
Spam-I-am: A Proposal for Spam Control using
Distributed Quota Management

Hari Balakrishnan and David R. Karger
MIT Computer Science and Artificial Intelligence Laboratory

The Stata Center, 32 Vassar St., Cambridge, MA 02139
Email: {hari,karger}@csail.mit.edu

ABSTRACT
Email spam has reached alarming proportions because it
costs virtually nothing to send email; even a small num-
ber of people responding to a spam message is adequate
incentive for a spammer to send as many messages as pos-
sible. Since spammers need to send messages at high rates
to as many recipients as they can, quotas on email senders
could throttle spam. We argue for separating the allocation
of quotas, a relatively rare activity, from the enforcement
of quotas, a frequent activity that must scale to the billions
of messages sent daily.

This paper tackles the quota enforcement problem,
where the goal is to ensure that no sender can grossly
violate its quota. The challenge is to design an enforce-
ment scheme that is scalable, is robust against malicious
attackers or participants, and preserves the privacy of com-
munication, in a large, distributed, and untrusted environ-
ment. We discuss the design of such a system, Spam-I-
am, based on a managed distributed hash table (DHT) in-
terface, showing that it can be used in conjunction with
electronic stamps (for quota allocation) to ensure that any
non-negligible reuse of stamps will be detected.

1. INTRODUCTION

I do not like that spam in RAM
I do not like it, Spam-I-am.

With apologies to Dr. Seuss

The email spam problem has reached alarming
proportions—some studies estimate that spam accounts
for nearly 60% of the over 50 billion email messages sent
daily [5, 15]. To combat spam, tools such as SpamAssas-
sin [19], which filter email based on message content, have
become popular. Unfortunately, such tools are routinely
overwhelmed by the creativity of spammers in getting past
the filters; when users set more aggressive filter thresholds
in response, legitimate email is trapped as spam.

Attention has therefore been given to schemes that force
the sender to consume some resource, such as computa-
tion, money, or human effort, in order to send email [1,
6, 9, 2]. If resources must be consumed to send email,
and individuals have limited resources, then the number of

messages they can send is limited. Because few legitimate
users send email at the sheer scale of spammers, such a
quota on every user (legitimate or not) could effectively
choke off spam without limiting legitimate email.

A quota-based spam control system must tackle two dis-
tinct issues, which we argue must be treated separately.
The first, quota allocation, is determining how quotas are
allocated to individuals. The second, quota enforcement,
is providing a way to detