? Can
it run out of �le descriptors?
Yes, but the implementation protects itself against this possibility. �e im-
plementation recycles �le descriptors that correspond to requests that have
not been “active” for some period. Moreover, we have con�gured the thin-
ner to allocate up to hundreds of thousands of �le descriptors; see §3.7.

Is it possible to build a production-quality thinner, given that the boxwould
have to sink bits at high rate and maintain a lot of state?
Yes, we believe it is possible. �e state for each request is very little—a TCP
control block, a counter for the number of bytes that have been paid on
behalf of that request, and a small amount of other per-request data. More-
over, even our unoptimized implementation can sink bits at a high rate;
see §3.8.1.

151



a.7 other questions

What happens if a server defended by speak-up experiences a �ash crowd,
that is, overload from legitimate clients?
Such a server will conduct a bandwidth auction, just as if it were under at-
tack. �ough this fact might seem distasteful, observe that if the server is
overloaded it still has to decide which requests to drop. Deciding based on
bandwidth is not necessarily worse than making random choices. We dis-
cuss this question in more detail when critiquing resource-based schemes
(see §3.9.1).

Does your implementation of speak-up work if the Web client does not run
JavaScript?
No. See §3.7.

Under speak-up, all clients are encouraged to send at high rates. So how
is one supposed to tell the di�erence between the legitimate clients and the
bots?
An attacked Web site cannot tell; indeed, part of the motivation for speak-
up is that it can be di�cult for Web sites to identify clients. However, the
ISP of a given bot should be able to tell, based on the computer’s tra�c
consumption: for a good client, most of the sites that it visits are not under
attack, whereas a bot consumes much more of its access link. �us, if it were
economically attractive for ISPs to identify and eliminate bots, they could
do so.

152



Appendix

B
Questions about DQE

b.1 general questions about dqe

I don’t get much spam anymore. Isn’t the spam problem solved?
No. It is true that the big email providers prevent a lot of spam from showing
up in their customers’ inboxes, but these providers have huge resources to
devote to the problem of identifying spam. Many people use regional ISPs
that do not have the resources to be as e�ective. Moreover, the big email
providers may be causing “false positives” (legitimate email in the spam
folder). Finally, even the big email service providers (ESPs) dislike spam,
suggesting that it is still a problem.

Do you think that it will ever be solved?
We do not believe that spam will stop being sent (we believe that it will al-
ways be easy for someone to harvest email addresses and send vast amounts
of email to them). However, we believe that the symptoms—wasted human
attention—can be mitigated. DQE is one way to do so.

Why do receivers test a stamp with the enforcer and then set it? Why
doesn’t the enforcer expose a test-and-set primitive?
�e enforcer is not trusted by the other participants in DQE (see §4.2.1).
�us, the test call must “test” the enforcer to verify that it really has seen
the stamp (see §4.3.2). Such veri�cation prevents the enforcer from labeling
valid email as spam. A test-and-set primitive would defeat this purpose
by presenting the “answer” along with the “test”. �e enforcer would then
be able to lie to receivers.

153



How is DQE’s enforcer di�erent from a DHT?
�e enforcer and DHTs each store key-value pairs, but the enforcer has a
very di�erent design. For example, the enforcer is allowed to “lose data”.
Also, the membership of the enforcer is �xed. See §4.10.3 for further com-
parison.

b.2 attacks on dqe

Can stamps be stolen? What is the e�ect of such the±?
Yes, our threat model presumes that stamps can be stolen from end-hosts
(though such the± would probably be di�cult in practice). Nevertheless, as
we show in §4.3.4 and §4.8, such the± is unlikely to thwart DQE.

What if an email server is compromised?
In this case, the adversary can steal stamps from email that passes through
the email server. However, if email servers were easy to compromise, we
would see much more spam coming from legitimate email servers. More-
over, the human owners of the email server would be able to detect that
such the± was occurring. See §4.3.4 for further discussion of this attack.

What prevents adversaries from counterfeiting stamps?
�e cryptography in stamps combined with the trust that everyone places
in the quota allocator. See §4.3.1. Brie�y, an adversary cannot forge a valid
certi�cate; doing so requires forging the quota allocator’s signature. Because
adversaries cannot forge certi�cates, they cannot forge stamps.

What happens if a stamp is reused in bulk, all at once? Will that overload
the enforcer and/or allow a lot of spam through?
We address this attack in §4.4.6.

What if the portal is adversarial? Can’t it endlessly give the wrong answer
to requesting clients?
Yes, but clients choose portals that they trust, and if the portal is adversarial,
the client will begin to suspect it; see §4.4.7. Also, recall that the portal can
only lie in one direction: it can only declare that a given stamp is fresh; it
cannot label a fresh stamp as reused.

154



b.3 allocation, deployment, & adoption

How are you going to get DQE adopted? Doesn’t it require everyone to start
using it before it is useful?
Adoption is de�nitely a challenge. However, DQE can be useful even before
everyone begins using it; see §4.9.

Howdoes quota allocationwork?What prevents the spammers fromgetting
large quotas? If quotas cost money, how can quotas be assigned equitably?
How do you know that the quotas would not harm legitimate senders?
We answer these questions when discussing quota allocation policy in §4.7.

Where does the quota allocator come from?What entity performs this func-
tion? How can you ensure that quota allocators are globally trusted? What
prevents the allocators from cheating?
We answer these questions in §4.9.

Are quotas assigned per-person, per-machine, or per-organization?
From a technical perspective, any of these options works. However, we imag-
ine that, for ease of deployment and management, organizations would ac-
quire quotas for their users and then dole out pieces of the quotas to them.

So human users have to understand stamps?
No. Email servers can handle all of the DQE-related work.

How do mailing lists work under DQE?
See §4.9.

b.4 micropayments & digital postage

What is the relationship between DQE and digital postage schemes?
DQE is a bankable postage [1] scheme. In §4.10.1, we discuss how DQE
relates to digital postage generally and bankable postage in particular.

But aren’t digital postage schemes known not to work?
No. �ere are two sets of issues raised by digital postage schemes. �e �rst
regards pricing. �e question here is how to impose a price on spammers
without a�ecting legitimate clients. However, refunding stamps can address
such concerns; see §4.7. �e second set of issues is technical: there has not

155



been a concrete proposal for a system that could prevent double-spending
at the volume of the world’s email (tens or hundreds of billions of emails
per day) in an online fashion. DQE �lls this void.

How does DQE relate to micropayments?
See §4.10.2. DQE implements a lightweight variant of micropayments. And,
as mentioned just above, the micropayment literature does not describe
a system that could handle millions of requests per second and prevent
double-spending of generic currency in an online fashion. (�e existing
micropayment systems can detect such double-spending either o�-line or
with vendor-speci�c currency.) �us, existing micropayment systems could
use DQE’s enforcer for this purpose.

b.5 alternatives

As an alternative to DQE, why not have ISPs rate-limit each of their users?
�is approach would impose a quota on users but would not require the
allocator and the enforcer.
Such an approach would still require a mechanism to make sure that ISPs
were not cheating. �at mechanism would need to keep track of every email
and would probably end up looking something like DQE’s enforcer.

Instead of DQE, why not have receivers charge CPU cycles pairwise?
See the postage section of §4.10.1.

Shouldn’t senders pay receivers directly instead of paying some third-party?
�is policy is reasonable. How should one implement it? As mentioned
in §4.10.2, current micropayment proposals do not scale to the volume of
the world’s email. As it happens, we think that DQE might be able to im-
plement this policy (receivers would exchange their stamps for money at
the end of the day or year). If we are right, then DQE is agnostic to whether
senders pay receivers or a third party.

Why not defend against spam using legal means?
One can certainly do so. However, the current volume of spam is an indi-
cation that legal strategies are not enough on their own. Our interest is in
�nding a technical solution that works independent of the legal system.

156



What about controlling spam by ... ?
Please see §4.10. In that section, we survey many defenses and compare
DQE to them.

157



Appendix

C
Address Hijacking

In this appendix, we describe how an adversary can temporarily adopt IP
addresses that it does not own. �e attack can take various forms.

Spurious BGP Advertisements

An attacker can issue spurious Border Gateway Protocol (BGP) advertise-
ments, thereby declaring to the Internet’s routing infrastructure that the
attacker owns a block of IP addresses to which he is not entitled. �e re-
sult is that the attacker may now be reachable at potentially millions of
IP addresses. �is attack works because many ISPs (a) accept BGP routes
without validating their provenance and (b) propagate these routes to other
ISPs [52]. Such spurious adoption of IP addresses has been observed be-
fore [23] and correlated with spam transmissions [126].

Stealing from the Local Subnet

A host can steal IP addresses from its subnet [51]; this attack is particularly
useful if the thieving host is a bot in a sparsely populated subnet. �e attack
works as follows:

–– �e thieving host, H, cycles through the IP addresses in the subnet.
For each IP addressX,H broadcasts an ARP (Address Resolution Pro-
tocol) request for X.

–– If H does not receive a reply to this ARP, H infers (assumes) that X is
currently unused. At this point, H undertakes to steal X, using one of
two methods:

158



∗ H sends packets to remote destinations, and the packets have
source IP address X. Any reply packet will be addressed to X.
When these reply packets arrive at the subnet, the router in front
of the subnet will issue an ARP request for X. H simply responds
to this request, declaring to the subnet that it is reachable at IP
address X.
∗ Another option is for H to preempt the process above by broad-

casting an ARP reply associating X with H’s hardware address.
�e local router now believes that H is reachable at IP address X.
At this point, H can place source IP address X in its outbound
packets and receive replies that are sent to X.

Of course, if the router in front of the subnet is properly con�gured, this
attack is precluded, but not all routers are properly con�gured.

Stealing from Remote Networks

A host can adopt IP addresses from another network, assuming that the
adversary controls hosts in two networks. �e goal of this attack is to have a
high-bandwidth host (say, one that is owned by the attacker) appear to have
many IP addresses (say, that were harvested from bots on low-bandwidth
dial-up connections). �e attack works as follows:1

–– �e high-bandwidth, thieving host, H, sends packets with source IP
address X; this time, X is the IP address of, for example, a bot with
low bandwidth.

–– Replies to this packet will go to the bot (these replies, in the case of
TCP tra�c, will usually be ACKs of small packet size).

–– To complete the attack, the bot sends the ACKs to the high-bandwidth
host, at which point it has become reachable at IP address X.

In fact, H could combine this attack with the previous one, as follows. �e
bot could steal X from its subnet, using the previous attack. �en, H and
the bot would execute the attack just described.

1Nick Feamster told me about this attack and is my source for it.

159



Appendix

D
Bounding Total Stamp Reuse

Our aim is to show that, with what is essentially certainty, the actual total
stamp use in DQE is close to the expected total stamp use, regardless of
which subset of np nodes fails. To establish this result, we now prove �e-
orem 4.2 from §4.4.2:

�eorem 4.2. Let K be the number of stamps that are active in a given day.
If K > (6n2 + 300n)/ε2, then, with probability at least 1− e−100, there is no
subset of size np whose failure leads to more than (1 + ε) times the expected
total use across all stamps.

Proof: To establish the theorem, we will �rst use a Cherno� bound to show
that, for a given set of np nodes that fail, the probability is very small that
the actual use across all stamps is more than (1 + ε) times the expected use
across all stamps. We will then use a union bound to show that, out of all( n
np

)
subsets of size np, the probability is still small that any subset’s failure

would result in signi�cant deviation.
For each stamp i ∈ {1, 2, . . . ,K}, let Xi be a random variable equal

to the number of uses of the stamp. Each Xi takes a value in [1, n ] (re-
call that the worst case is a stamp being reused at each portal). Also, from
�eorem 4.1 in §4.4.2, each Xi has mean µ < 1/(1 − p)2 + p, assuming
r = 1 + log1/p n.

Now, �x a subset of np nodes that have failed. Once this subset is cho-
sen, each of the Xi is independent. �e reason is that Xi depends only on
the assigned nodes for stamp i (see §4.4.2) and that stamps choose their as-
signed nodes independently (see §4.4.1). �e total use across allK stamps is

160



∑K
i=1 Xi (which has mean Kµ), and this sum is what we are trying to bound.
For each Xi, de�ne a new random variable Yi = Xi/n. Each of the Yi is

independent and take values in [1/n , 1], so we can apply a Cherno� bound
to
∑K

i=1 Yi to show that this sum does not deviate from its mean, Kµ/n, by
more than (1 + ε):

Pr

(
K∑
i=1

Xi > Kµ(1 + ε)

)
= Pr

(
K∑
i=1

Yi >
Kµ
n

(1 + ε)

)
(d.1)

< exp
(
−ε2Kµ

3n

)
. (d.2)

�e justi�cation for applying this inequality is, �rst, a Cherno�-Hoe�ding
bound on Bernoulli random variables that is stated in [8]. Second, we can
apply such bounds to random variables with arbitrary distributions over
[0, 1], not just to Bernoulli random variables (see [110, Problem 4.7]).

Now, we consider the probability that any subset of size np deviates as
above. Let T be the event “there exist one or more subsets of size np whose
failure would produce more than (1 + ε) times the total expected stamp
use”. T is the union of

( n
np

)
di�erent events, one for each subset; each event

has probability bounded as above. Applying the union bound,1 we get:

Pr(T) <

(
n
np

)
exp

(
−ε2Kµ

3n

)
<

(
ne
np

)np

exp
(
−ε2Kµ

3n

)
(from Stirling’s approximation)

= exp
(
np + np ln(1/p)− ε2Kµ

3n

)
< exp

(
np + np(1/p)− ε2Kµ

3n

)
(because ln x < x for all x)

< exp
(

2n− ε2 K
3n

)
(because p < 1 and µ > 1).

If we take K > (6n2 + 300n)/ε2, then we get:

Pr(T) < exp (−100) ,

so the probability that no subset deviates is greater than 1−e−100, as claimed.

1�e union bound applies the fact that the probability of the union of a group of events is no greater
than the sum of the probabilities of the individual events. In this case, each of the events is of the
form, “the failure of subset 243 causes more than ε deviation from the expected stamp use”.

161



Appendix

E
Calculations for Enforcer

Experiments

�is appendix gives the details of two calculations that were mentioned in
the evaluation of the enforcer. In §e.1, we analyze the “crashed” experiment
of §4.6.2 (see page 107). In §e.2, we calculate the average number of RPCs
induced by a test for the 32-node experiments of §4.6.4 (see page 112).

e.1 expectation in “crashed” experiment

In this section, we derive an exact expression for expected stamp use in
the “crashed” experiment in §4.6.2. (�e expression is stated in footnote 8
of §4.6.2, on page 107.) Recall from that section that n is the number of
nodes in the system, p is the probability a machine is “bad” (i.e., does not
respond to queries), m = n(1 − p) is the number of “up” or “good” ma-
chines, stamps are queried 32 times, and r, the replication factor, is 3.

Claim e.1 �e expected uses per stamp in the “crashed” experiment is:

(1− p)3(1) + 3p2(1− p)α + 3p(1− p)2β + p3m

(
1−

(
m− 1
m

)32
)

,

where α =
m∑
i=1

i
(

2
3

)i−1 1
m

(
1 +

m− i
3

)
and

β =
m−1∑
i=1

i
(

1
3

)i−1 m− i
m(m− 1)

(
2 +

2
3
(m− i− 1)

)
.

162



Proof: We consider 4 cases: none of a stamp’s 3 assigned nodes is good; 1 is
good; 2 are good; and all 3 are good.

Let U(s) be the number of times a stamp s is used. We calculate the
expected value of U(s) in each of the four cases. �e �rst case is trivial:
if all of the assigned nodes for s are good (which occurs with probability
(1− p)3), the stamp will be used exactly once.

Next, to determine E[U] for stamp with no good assigned nodes (proba-
bility p3), we recall the facts of the experiment: stamps are queried 32 times
at random portals, and once a stamp has been set at a portal, no more
reuses of the stamp will occur at that portal. �us, the expected number of
times that s will be used, if none of its assigned nodes is good, is the ex-
pected number of distinct bins (out of m) that 32 random balls will cover.
Since the probability that a bin isn’t covered is

(m−1
m

)32, the expected value
of U(s) in this case is:

m

(
1−

(
m− 1
m

)32
)

.

We now compute the expected number of stamp uses for stamps with
one or two good assigned nodes. In either case:

E[U] = 1 · Pr (exactly 1 use) + 2 · Pr (exactly 2 uses) + · · ·

For stamps with one good assigned node (probability (1 − p)p2) there
are two ways for the stamp to be used exactly once: either, with probability
1
m , the stamp is test and then set at the one good assigned node, or, with
probability

(m−1
m

) 1
3 , the put generated by the set is sent to the good as-

signed node. (�e latter probability is the product of the probabilities that
the test and set are sent to a node other than the good assigned node and
that the resulting put is sent to the good assigned node.) �us,

Pr (exactly 1 use) =
1
m

+

(
m− 1
m

)
1
3

.

If the stamp is used exactly twice, then the stamp was not stored at its good
assigned node on �rst use; this occurs with probability

(m−1
m

) 2
3 . To calculate

the probability that the second use is the last use, we apply the same logic
as in the exactly 1 use case. Either, with probability 1

m−1 , the stamp is test
and set at the good assigned node (m − 1 because there has already been
one use, so one of the m nodes already stores the stamp, and thus a test at
that node would not have resulted in this second use), or, with probability

163



(m−2
m−1

) 1
3 , the put generated by the set is sent to the good assigned node.

�us,

Pr (exactly 2 uses) =

(
m− 1
m

)
2
3

[
1

m− 1
+

(
m− 2
m− 1

)
1
3

]
.

By the same logic, a third use only happens if the �rst and second uses do
not store the stamp on the good node, and the third use is the last use if it
results in the stamp being stored on its good assigned node:

Pr (exactly 3 uses) =

(
m− 1
m

)
2
3

(
m− 2
m− 1

)
2
3

[
1

m− 2
+

(
m− 3
m− 2

)
1
3

]
.

A pattern emerges; cancellation of terms yields an expression for the general
case:

Pr(exactly i uses) =

(
2
3

)i−1 1
m

(
1 +

m− i
3

)
.

�us, we have an expression for the expected number of uses for stamps
with one good node:

E1
def
= E[U | one assigned node is good]

=
m∑
i=1

i
(

2
3

)i−1 1
m

(
1 +

m− i
3

)
. (e.1)

A similar argument applies to stamps with two good nodes (probability
(1− p)2p), except we begin with

Pr (exactly 1 use) =
2
m

+

(
m− 2
m

)
2
3

.

�e 2/m term replaces 1/m because a test and set to either of the (now
two) good assigned nodes will result in exactly one use, and 2/3 replaces
1/3 because the set’s put now has a 2/3 chance of reaching a good assigned
node.

To get Pr (exactly 2 uses), we follow similar logic as before. �e �rst use
is not the last with probability

(m−2
m

) 1
3 , because the stamp is set to a non-

assigned node with probability (m − 2)/m and put to a bad node with
probability 1/3. �en, the second use is the last with probability 2

m−1 +(m−3
m−1

) 2
3 , and

Pr (exactly 2 uses) =

(
m− 2
m

)
1
3

[
2

m− 1
+

(
m− 3
m− 1

)
2
3

]
.

164



Continuing,

Pr (exactly 3 uses) =

(
m− 2
m

)
1
3

(
m− 3
m− 1

)
1
3

[
2

m− 2
+

(
m− 4
m− 2

)
2
3

]
.

A pattern again emerges, and cancellation gives us

Pr(exactly i uses) =

(
1
3

)i−1 m− i
m(m− i)

(
2 +

2
3
(m− i− 1)

)
.

�us, we have an expression for the expected number of uses for a stamp
that has exactly two good assigned nodes:

E2
def
= E[U | two assigned nodes are good]

=
m−1∑
i=1

i
(

1
3

)i−1 m− i
m(m− 1)

(
2 +

2
3
(m− i− 1)

)
(e.2)

Note that for equations e.1 and e.2, the summation begins with the �rst use
(i = 1) and ends with the stamp being on as many nodes as possible (i = m
or i = m− 1).

Letting α = E1 (from equation e.1) and β = E2 (from equation e.2), we
establish the claim.

e.2 average number of rpcs per test

In §4.6.4, on page 112, we rely on a calculation of how many RPCs are in-
duced per test in the 32-node enforcer experiments. We now give the de-
tails of that calculation.

Claim e.2 In those experiments, the average number of RPCs per test is
9.95.

Proof:Recall from §4.6.4 that the 32-node enforcer is con�gured with repli-
cation factor r = 5. On receiving a fresh test, the portal must contact all
5 assigned nodes for the stamp. With probability 5/32, the portal is an as-
signed node for the stamp, and one of the gets will be local. �us, we expect
a fresh test to generate 5

32 ·4+ 27
32 ·5 = 4.84 get requests and get responses.

(Note that a request and a response both cause the CPU to do roughly the
same amount of work, and thus an RPC response counts as an RPC in our
calculations.) A fresh test will also be followed by a set that will in turn
cause both a put and a put response with probability 31/32 = 0.97. (With

165



# RPCs from # RPCs from
RPC Type fresh test reused test Average

test 1.0 1.0 1.0
get 4.84 2.64 3.74
get resp. 4.84 2.64 3.74
set 1.0 0 0.5
put 0.97 0 0.485
put resp. 0.97 0 0.485

Total RPCs/test 9.95

Table e.1—Number of RPCs of each type generated by fresh and reused tests. To cal-
culate the average number of RPCs of each type (last column), we assume that half of the
tests are fresh and half are reused.

probability 1/32, the portal is one of the assigned nodes and chooses itself
as the node to put to, generating no remote put.)

A reused test generates no subsequent set, put request, or put re-
sponse. In addition, for reused tests, the number of induced gets is less
than in the fresh test case: as soon as a portal receives a “found” response,
it will not issue any more gets. �e exact expectation of the number of
gets caused by a reused test, 2.64, is established by Claim e.3, below.

�e types and quantities of RPCs generated are summarized in Table e.1;
the average number of RPCs generated per test assumes that 50% of tests
are fresh and 50% are reused, as in the experiment from §4.6.4. �us, the
expected number of RPCs generated by a single test is:

1.0 +
1
2

[(
5

32
· 4 +

27
32
· 5
)

+ 2.64
]

+
1
2

[(
5

32
· 4 +

27
32
· 5
)

+ 2.64
]

+
1
2

[
1 +

31
32

+
31
32

]
= 9.95.

Claim e.3 A reused test generates 2.64 gets in expectation.

Proof:�e number of gets generated by a test for a reused stamp depends
on the circumstances of the stamp’s original set: did the set occur at an
assigned node, and if so, did it induce a remote put? Note that, for any

166



Event Pr(Ai) stamp originally set at . . .

A1 27/32 . . . a non-assigned node
A2 1/32 . . . an assigned node, no further puts
A3 4/32 . . . an assigned node, 1 additional put

Table e.2—Possible set circumstances.

Event stamp queried (tested) at . . .

B1 . . . a node storing the stamp
B2 . . . an assigned node not storing the stamp
B3 . . . a non-assigned node not storing the stamp

Table e.3—Possible reused test circumstances.

stamp, 27 of the 32 enforcer nodes will not be assigned nodes. �us, with
probability 27

32 , a set will be to a non-assigned node, and the stamp will be
stored at both an assigned node and a non-assigned node (event A1). If the
set occurs at an assigned node (with probability 5

32 ), then 1
5 of the time the

node will choose itself as the recipient of the put (event A2, with overall
probability 1

5 ·
5

32 = 1
32 ), and the stamp will only be stored at that single,

assigned node; 4
5 of the time, the node will choose another assigned node

(event A3, with overall probability 4
5 ·

5
32 = 4

32 ), and the stamp will be stored
at two assigned nodes. We summarize the three possible circumstances in
Table e.2. Note that the events Ai partition their sample space.

�e number of gets caused by a test for a reused stamp also depends
on the circumstances of the test: is the queried node storing the stamp, and
if not, is the node one of the stamp’s assigned nodes? �ere are again three
possible circumstances: the test is sent to some node storing the stamp
(event B1); the test is sent to an assigned node not storing the stamp (event
B2); the test is sent to a non-assigned node not storing the stamp (eventB3).
�ese events are summarized in Table e.3; they partition their sample space
as well.

Now, letC(Ai,Bj) count the number of get RPCs that occur when events
Ai and Bj are true. Values of C(Ai,Bj) are easy to determine. First consider
event B1: the test is sent to a node already storing the stamp. In this case,
there will be no remote gets regardless of the original set’s results.

Next, consider event B2: the test is sent to an assigned node not storing
the stamp; now, events A1 and A2 both cause a single assigned node to store
the stamp, and thus, in either case, we expect the portal to send 2 (of r−1 =

167



C(Ai,Bj) A1 A2 A3
B1 0 0 0
B2 2.5 2.5 (1+2/3)
B3 3 3 2

Table e.4—Values of C(Ai,Bj), the expected number of RPCs generated by a test when
Ai and Bj are true.

Pr(Bj | Ai) A1 A2 A3
B1 2/32 1/32 2/32
B2 4/32 4/32 3/32
B3 26/32 27/32 27/32

Table e.5—Conditional probabilities Pr(Bj | Ai).

4 possible) gets. However, event A3 causes the stamp to be stored on two
assigned nodes, and in that case, we expect the portal to send

( 1
2

)
· 1 +(

1− 1
2

) ( 2
3

)
· 2 +

(
1− 1

2

) (
1− 2

3

)
(1) · 3 = 1 + 2

3 gets.
Finally, consider event B3: the test is set to a non-assigned node not

storing the stamp. If the stamp is stored on a single assigned node (events
A1, A2), we expect the portal to send 3 (of 5 possible) gets; if the stamp is
stored on two assigned nodes (A3), we expect the portal to send

( 2
5

)
· 1 +(

1− 2
5

) ( 2
4

)
·2+

(
1− 2

5

) (
1− 2

4

) ( 2
3

)
·3+

(
1− 2

5

) (
1− 2

4

) (
1− 2

3

)
(1)·4 =

2 gets. We summarize the values of C(Ai,Bj) in Table e.4.
Now we can construct an expression for the expected number of RPCs

generated by a reused test, which we call C:

C =
3∑

j=1

3∑
i=1

C(Ai,Bj) · Pr(Ai ∧ Bj). (e.3)

To calculate this expression, we use Pr(Ai ∧ Bj) = Pr(Bj | Ai) · Pr(Ai). We
already calculated the value of each Pr(Ai) at the beginning of this proof,
so we only need to calculate each Pr(Bj | Ai). We begin by considering
the stamps originally set at a non-assigned node (event A1), which are
now stored at one assigned node and one non-assigned node. Given event
A1, there are 2 nodes storing the stamp, 4 assigned nodes not storing the
stamp, and 26 non-assigned nodes not storing the stamp. �e probabilities
of sending a test to nodes in these three classes—which correspond to
events B1, B2, and B3, respectively—are simply 2/32, 4/32, and 26/32. �e
same method can be used to �nd the conditional probabilities given A2 and
A3; we present these values in Table e.5.

168



Combining the values of C(Ai,Bj) with the joint probabilities, we com-
pute, from equation (e.3), C = 2.64.

169



Appendix

F
Revisiting the Enforcer’s Design

(�is appendix is an addendum to the submitted version of the dissertation.)

In §4.4.3, we described nodes’ key-value storage: an index in RAM, with the
actual keys and values on the disk. As mentioned in that section, we chose
this design over the default approach of storing keys and values in RAM
because we wanted to conserve RAM.

In this appendix, we revisit that choice.
First, we perform a detailed comparison of our design to the default

(§f.1). Our main point of comparison will be hardware costs. Second, we
brie�y mention an alternate design for the enforcer: storing all keys and
values in �ash memory (§f.2).

f.1 current design compared to default

�e default of storing keys and values in RAM wastes RAM. For this reason,
our hypothetical alternative actually uses a modi�cation of this default. We
assume that nodes maintain only the values, and not the keys, in a “map” in
RAM. In this hypothetical, a request of put(k, v) causes a node to store v at
a location in the map given by k. On a request of get(k), a node performs
a lookup in the map for the key k. If the lookup returns multiple candi-
date values, the node applies hash to each candidate to determine which
matches k. We call this modi�cation the all-in-ram design. We call the
current design, which is described in §4.4.3, the index-in-ram design.

In the rest of this section, we �rst perform a back-of-the-envelope cal-
culation of the total RAM and total disk cost in the two designs (§f.1.1).
We then consider the cost of processors (§f.1.2) and then compare the to-

170



tal costs (§f.1.3). �e key parameters are two ratios: (1) the ratio of the rate
of daily spam to the rate of non-spam (currently roughly 3:1, as mentioned
in §4.6.5); and (2) the ratio of the cost per disk to the cost of one gigabyte
of RAM. �e intuition is that if the rate of non-spam is high, then the sets
of legitimate stamps consume much RAM, and it might be more e�cient
to use the index. If the rate of spam is high, then not much RAM will be
consumed, and the enforcer can save disk accesses by using all-in-ram
instead of index-in-ram.

f.1.1 RAM and Disk Costs

Let φf be the number of fresh, legitimately stamped emails sent per day.
Also, as discussed in §4.4.5 (page 100), a spam email with a reused stamp
has the same e�ect on the enforcer as a spurious test request. For this rea-
son, our calculations here do not incorporate the number of daily spams
explicitly. Instead, we represent “adversarial activity” with a variable φa, de-
�ned as the number of spurious test or set requests that adversaries can
generate each day. �en, the analysis is una�ected by any choice by adver-
saries about whether to send spams, spurious tests, spurious sets, or a
combination of the three.

We �rst consider all-in-ram. We begin with set requests. Each of the
φf daily legitimately stamped emails induces a set request. And, adversaries
can issue φa spurious set requests. All of these set requests consume RAM.
test requests consume neither disk accesses nor space in RAM.1 �ey do
cost processor cycles, which we consider below.

We can calculate the RAM cost of all-in-ram as follows. Each set
request induces two put requests (see Figure 4.4 on page 89 in §4.4.1). Each
put request consumes ∼24 bytes of RAM (20 bytes for the value and ∼4
bytes of data structure overhead). Each node must store puts for two days.
�us, the total RAM required by the enforcer to handle two days’ worth of
set requests is about 24 · 2 · 2 · (φf + φa) bytes, and the total dollar cost of
RAM is

96
(
φf + φa

)
cR

230 , (f.1)

where cR is the cost in dollars of 1 GByte of RAM.
We now consider the RAM and disk cost of index-in-ram. Under this

design, adversaries could put all of their “�repower” to work exhausting

1Note that, under all-in-ram, each node needs a single disk for logging and crash recovery. We
account for this cost below, in §f.1.2.

171



RAM or exhausting the disk bandwidth. �e enforcer must be provisioned
for both possibilities; otherwise, its resources could be exhausted.

�e dollar cost of index-in-ram is as follows. We begin with RAM.
�ere can be up to φa + φf set requests per day. In this case, each put
request costs only 5.5 bytes of RAM, as discussed in §4.4.3. �us, the en-
forcer’s dollar cost from RAM is 5.5 · 2 · 2 · (φf + φa) · cR/230. We now
consider the disk cost. Recall that tests for fresh stamps almost never in-
duce a disk access. �us, the disk cost is driven only by the number of
spams sent per day or, equivalently, by the number of spurious “reused”
test requests issued by adversaries. �ere can be up to φa spurious test
requests per day. We assume that one disk can handle 320 requests per
second (see §4.6.3). With 86,400 seconds in the day, the enforcer needs
φa/(320 · 86400) = φa/(2.8 · 107) disks. Its total dollar cost for RAM and
disk is

22
(
φf + φa

)
cR

230 +
φa · cD

2.8 · 107 , (f.2)

where cD is the cost in dollars of a single disk.

f.1.2 Adding Processor Costs

Processor costs are driven by two factors. First, there must be enough pro-
cessors to handle all of the RPCs; for details of how processors bottleneck
the enforcer’s ability to process RPCs, see §4.6.3, page 109 and §4.6.4, page
110. Second, the total RAM and disk calculated above must be divided over
some number of machines, each of which needs a processor.

To account for the �rst factor, we assume that a node can process 40,000
RPCs/second (see the sections and pages just referenced). �en, over a
whole day, a node can process 40, 000 · 86, 400 = 3.5 · 109 RPCs. We now
estimate how many RPCs the enforcer must handle, for r = 5. Each of the
φf legitimate emails generates 3 RPCs for sets (the set, 1 put request, and
1 put response) and 11 RPCs for tests (�ve get requests, �ve get re-
sponses, plus the test). Each of the φa adversarial requests generates, in
the worst case, 11 RPCs also. For more detail on this reasoning, see §4.6.4,
page 112 and Appendix e.2. �us, the enforcer needs a number of proces-
sors that is at least

14φf + 11φa

3.5 · 109 . (f.3)

To account for the second factor, we note that the enforcer also needs
enough machines to house all of the RAM and disks. Let nR equal the num-
ber of GBytes of RAM per machine, and let nD equal the number of disks

172



per machine. Appropriate values for these variables depend on which de-
sign we are considering.

Taking both factors together, the enforcer needs, for all-in-ram, a
number of processors equal to

max

(
14φf + 11φa

3.5 · 109 ,
96
(
φf + φa

)
230 · nR

)
. (f.4)

For index-in-ram, the calculation is similar, except that we need to incor-
porate a term that accounts for the fact that processors are needed to drive
the disks:

max

(
14φf + 11φa

3.5 · 109 ,
22
(
φf + φa

)
230 · nR

,
φa

2.8 · 107 · nD

)
. (f.5)

We can now account for the cost of processors, disk, and RAM under
the two alternatives. For all-in-ram, we need to set nR so that the two
terms in (f.4) are equal; otherwise, processors or RAM will be wasted. �e
exact value of nR depends on the ratio φf /φa, but the range is between 22
and 29 GBytes. By choice of nR, we eliminate the max operator in (f.4).
Letting cP be the cost of an appropriate processor, we get that the total cost
of all-in-ram is

96
(
φf + φa

)
cR

230 +

(
14φf + 11φa

)
(cP + cD)

3.5 · 109 . (f.6)

�e cD term enters because each machine in the enforcer needs a disk for
logging and crash recovery, as mentioned in footnote 1 in §f.1.1.

For index-in-ram, we again eliminate nR by setting the �rst two terms
in (f.5) equal to each other. �e resulting value of nR is between 5 and 7
GBytes. We can do likewise to eliminate nD in (f.5). We get that nD could
be as low as 8 (for φa = 3φf , corresponding to the 3:1 ratio of spam to
legitimate email) or as high as 11 (for φa � φf ). �ese values of nD are
quite high, so in practice we might be forced to use a lower value for nD,
meaning that the enforcer would have to waste processors. However, for
simplicity, we assume that nD can be as high as necessary, which allows us
to eliminate the max operator in (f.5). �e total cost of index-in-ram is

22
(
φf + φa

)
cR

230 +
φa · cD

2.8 · 107 +

(
14φf + 11φa

)
cP

3.5 · 109 . (f.7)

173



f.1.3 Comparison

We can now determine which of all-in-ram and index-in-ram is
cheaper by comparing (f.6) and (f.7). Rearranging and comparing those
two expressions, we get that (f.6), the dollar cost of all-in-ram, is smaller
when (

φf

φa
+ 1
)(

cR
cD

+ 0.058
)
< 0.53 (f.8)

Today, cR ≈ $60, and the cost of the SCSI disks that we use in our ex-
periments, cD, is ≈ $140 (these numbers are determined by appropriate
searches on newegg.com). As mentioned above, the ratioφf /φa is currently
1:3. Plugging in these values, we �nd that the right-hand side of the expres-
sion above is slightly smaller, that is, the cost of index-in-ram is smaller,
slightly.

However, this calculation is likely too generous to index-in-ram,
for several reasons. First, as mentioned above, commodity rack-mounted
servers may not be able to house 11 disks. Second, adversaries’ power, rep-
resented by φa, might be signi�cantly greater than their activities today in-
dicate (today, their activities cause the ratioφf /φa to equal 1/3); this point is
discussed in §4.4.5. Indeed, if φa > 11.2 ·φf , then the le±-hand side of (f.8)
is smaller than the right-hand side. �ird, the calculations above did not
take into account the LRU cache in RAM (discussed in §4.4.3) that nodes
maintain in the index-in-ram case; this cache adds costs to index-in-
ram. Finally, the index-in-ram design likely requires more power since
it relies on more disks.

Our conclusion is that the two designs, under today’s ratio of φf /φa =

1/3, are roughly equal in cost. However, under a more “energetic” adver-
sary, the all-in-ram design would actually be cheaper. Moreover, as the
price of RAM continues to decline, all-in-ram will become even cheaper.

f.2 flash memory

Another set of possibilities involves �ash memory. Speci�cally, one could
replace the disks in index-in-ram with �ash memory.2 Or one could re-
place the RAM in index-in-ram with �ash memory and continue to use
the disks. Or one could replace the bulk of RAM in all-in-ram with �ash
memory. �e trade-o�s are as follows. First, �ash memory is cheaper, but

2�is option was suggested by Jakob Eriksson.

174



slower, than RAM for the same amount of space. Second, compared to
disks, �ash memory stores fewer bytes for the same number of dollars but
o�ers much higher random access throughput.

f.3 summary

�e summary of this appendix’s musings and back-of-the-envelope calcu-
lations is as follows. First, given today’s ratio of spam to legitimate email,
our current design is cheaper than a design that places all keys and values
in RAM. Second, if adversaries would attack the enforcer with much more
�repower than they use to send spam today, then the enforcer could save
resources (money and perhaps machines) by storing keys and values fully
in RAM. Finally, a future possibility for the enforcer is to replace some of
its RAM or disk storage with �ash memory.

175



References

All of the URLs listed here are valid as of November, 2007.

[1] M. Abadi, A. Birrell, M. Burrows, F. Dabek, and T. Wobber. Bank-
able postage for network services. In Proc. Asian Computing Science
Conference, Dec. 2003. (Referenced on pages 76, 116, 117, 121, 124,
125, 126, 129, and 155.)

[2] M. Abadi, M. Burrows, M. Manasse, and T. Wobber. Moderately
hard, memory-bound functions. ACM Transactions on Internet
Technology (toit), 5(2), May 2005. (Referenced on pages 17, 26,
63, and 124.)

[3] S. Agarwal, T. Dawson, and C. Tryfonas. DDoS mitigation via re-
gional cleaning centers. Sprint ATL Research Report RR04-ATL-
013177, Aug. 2003. (Referenced on page 33.)

[4] A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P. Martin, and
C. Porth. BAR fault tolerance for cooperative services. In Proc. acm
Symposium on Operating Systems Principles (sosp), Oct. 2005. (Ref-
erenced on page 128.)

[5] Alexa Internet, Inc. http://www.alexa.com. (Referenced on page
72.)

[6] Amazon Web Services. http://aws.amazon.com. (Referenced on
page 129.)

[7] T. Anderson, T. Roscoe, and D. Wetherall. Preventing Internet
denial-of-service with capabilities. In Proc. acm Workshop on Hot
Topics in Networks (HotNets), Nov. 2003. (Referenced on pages 68
and 69.)

[8] D. Angluin and L. Valiant. Fast probabilistic algorithms for Hamil-
tonian circuits and matchings. Journal of Computer and System Sci-
ences, (19), 1979. (Referenced on page 161.)

176

http://www.alexa.com
http://aws.amazon.com


[9] Arbor Networks, Inc. http://www.arbornetworks.com. (Refer-
enced on pages 25 and 68.)

[10] T. Aura, P. Nikander, and J. Leiwo. DoS-resistant authentication with
client puzzles. In Proc. International Workshop on Security Protocols,
2000. (Referenced on pages 17, 26, 63, and 64.)

[11] A. Back. Hashcash—a denial of service counter-measure,
Aug. 2002. http://www.cypherspace.org/adam/hashcash/

hashcash.pdf. (Referenced on pages 17, 26, 63, and 124.)

[12] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, and I. Sto-
ica. Looking up data in P2P systems. Communications of the acm,
46(2):43–48, Feb. 2003. (Referenced on pages 88 and 128.)

[13] H. Balakrishnan and D. Karger. Spam-i-am: A proposal to combat
spam using distributed quota management. In Proc. acmWorkshop
on Hot Topics in Networks (HotNets), Nov. 2004. (Referenced on
pages 76, 77, 78, 79, 80, 81, 84, 116, and 126.)

[14] H. Balakrishnan, H. S. Rahul, and S. Seshan. An integrated con-
gestion management architecture for Internet hosts. In Proc. acm
sigcomm, Sept. 1999. (Referenced on page 44.)

[15] G. Banga, P. Druschel, and J. C. Mogul. Resource containers: A new
facility for resource management in server systems. In Proc. usenix
Symposium on Operating Systems Design and Implementation (osdi),
Feb. 1999. (Referenced on page 68.)

[16] P. Barford and V. Yegneswaran. An inside look at botnets. In Spe-
cial Workshop on Malware Detection, Advances in Information Se-
curity, Springer Verlag, 2006. http://pages.cs.wisc.edu/~pb/

botnets_final.pdf. (Referenced on page 21.)

[17] Barrett Lyon. Private conversation, Aug. 2006. (Referenced on pages
70 and 146.)

[18] M. Belenkiy, M. Chase, C. C. Erway, J. Jannotti, A. Küpçü, A. Lysyan-
skaya, and E. Rachlin. Making P2P accountable without losing pri-
vacy. In Proc. Workshop on Privacy in the Electronic Society (wpes),
Oct. 2007. (Referenced on pages 127 and 130.)

177

http://www.arbornetworks.com
http://www.cypherspace.org/adam/hashcash/hashcash.pdf
http://www.cypherspace.org/adam/hashcash/hashcash.pdf
http://pages.cs.wisc.edu/~pb/botnets_final.pdf
http://pages.cs.wisc.edu/~pb/botnets_final.pdf


[19] M. Bellare and P. Rogaway. Random oracles are practical: A
paradigm for designing e�cient protocols. In Proc. acm Conference
on Computer and Communications Security (ccs), Nov. 1993. (Ref-
erenced on page 84.)

[20] M. Bellare and P. Rogaway. �e exact security of digital signatures—
how to sign with RSA and Rabin. In Proc. eurocrypt, May 1996.
(Referenced on page 84.)

[21] D. J. Bernstein. SYN cookies. http://cr.yp.to/syncookies.

html. (Referenced on page 13.)

[22] Bonded Sender Program. http://www.bondedsender.com/

info_center.jsp. (Referenced on page 125.)

[23] P. Boothe, J. Hiebert, and R. Bush. Short-lived pre�x hijacking on the
Internet, Feb. 2006. Presentation to nanog. http://www.nanog.
org/mtg-0602/pdf/boothe.pdf. (Referenced on page 158.)

[24] D. Brown. Gangsters hijack home PCs to choke internet with spam.
�e Times, Nov. 2006. http://business.timesonline.co.uk/

tol/business/law/public_law/article649541.ece. (Refer-
enced on pages 22, 30, and 70.)

[25] BT Counterpane. DDoS prevention o�erings. http://www.

counterpane.com/ddos-offerings.html. (Referenced on
pages 25, 32, 45, and 68.)

[26] J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Compact E-
Cash. In Proc. eurocrypt, May 2005. (Referenced on pages 82
and 127.)

[27] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wallach.
Secure routing for structured peer-to-peer overlay networks. In Proc.
usenix Symposium onOperating Systems Design and Implementation
(osdi), Dec. 2002. (Referenced on page 128.)

[28] M. Castro and B. Liskov. Practical Byzantine fault tolerance and
proactive recovery. acm Transactions on Computer Systems (tocs),
20(4):398–461, Nov. 2002. (Referenced on pages 78 and 128.)

[29] Cisco Guard, Cisco Systems, Inc. http://www.cisco.com. (Ref-
erenced on pages 25 and 68.)

178

http://cr.yp.to/syncookies.html
http://cr.yp.to/syncookies.html
http://www.bondedsender.com/info_center.jsp
http://www.bondedsender.com/info_center.jsp
http://www.nanog.org/mtg-0602/pdf/boothe.pdf
http://www.nanog.org/mtg-0602/pdf/boothe.pdf
http://business.timesonline.co.uk/tol/business/law/public_law/article649541.ece
http://business.timesonline.co.uk/tol/business/law/public_law/article649541.ece
http://www.counterpane.com/ddos-offerings.html
http://www.counterpane.com/ddos-offerings.html
http://www.cisco.com


[30] ClickZ News. Costs of blocking legit e-mail to soar, Jan. 2004. http:
//www.clickz.com/news/article.php/3304671. (Referenced
on page 12.)

[31] ClickZ News. Spam blocking experts: False positives inevitable, Feb.
2004. http://www.clickz.com/news/article.php/3315541.
(Referenced on page 12.)

[32] ClickZ News. AOL to implement e-mail certi�cation program, Jan.
2006. http://www.clickz.com/news/article.php/3581301.
(Referenced on page 125.)

[33] CNET News. Bots slim down to get tough, Nov. 2005.
http://news.com.com/Bots+slim+down+to+get+tough/

2100-7355_3-5956143.html. (Referenced on pages 70 and 146.)

[34] Computer Industry Almanac, Inc. PCs in-use surpassed 900M in
2005, May 2006. http://www.c-i-a.com/pr0506.htm. (Refer-
enced on pages 23 and 118.)

[35] E. Cooke, F. Jahanian, and D. McPherson. �e zombie roundup: Un-
derstanding, detecting and disrupting botnets. In Proc. usenix Steps
to Reducing Unwanted Tra�c on the Internet Workshop (sruti), July
2005. (Referenced on pages 70, 71, and 146.)

[36] J.-S. Coron. On the exact security of full domain hash. In Proc.
crypto, Aug. 2000. (Referenced on page 84.)

[37] L. F. Cranor and B. A. LaMacchia. Spam! Communications of the
acm, 41(8), Aug. 1998. (Referenced on pages 12 and 79.)

[38] Criminal complaint �led Aug. 25, 2004, United States v. Ashley et
al., No. 04 mj 02112 (Central District of California). http://www.

reverse.net/operationcyberslam.pdf. (Referenced on pages
13 and 22.)

[39] F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek, and R. Morris.
Designing a DHT for low latency and high throughput. In Proc.
usenix Symposium on Networked Systems Design and Implementa-
tion (nsdi), Mar. 2004. (Referenced on page 104.)

[40] D. Dagon, C. Zou, and W. Lee. Modeling botnet propagation using
time zones. In Proc. Network and Distributed System Security Sym-
posium (ndss), Feb. 2006. (Referenced on pages 22, 30, and 70.)

179

http://www.clickz.com/news/article.php/3304671
http://www.clickz.com/news/article.php/3304671
http://www.clickz.com/news/article.php/3315541
http://www.clickz.com/news/article.php/3581301
http://news.com.com/Bots+slim+down+to+get+tough/2100-7355_3-5956143.html
http://news.com.com/Bots+slim+down+to+get+tough/2100-7355_3-5956143.html
http://www.c-i-a.com/pr0506.htm
http://www.reverse.net/operationcyberslam.pdf
http://www.reverse.net/operationcyberslam.pdf


[41] D. Dean and A. Stubble�eld. Using client puzzles to protect TLS. In
Proc. usenix Security Symposium, Aug. 2001. (Referenced on pages
26, 63, and 64.)

[42] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a
fair queuing algorithm. CCR, 25(1), Jan. 1995. (Referenced on pages
68 and 133.)

[43] J. Douceur. �e sybil attack. In Proc. International Workshop on
Peer-to-Peer Systems (iptps), Mar. 2002. (Referenced on page 74.)

[44] P. Druschel and G. Banga. Lazy receiver processing (LRP): A network
subsystem architecture for server systems. In Proc. usenix Sympo-
sium on Operating Systems Design and Implementation (osdi), Oct.
1996. (Referenced on page 97.)

[45] C. Dwork, A. Goldberg, and M. Naor. On memory-bound functions
for �ghting spam. In Proc. crypto, 2003. (Referenced on pages 17,
26, 63, and 124.)

[46] C. Dwork and M. Naor. Pricing via processing or combatting junk
mail. In Proc. crypto, 1992. (Referenced on pages 17, 26, 63, and
124.)

[47] Emulab. http://www.emulab.net. (Referenced on pages 50 and
105.)

[48] Enterprise IT Planet. False positives: Spam’s casualty of war cost-
ing billions, Aug. 2003. http://www.enterpriseitplanet.com/
security/news/article.php/2246371. (Referenced on page
12.)

[49] eWEEK. Money bots: Hackers cash in on hijacked PCs, Sept.
2006. http://www.eweek.com/article2/0,1895,2013957,

00.asp. (Referenced on pages 70 and 146.)

[50] S. E. Fahlman. Selling interrupt rights: A way to control unwanted e-
mail and telephone calls. IBM Systems Journal, 41(4):759–766, 2002.
(Referenced on pages 124 and 133.)

[51] E. Falk. New host cloaking technique used by spammers,
Feb. 2006. http://thespamdiaries.blogspot.com/2006/02/

new-host-cloaking-technique-used-by.html. (Referenced
on page 158.)

180

http://www.emulab.net
http://www.enterpriseitplanet.com/security/news/article.php/2246371
http://www.enterpriseitplanet.com/security/news/article.php/2246371
http://www.eweek.com/article2/0,1895,2013957,00.asp
http://www.eweek.com/article2/0,1895,2013957,00.asp
http://thespamdiaries.blogspot.com/2006/02/new-host-cloaking-technique-used-by.html
http://thespamdiaries.blogspot.com/2006/02/new-host-cloaking-technique-used-by.html


[52] N. Feamster, J. Jung, and H. Balakrishnan. An empirical study of
“bogon” route advertisements. CCR, 35(1), Jan. 2005. (Referenced
on page 158.)

[53] W. Feng. �e case for TCP/IP puzzles. In Proc. sigcommWorkshop
on Future Directions in Network Architecture, Aug. 2003. (Refer-
enced on pages 26, 63, and 64.)

[54] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll, R. Rock-
ell, T. Seely, and C. Diot. Packet-level tra�c measurements from the
Sprint IP backbone. ieee Network, 17(6), 2003. (Referenced on
pages 30 and 44.)

[55] M. J. Freedman, E. Freudenthal, and D. Mazières. Democratizing
content publication with Coral. In Proc. usenix Symposium on Net-
worked Systems Design and Implementation (nsdi), Mar. 2004. (Ref-
erenced on page 129.)

[56] F. C. Freiling, T. Holz, and G. Wicherski. Botnet tracking: Exploring
a root-cause methodology to prevent distributed denial-of-service
attacks. In Proc. European Symposium on Research in Computer Se-
curity (esorics), Sept. 2005. (Referenced on pages 65 and 71.)

[57] L. Frieder and J. Zittrain. Spam works: Evidence from stock touts
and corresponding market activity. Berkman Center Research Pub-
lication No. 2006-11, Mar. 2007. http://ssrn.com/abstract=

920553. (Referenced on page 22.)

[58] You might be an anti-spam kook if... http://www.rhyolite.com/
anti-spam/you-might-be.html. (Referenced on page 79.)

[59] S. Garriss, M. Kaminsky, M. J. Freedman, B. Karp, D. Mazières, and
H. Yu. Re: Reliable email. In Proc. usenix Symposium on Networked
Systems Design and Implementation (nsdi), May 2006. (Referenced
on page 122.)

[60] S. Glassman, M. Manasse, M. Abadi, P. Gauthier, and P. Sobalvarro.
�e Millicent protocol for inexpensive electronic commerce. In
Proc. International World Wide Web Conference (www), Dec. 1995.
http://www.w3.org/Conferences/WWW4/Papers/246. (Refer-
enced on pages 82 and 127.)

181

http://ssrn.com/abstract=920553
http://ssrn.com/abstract=920553
http://www.rhyolite.com/anti-spam/you-might-be.html
http://www.rhyolite.com/anti-spam/you-might-be.html
http://www.w3.org/Conferences/WWW4/Papers/246


[61] V. D. Gligor. Guaranteeing access in spite of distributed service-
�ooding attacks. In Proc. International Workshop on Security Pro-
tocols, 2003. (Referenced on pages 25, 31, and 64.)

[62] L. H. Gomes, C. Cazita, J. M. Almeida, V. Almeida, and W. Meira
Jr. Charaterizing a spam tra�c. In Proc. acm Internet Measurement
Conference (imc), Oct. 2004. (Referenced on page 114.)

[63] Goodmail Systems. http://www.goodmailsystems.com. (Refer-
enced on page 125.)

[64] J. Goodman, G. V. Cormack, and D. Heckerman. Spam and the on-
going battle for the inbox. Communications of the acm, 50(2), Feb.
2007. (Referenced on page 79.)

[65] J. Goodman and R. Rounthwaite. Stopping outgoing spam. In Proc.
acm Conference on Electronic Commerce (ec), May 2004. (Refer-
enced on pages 117 and 123.)

[66] P. Graham. Better bayesian �ltering. http://www.paulgraham.

com/better.html. (Referenced on page 122.)

[67] S. Gribble, E. A. Brewer, J. M. Hellerstein, and D. Culler. Scalable,
distributed data structures for internet service construction. In Proc.
usenix Symposium onOperating Systems Design and Implementation
(osdi), Oct. 2000. (Referenced on page 128.)

[68] J. Grimmelmann and B. Bolin. Policy responses to spam.
http://works.bepress.com/james_grimmelmann/11/, Mar.
2005. (Referenced on pages 79 and 121.)

[69] R. F. Guilmette. announce: monkeys.com: now retired
from spam �ghting. Newsgroup posting: news.admin.net-

abuse.email, Sept. 2003. (Referenced on page 98.)

[70] C. A. Gunter, S. Khanna, K. Tan, and S. Venkatesth. DoS protec-
tion for reliably authenticated broadcast. In Proc. Network and Dis-
tributed System Security Symposium (ndss), 2004. (Referenced on
pages 27 and 63.)

[71] A. Gupta, B. Liskov, and R. Rodrigues. E�cient routing for peer-
to-peer overlays. In Proc. usenix Symposium on Networked Systems
Design and Implementation (nsdi), Mar. 2004. (Referenced on page
128.)

182

http://www.goodmailsystems.com
http://www.paulgraham.com/better.html
http://www.paulgraham.com/better.html
http://works.bepress.com/james_grimmelmann/11/


[72] I. Gupta, K. Birman, P. Linka, A. Demers, and R. van Renesse. Build-
ing an e�cient and stable P2P DHT through increased memory and
background overhead. In Proc. International Workshop on Peer-to-
Peer Systems (iptps), Feb. 2003. (Referenced on page 128.)

[73] M. Handley. In a presentation to Internet architecture working
group, DoS-resistant Internet subgroup, 2005. (Referenced on pages
13, 22, 23, 30, 31, 70, and 72.)

[74] M. Handley and A. Greenhalgh. Steps towards a DoS-resistant Inter-
net architecture. In Proc. sigcommWorkshop on Future Directions in
Network Architecture, Aug. 2004. (Referenced on page 69.)

[75] Honeynet Project and Research Alliance. Know your enemy: Track-
ing botnets. Mar. 2005. http://www.honeynet.org/papers/

bots/. (Referenced on pages 21, 22, 30, and 70.)

[76] N. Ianelli and A. Hackworth. Botnets as a vehicle for online crime.
CERT Coordination Center, Dec. 2005. http://www.cert.org/

archive/pdf/Botnets.pdf. (Referenced on page 21.)

[77] IDC. Worldwide email usage forecast, 2005-2009: Email’s future de-
pends on keeping its value high and its cost low. http://www.idc.
com/, Dec. 2005. (Referenced on pages 18 and 80.)

[78] Information Week. Botnets: Small is in. Oct. 2007. (Referenced on
pages 70 and 146.)

[79] J. Jannotti. Private communication, July 2007. (Referenced on page
130.)

[80] A. Juels and J. Brainard. Client puzzles: A cryptographic counter-
measure against connection depletion attacks. In Proc. Network and
Distributed System Security Symposium (ndss), 1999. (Referenced
on pages 17, 26, 63, and 64.)

[81] J. Jung and E. Sit. An empirical study of spam tra�c and the use
of DNS black lists. In Proc. acm Internet Measurement Conference
(imc), Oct. 2004. (Referenced on page 114.)

[82] S. Kandula, D. Katabi, M. Jacob, and A. Berger. Botz-4-sale: Sur-
viving organized DDoS attacks that mimic �ash crowds. In Proc.
usenix Symposium on Networked Systems Design and Implementa-
tion (nsdi), May 2005. (Referenced on pages 13, 25, 31, 63, and 68.)

183

http://www.honeynet.org/papers/bots/
http://www.honeynet.org/papers/bots/
http://www.cert.org/archive/pdf/Botnets.pdf
http://www.cert.org/archive/pdf/Botnets.pdf
http://www.idc.com/
http://www.idc.com/


[83] D. Karger. Private communication, Apr. 2007. (Referenced on page
74.)

[84] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin. Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the World Wide Web. In Proc.
acm Symposium on the�eory of Computing (stoc), May 1997. (Ref-
erenced on pages 88 and 89.)

[85] D. E. Knuth. �e Art of Computer Programming, volume 2, chapter
3.4.2. Addison-Wesley, third edition, 1998. (Referenced on page
42.)

[86] D. E. Knuth. �e Art of Computer Programming, volume 3, chapter
6.4. Addison-Wesley, second edition, 1998. (Referenced on page
94.)

[87] E. Kohler, M. Handley, and S. Floyd. Designing DCCP: Congestion
control without reliability. In Proc. acm sigcomm, Sept. 2006. (Ref-
erenced on pages 44 and 104.)

[88] H. Krawzyk, M. Bellare, and R. Canetti. hmac: Keyed-Hashing For
Message Authentication. rfc 2104, Internet Engineering Task Force,
Feb. 1997. http://www.faqs.org/rfcs/rfc2104.html. (Refer-
enced on page 88.)

[89] B. Krishnamurthy and E. Blackmond. SHRED: Spam harassment re-
duction via economic disincentives. http://www.research.att.

com/~bala/papers/shred-ext.ps, 2004. (Referenced on pages
76 and 125.)

[90] M. Krohn. Building secure high-performance Web services with
OKWS. In Proc. usenix Technical Conference, June 2004. (Refer-
enced on page 47.)

[91] B. J. Kuipers, A. X. Liu, A. Gautam, and M. G. Gouda. Zmail: Zero-
sum free market control of spam. In Proc. 4th International Work-
shop on Assurance in Distributed Systems and Networks, June 2005.
(Referenced on page 124.)

[92] B. Laurie and R. Clayton. “Proof-of-Work” proves not to work; ver-
sion 0.2, Sept. 2004. http://www.cl.cam.ac.uk/users/rnc1/

proofwork2.pdf. (Referenced on pages 67 and 117.)

184

http://www.faqs.org/rfcs/rfc2104.html
http://www.research.att.com/~bala/papers/shred-ext.ps
http://www.research.att.com/~bala/papers/shred-ext.ps
http://www.cl.cam.ac.uk/users/rnc1/proofwork2.pdf
http://www.cl.cam.ac.uk/users/rnc1/proofwork2.pdf


[93] J. Li, M. N. Krohn, D. Mazières, and D. Shasha. Secure untrusted
data repository (sundr). In Proc. usenix Symposium on Operating
Systems Design and Implementation (osdi), Dec. 2004. (Referenced
on pages 94 and 104.)

[94] T. Loder, M. V. Alstyne, and R. Wash. An economic response to un-
solicited communication. Advances in Economic Analysis & Policy,
6(1), Mar. 2006. http://www.bepress.com/bejeap/advances/

vol6/iss1/art2. (Referenced on pages 12, 124, and 133.)

[95] A. Mahimkar, J. Dange, V. Shmatikov, H. Vin, and Y. Zhang. dFence:
Transparent network-based denial of service mitigation. In Proc.
usenix Symposium on Networked Systems Design and Implementa-
tion (nsdi), Apr. 2007. (Referenced on page 68.)

[96] D. Malkhi and M. K. Reiter. Byzantine quorum systems. InProc.acm
Symposium on the �eory of Computing (stoc), 1997. (Referenced
on page 128.)

[97] D. Malkhi and M. K. Reiter. Secure and scalable replication in Pha-
lanx. In Proc. ieee Symposium on Reliable Distributed Systems, Oct.
1998. (Referenced on page 128.)

[98] D. Mankins, R. Krishnan, C. Boyd, J. Zao, and M. Frentz. Mitigating
distributed denial of service attacks with dynamic resource pricing.
In Proc. ieee Computer Security Applications Conference, Dec. 2001.
(Referenced on pages 17, 26, and 63.)

[99] J. Marko�. Attack of the zombie computers is growing threat. �e
New York Times, Jan. 2007. http://www.nytimes.com/2007/01/
07/technology/07net.html. (Referenced on page 21.)

[100] David Mazières. (Referenced on page 123.)

[101] D. Mazières. A toolkit for user-level �le systems. In Proc. usenix
Technical Conference, June 2001. (Referenced on pages 47 and 104.)

[102] D. Mazières. Blocking unwanted mail with Mail Avenger. Virus
Bulletin, July 2005. See http://www.mailavenger.org or http:
//www.scs.stanford.edu/~dm/home/papers/mazieres:

avenger-virusbtn.pdf. (Referenced on page 123.)

[103] Mazu Networks, Inc. http://mazunetworks.com. (Referenced
on pages 25 and 68.)

185

http://www.bepress.com/bejeap/advances/vol6/iss1/art2
http://www.bepress.com/bejeap/advances/vol6/iss1/art2
http://www.nytimes.com/2007/01/07/technology/07net.html
http://www.nytimes.com/2007/01/07/technology/07net.html
http://www.mailavenger.org
http://www.scs.stanford.edu/~dm/home/papers/mazieres:avenger-virusbtn.pdf
http://www.scs.stanford.edu/~dm/home/papers/mazieres:avenger-virusbtn.pdf
http://www.scs.stanford.edu/~dm/home/papers/mazieres:avenger-virusbtn.pdf
http://mazunetworks.com


[104] L. McLaughlin. Bot so±ware spreads, causes new worries. ieee
Distributed Systems Online, 5(6), June 2004. http://csdl2.

computer.org/comp/mags/ds/2004/06/o6001.pdf. (Refer-
enced on pages 22, 30, 70, and 71.)

[105] D. McPherson and C. Labovitz. Worldwide infrastructure
security report, volume II. Arbor Networks, Inc., Sept.
2006. http://www.arbor.net/downloads/worldwide_

infrastructure_security_report_sept06.pdf. (Referenced
on pages 70 and 146.)

[106] MessageLabs Ltd. MessageLabs intelligence: January 2007.
http://www.messagelabs.com/mlireport/messagelabs_

intelligence_report__january_2007_5.pdf. (Referenced on
pages 12, 76, 113, and 117.)

[107] Messaging Anti-Abuse Working Group (maawg). Email met-
rics program, �rst quarter 2007 report. http://www.maawg.org/

about/MAAWG20071Q_Metrics_Report.pdf, June 2007. (Refer-
enced on pages 12, 76, 113, and 117.)

[108] J. Mirkovic and P. Reiher. A taxonomy of DDoS attacks and DDoS
defense mechanisms. CCR, 34(2), Apr. 2004. (Referenced on pages
63 and 98.)

[109] W. Morein, A. Stavrou, D. Cook, A. Keromytis, V. Mishra, and
D. Rubenstein. Using graphic turing tests to counter automated
DDoS attacks against Web servers. In Proc. acmConference on Com-
puter and Communications Security (ccs), Oct. 2003. (Referenced
on pages 25, 31, 63, and 68.)

[110] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge
University Press, 1995. (Referenced on page 161.)

[111] Network World. Extortion via DDoS on the rise. May
2005. http://www.networkworld.com/news/2005/

051605-ddos-extortion.html. (Referenced on pages 22,
25, and 68.)

[112] Network World. How big is the botnet problem? July
2007. http://www.networkworld.com/research/2007/

070607-botnets-side.html. (Referenced on page 22.)

186

http://csdl2.computer.org/comp/mags/ds/2004/06/o6001.pdf
http://csdl2.computer.org/comp/mags/ds/2004/06/o6001.pdf
http://www.arbor.net/downloads/worldwide_infrastructure_security_report_sept06.pdf
http://www.arbor.net/downloads/worldwide_infrastructure_security_report_sept06.pdf
http://www.messagelabs.com/mlireport/messagelabs_intelligence_report__january_2007_5.pdf
http://www.messagelabs.com/mlireport/messagelabs_intelligence_report__january_2007_5.pdf
http://www.maawg.org/about/MAAWG20071Q_Metrics_Report.pdf
http://www.maawg.org/about/MAAWG20071Q_Metrics_Report.pdf
http://www.networkworld.com/news/2005/051605-ddos-extortion.html
http://www.networkworld.com/news/2005/051605-ddos-extortion.html
http://www.networkworld.com/research/2007/070607-botnets-side.html
http://www.networkworld.com/research/2007/070607-botnets-side.html


[113] K. Park, V. S. Pai, K.-W. Lee, and S. Calo. Securing Web service by au-
tomatic robot detection. In Proc. usenix Technical Conference, June
2006. (Referenced on page 31.)

[114] B. Parno, D. Wendlandt, E. Shi, A. Perrig, B. Maggs, and Y.-C. Hu.
Portcullis: Protecting connection setup from denial-of-capability at-
tacks. In Proc. acm sigcomm, Aug. 2007. (Referenced on pages 26,
63, 64, 69, and 74.)

[115] V. Paxson and S. Floyd. Wide area tra�c: the failure of Poisson mod-
eling. acm/ieee Transactions on Networking, 3(3):226–244, 1995.
(Referenced on page 105.)

[116] PC World. Spam-proof your in-box, June 2004. http://www.

pcworld.com/reviews/article/0,aid,115885,00.asp. (Ref-
erenced on page 12.)

[117] �e Penny Black Project. http://research.microsoft.com/

research/sv/PennyBlack/. (Referenced on page 76.)

[118] Pittsburgh Post-Gazette. CMU student taps brain’s game skills. Oct. 5,
2003. http://www.post-gazette.com/pg/03278/228349.stm.
(Referenced on page 68.)

[119] J. Postel. Internet Control Message Protocol. rfc 792, Internet En-
gineering Task Force, Sept. 1981. http://www.faqs.org/rfcs/

rfc792.html. (Referenced on page 13.)

[120] Prolexic Technologies, Inc. http://www.prolexic.com. (Refer-
enced on pages 25, 32, 45, and 68.)

[121] X. Qie, R. Pang, and L. Peterson. Defensive programming: Using an
annotation toolkit to build DoS-resistant so±ware. In Proc. usenix
Symposium on Operating Systems Design and Implementation (osdi),
Dec. 2002. (Referenced on page 97.)

[122] S. Quinlan and S. Dorward. Venti: A new approach to archival stor-
age. In Proc. usenix Conference on File and Storage Technologies
(fast), Jan. 2002. (Referenced on page 94.)

[123] Radicati Group Inc.: Market Numbers Quarterly Update q2 2003.
(Referenced on pages 18 and 80.)

187

http://www.pcworld.com/reviews/article/0,aid,115885,00.asp
http://www.pcworld.com/reviews/article/0,aid,115885,00.asp
http://research.microsoft.com/research/sv/PennyBlack/
http://research.microsoft.com/research/sv/PennyBlack/
http://www.post-gazette.com/pg/03278/228349.stm
http://www.faqs.org/rfcs/rfc792.html
http://www.faqs.org/rfcs/rfc792.html
http://www.prolexic.com


[124] M. A. Rajab, J. Zarfoss, F. Monrose, and A. Terzis. A multifaceted
approach to understanding the botnet phenomenon. In Proc. acm
Internet Measurement Conference (imc), Oct. 2006. (Referenced on
page 71.)

[125] M. A. Rajab, J. Zarfoss, F. Monrose, and A. Terzis. My
botnet is bigger than yours (maybe, better than yours): why
size estimates remain challenging. In Proc. 1st usenix Work-
shop on Hot Topics in Understanding Botnets (HotBots), Apr.
2007. http://www.usenix.org/events/hotbots07/tech/

full_papers/rajab/rajab.pdf. (Referenced on pages 22, 70,
71, and 146.)

[126] A. Ramachandran and N. Feamster. Understanding the network-
level behavior of spammers. In Proc. acm sigcomm, Sept. 2006.
(Referenced on pages 79 and 158.)

[127] V. Ramasubramanian and E. G. Sirer. �e design and implementa-
tion of a next generation name service for the Internet. In Proc. acm
sigcomm, Aug. 2004. (Referenced on page 28.)

[128] S. Ranjan, R. Swaminathan, M. Uysal, and E. W. Knightly. DDoS-
resilient scheduling to counter application layer attacks under im-
perfect detection. In Proc. ieee infocom, Apr. 2006. (Referenced
on pages 25 and 68.)

[129] E. Ratli�. �e zombie hunters. �e New Yorker, Oct. 10, 2005. (Ref-
erenced on pages 13 and 22.)

[130] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy,
S. Shenker, I. Stoica, and H. Yu. OpenDHT: A public DHT service
and its uses. In Proc. acm sigcomm, Aug. 2005. (Referenced on
pages 15 and 129.)

[131] F.-R. Rideau. Stamps vs spam: Postage as a method to elimi-
nate unsolicited commercial email. http://fare.tunes.org/

articles/stamps_vs_spam.html, Sept. 2002. (Referenced on
page 124.)

[132] R. L. Rivest and A. Shamir. PayWord and MicroMint: Two simple
micropayment schemes. In Proc. InternationalWorkshop on Security
Protocols, Apr. 1996. (Referenced on pages 82 and 127.)

188

http://www.usenix.org/events/hotbots07/tech/full_papers/rajab/rajab.pdf
http://www.usenix.org/events/hotbots07/tech/full_papers/rajab/rajab.pdf
http://fare.tunes.org/articles/stamps_vs_spam.html
http://fare.tunes.org/articles/stamps_vs_spam.html


[133] R. Rodrigues and B. Liskov. Rosebud: A scalable Byzantine-fault-
tolerant storage architecture. Technical Report TR/932, MIT LCS,
Dec. 2003. (Referenced on page 128.)

[134] M. Rosenblum and J. Ousterhout. �e design and implementation of
a log-structured �le system. acm Transactions on Computer Systems
(tocs), 10(1):26–52, 1992. (Referenced on page 94.)

[135] F. B. Schneider. Implementing fault-tolerant services using the state
machine approach: A tutorial. acm Computing Surveys, 22(4):299–
319, Dec. 1990. (Referenced on page 128.)

[136] SecurityFocus. FBI busts alleged DDoS ma�a. Aug. 2004. http:

//www.securityfocus.com/news/9411. (Referenced on pages
13 and 22.)

[137] V. Sekar. Private communication, Sept. 2007. (Referenced on pages
71 and 72.)

[138] V. Sekar, N. Du�eld, O. Spatscheck, J. van der Merwe, and H. Zhang.
LADS: Large-scale automated DDoS detection system. In Proc.
usenix Technical Conference, June 2006. (Referenced on pages 7,
8, 45, and 71.)

[139] Shadowserver Foundation. Bot counts. http://www.

shadowserver.org/wiki/pmwiki.php?n=Stats.BotCounts.
(Referenced on page 71.)

[140] Shadowserver Foundation. Private communication, Jan. 2007.
http://www.shadowserver.org. (Referenced on page 70.)

[141] K. Shen, H. Tang, T. Yang, and L. Chu. Integrated resource manage-
ment for cluster-based internet services. In Proc. usenix Symposium
on Operating Systems Design and Implementation (osdi), Dec. 2002.
(Referenced on page 98.)

[142] M. Sherr, M. Greenwald, C. A. Gunter, S. Khanna, and S. S.
Venkatesh. Mitigating DoS attack through selective bin veri�cation.
In Proc. 1st Workshop on Secure Network Protocols, Nov. 2005. (Ref-
erenced on pages 27 and 63.)

189

http://www.securityfocus.com/news/9411
http://www.securityfocus.com/news/9411
http://www.shadowserver.org/wiki/pmwiki.php?n=Stats.BotCounts
http://www.shadowserver.org/wiki/pmwiki.php?n=Stats.BotCounts
http://www.shadowserver.org


[143] K. K. Singh. Botnets—An introduction. Course Project,
CS6262, Georgia Institute of Technology, Spring, 2006.
http://www-static.cc.gatech.edu/classes/AY2006/

cs6262_spring/botnets.ppt. (Referenced on pages 72 and 99.)

[144] SpamAssassin. http://spamassassin.apache.org/. (Refer-
enced on page 122.)

[145] Spambouncer. http://www.spambouncer.org. (Referenced on
page 124.)

[146] Sender Policy Framework. http://spf.pobox.com/. (Referenced
on page 123.)

[147] M. Srivatsa, A. Iyengar, J. Yin, and L. Liu. A middleware system for
protecting against application level denial of service attacks. In Proc.
acm/ifip/usenix International Middleware Conference, Nov. 2006.
(Referenced on pages 25 and 68.)

[148] A. Stavrou, J. Ioannidis, A. D. Keromytis, V. Misra, and D. Ruben-
stein. A pay-per-use DoS protection mechanism for the Web. In
Proc. International Conference on Applied Cryptography andNetwork
Security, June 2004. (Referenced on pages 26 and 63.)

[149] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan. Chord: A scalable peer-to-peer
lookup protocol for Internet applications. acm/ieee Transactions on
Networking, 11(1):17–32, Feb. 2003. (Referenced on page 88.)

[150] B. Stone. Spam doubles, �nding new ways to deliver itself. �e New
York Times, Dec. 2006. http://www.nytimes.com/2006/12/06/
technology/06spam.html. (Referenced on pages 12, 76, 113, and
117.)

[151] Stupid Google virus/spyware captcha page. http:

//www.spy.org.uk/spyblog/2005/06/stupid_google_

virusspyware_cap.html. (Referenced on pages 25, 31, and 68.)

[152] W. Sturgeon. Denial of service attack victim speaks out.
May 2005. http://management.silicon.com/smedirector/

0,39024679,39130810,00.htm. (Referenced on page 72.)

190

http://www-static.cc.gatech.edu/classes/AY2006/cs6262_spring/botnets.ppt
http://www-static.cc.gatech.edu/classes/AY2006/cs6262_spring/botnets.ppt
http://spamassassin.apache.org/
http://www.spambouncer.org
http://spf.pobox.com/
http://www.nytimes.com/2006/12/06/technology/06spam.html
http://www.nytimes.com/2006/12/06/technology/06spam.html
http://www.spy.org.uk/spyblog/2005/06/stupid_google_virusspyware_cap.html
http://www.spy.org.uk/spyblog/2005/06/stupid_google_virusspyware_cap.html
http://www.spy.org.uk/spyblog/2005/06/stupid_google_virusspyware_cap.html
http://management.silicon.com/smedirector/0,39024679,39130810,00.htm
http://management.silicon.com/smedirector/0,39024679,39130810,00.htm


[153] TechWeb News. Dutch botnet bigger than expected. Oct.
2005. http://informationweek.com/story/showArticle.

jhtml?articleID=172303265. (Referenced on pages 22, 30, 70,
and 71.)

[154] B. Templeton. Best way to end spam. http://www.templetons.

com/brad/spam/endspam.html. (Referenced on page 123.)

[155] B. Templeton. Origin of the term “spam” to mean net abuse. http:
//www.templetons.com/brad/spamterm.html. (Referenced on
page 12.)

[156] B. Templeton. Reaction to the DEC spam of 1978. http://www.

templetons.com/brad/spamreact.html. (Referenced on page
12.)

[157] B. Templeton. �e spam solutions. http://www.templetons.

com/brad/spam/spamsol.html, 2003. (Referenced on pages 79
and 121.)

[158] �e Spamhaus Project. http://www.spamhaus.org. (Referenced
on pages 15 and 122.)

[159] �e Spamhaus Project. Spammers release virus to attack
spamhaus.org. http://www.spamhaus.org/news.lasso?

article=13, Nov. 2003. (Referenced on page 98.)

[160] �e Register. East European gangs in online protection racket. Nov.
2003. http://www.theregister.co.uk/2003/11/12/east_

european_gangs_in_online. (Referenced on page 22.)

[161] �e Register. Phatbot arrest throws open trade in zombie PCs.
May 2004. http://www.theregister.co.uk/2004/05/12/

phatbot_zombie_trade. (Referenced on page 23.)

[162] D. �omas. Deterrence must be the key to avoiding DDoS attacks,
June 2005. http://www.vnunet.com/computing/analysis/

2137395/deterrence-key-avoiding-ddos-attacks. (Refer-
enced on pages 45 and 72.)

[163] R. �omas and J. Martin. �e underground economy: Priceless. ;lo-
gin:, 31(6), Dec. 2006. http://www.usenix.org/publications/
login/2006-12/openpdfs/cymru.pdf. (Referenced on page 21.)

191

http://informationweek.com/story/showArticle.jhtml?articleID=172303265
http://informationweek.com/story/showArticle.jhtml?articleID=172303265
http://www.templetons.com/brad/spam/endspam.html
http://www.templetons.com/brad/spam/endspam.html
http://www.templetons.com/brad/spamterm.html
http://www.templetons.com/brad/spamterm.html
http://www.templetons.com/brad/spamreact.html
http://www.templetons.com/brad/spamreact.html
http://www.templetons.com/brad/spam/spamsol.html
http://www.templetons.com/brad/spam/spamsol.html
http://www.spamhaus.org
http://www.spamhaus.org/news.lasso?article=13
http://www.spamhaus.org/news.lasso?article=13
http://www.theregister.co.uk/2003/11/12/east_european_gangs_in_online
http://www.theregister.co.uk/2003/11/12/east_european_gangs_in_online
http://www.theregister.co.uk/2004/05/12/phatbot_zombie_trade
http://www.theregister.co.uk/2004/05/12/phatbot_zombie_trade
http://www.vnunet.com/computing/analysis/2137395/deterrence-key-avoiding-ddos-attacks
http://www.vnunet.com/computing/analysis/2137395/deterrence-key-avoiding-ddos-attacks
http://www.usenix.org/publications/login/2006-12/openpdfs/cymru.pdf
http://www.usenix.org/publications/login/2006-12/openpdfs/cymru.pdf


[164] R. Vasudevan, Z. M. Mao, O. Spatscheck, and J. van der Merwe.
Reval: A tool for real-time evaluation of DDoS mitigation strategies.
In Proc. usenix Technical Conference, June 2006. (Referenced on
page 44.)

[165] J. S. Vitter. Random sampling with a reservoir. acm Transactions on
Mathematical So±ware, 11(1), Mar. 1985. (Referenced on page 42.)

[166] L. von Ahn, M. Blum, and J. Langford. Telling humans and com-
puters apart automatically. Communications of the acm, 47(2), Feb.
2004. (Referenced on pages 25, 31, 68, 116, 122, and 134.)

[167] M. Wal�sh, H. Balakrishnan, D. Karger, and S. Shenker. DoS: Fight-
ing �re with �re. In Proc. acmWorkshop on Hot Topics in Networks
(HotNets), Nov. 2005. (Referenced on pages 10 and 27.)

[168] M. Wal�sh, J.D. Zam�rescu, H. Balakrishnan, D. Karger, and
S. Shenker. Distributed quota enforcement for spam control. In
Proc. usenix Symposium on Networked Systems Design and Imple-
mentation (nsdi), May 2006. (Referenced on pages 8 and 116.)

[169] M. Wal�sh, M. Vutukuru, H. Balakrishnan, D. Karger, and
S. Shenker. DDoS defense by o�ense. In Proc. acm sigcomm, Sept.
2006. (Referenced on pages 8, 10, 26, 27, and 63.)

[170] X. Wang and M. K. Reiter. A multi-layer framework for puzzle-based
denial-of-service defense. International Journal of Information Se-
curity, 2007. Forthcoming and published online, http://dx.doi.
org/10.1007/s10207-007-0042-x. (Referenced on pages 17, 26,
63, and 64.)

[171] X. Wang, Y. L. Yin, and H. Yu. Finding collisions in the full sha-1.
In Proc. crypto, Aug. 2005. (Referenced on page 84.)

[172] B. Waters, A. Juels, J. A. Halderman, and E. W. Felten. New client
puzzle outsourcing techniques for DoS resistance. In Proc. acmCon-
ference on Computer and Communications Security (ccs), Oct. 2004.
(Referenced on pages 26, 63, and 64.)

[173] L. Weber. Wikimedia request statistics. http://tools.

wikimedia.de/~leon/stats/reqstats. (Referenced on page
72.)

192

http://dx.doi.org/10.1007/s10207-007-0042-x
http://dx.doi.org/10.1007/s10207-007-0042-x
http://tools.wikimedia.de/~leon/stats/reqstats
http://tools.wikimedia.de/~leon/stats/reqstats


[174] L. Weber. Wikimedia tra�c statistics. http://tools.wikimedia.
de/~leon/stats/trafstats. (Referenced on page 32.)

[175] M. Welsh and D. Culler. Adaptive overload control for busy Internet
servers. In Proc. usenix Symposium on Internet Technologies and
Systems (usits), Mar. 2003. (Referenced on page 97.)

[176] M. Welsh, D. Culler, and E. Brewer. SEDA: An architecture for well-
conditioned, scalable Internet services. In Proc. acm Symposium on
Operating Systems Principles (sosp), Oct. 2001. (Referenced on page
97.)

[177] A. Yaar, A. Perrig, and D. Song. SIFF: A stateless Internet �ow �lter to
mitigate DDoS �ooding attacks. In Proc. ieee Symposium on Security
and Privacy, May 2004. (Referenced on pages 32, 68, and 69.)

[178] X. Yang, D. Wetherall, and T. Anderson. A DoS-limiting network
architecture. In Proc. acm sigcomm, Aug. 2005. (Referenced on
pages 32, 63, 68, and 69.)

193

http://tools.wikimedia.de/~leon/stats/trafstats
http://tools.wikimedia.de/~leon/stats/trafstats

	Contents
	Figures
	Previously Published Material
	Acknowledgments
	1 Introduction
	1.1 The Problem in Abstract Terms
	1.2 Philosophy
	1.3 Contents of the Dissertation
	1.4 Contributions & Results
	1.5 Confronting Controversy

	2 Background
	2.1 An Internet Underworld & Its Eco-system
	2.2 Numbers of Bots & Botnets
	2.3 Key Characteristics of the Problem

	3 Speak-up
	3.1 High Level Explanation
	3.2 Five Questions
	3.3 Threat Model & Applicability Conditions
	3.4 Design
	3.4.1 Design Goal and Required Mechanisms
	3.4.2 Aggressive Retries and Random Drops
	3.4.3 Explicit Payment Channel and Virtual Auction
	3.4.4 Cheating and the Virtual Auction
	3.4.5 Design Space
	Axes
	``Retries and Virtual Auction''
	``Payment Channel and Random Drops''
	Comparing the Possibilities


	3.5 Revisiting Assumptions
	3.5.1 Speak-up's Effect on the Network
	3.5.2 Shared Links
	3.5.3 Provisioning the Thinner
	3.5.4 Attackers' Constraints

	3.6 Heterogeneous Requests
	3.7 Implementation
	3.8 Experimental Evaluation
	3.8.1 Setup and Method
	3.8.2 Validating the Thinner's Allocation
	3.8.3 Latency and Byte Cost
	3.8.4 Empirical Adversarial Advantage
	3.8.5 Heterogeneous Network Conditions
	3.8.6 Good and Bad Clients Sharing a Bottleneck
	3.8.7 Impact of Speak-up on Other Traffic
	3.8.8 Under-provisioned Thinner

	3.9 Speak-up Compared & Critiqued
	3.9.1 Resource-based Defenses
	Bandwidth vs. CPU
	Drawbacks of Resource-based Schemes

	3.9.2 Detect-and-Block Defenses
	3.9.3 Mechanisms for Blocking Traffic
	3.9.4 Summary

	3.10 Plausibility of the Threat & Conditions
	3.10.1 The Threat
	3.10.2 Relative Sizes of Good and Bad Clientele
	3.10.3 Costs for the Server

	3.11 Reflections

	4 DQE
	4.1 The Threat
	4.2 Technical Requirements & Challenges
	4.2.1 Protocol Requirements
	4.2.2 Challenges for the Enforcer

	4.3 DQE Architecture
	4.3.1 Stamp Allocation and Creation
	4.3.2 Stamp Cancellation Protocol
	4.3.3 The Enforcer
	4.3.4 Remaining Vulnerabilities

	4.4 Detailed Design of the Enforcer
	4.4.1 test and set
	Churn

	4.4.2 Fault-Tolerance Analysis
	Bounding Expected Reuse Per Stamp
	Bounding Total Reuse

	4.4.3 Implementation of get and put
	4.4.4 Avoiding ``Distributed Livelock''
	4.4.5 Resource Exhaustion Attacks
	Defending the Enforcer with Options Inspired by Speak-up

	4.4.6 Widespread, Simultaneous Stamp Reuse
	4.4.7 Adversarial Nodes
	4.4.8 Limitations

	4.5 Implementation
	4.5.1 Enforcer Node Software
	4.5.2 DQE Client Software

	4.6 Evaluation of the Enforcer
	4.6.1 Environment
	4.6.2 Fault-Tolerance
	4.6.3 Single-node Microbenchmarks
	4.6.4 Capacity of the Enforcer
	4.6.5 Estimating the Enforcer Size
	4.6.6 Avoiding ``Distributed Livelock''
	4.6.7 Limitations

	4.7 Quota Allocation
	4.8 Synthesis: End-to-End Effectiveness
	4.9 Adoption & Usage
	4.10 Related Work
	4.10.1 Spam Control
	Postage
	Bankable Postage vs. Pairwise Postage
	Combining DQE with Other Defenses

	4.10.2 Micropayments
	4.10.3 Related Distributed Systems

	4.11 Critique & Reflections

	5 Comparisons & Connections
	5.1 Taxonomy
	5.1.1 Axis 1: Admission Discipline
	5.1.2 Axis 2: Permissible Consumption Times

	5.2 Reflections on the Taxonomy
	5.2.1 Axis 1 (Admission Discipline)
	5.2.2 Axis 2 (Permissible Consumption Times)
	5.2.3 Other Considerations

	5.3 Our Choices
	5.4 Connections

	6 Critiques & Conclusion
	6.1 Looking Ahead
	6.2 Looking Back

	a Questions about Speak-up
	a.1 The Threat
	a.2 The Costs of Speak-up
	a.3 The General Philosophy of Speak-up
	a.4 Alternate Defenses
	a.5 Details of the Mechanism
	a.6 Attacks on the Thinner
	a.7 Other Questions

	b Questions about DQE
	b.1 General Questions about DQE
	b.2 Attacks on DQE
	b.3 Allocation, Deployment, & Adoption
	b.4 Micropayments & Digital Postage
	b.5 Alternatives

	c Address Hijacking
	d Bounding Total Stamp Reuse
	e Calculations for Enforcer Experiments
	e.1 Expectation in ``Crashed'' Experiment
	e.2 Average Number of RPCs per test

	f Revisiting the Enforcer's Design
	f.1 Current Design Compared to Default
	f.1.1 RAM and Disk Costs
	f.1.2 Adding Processor Costs
	f.1.3 Comparison

	f.2 Flash Memory
	f.3 Summary

	References

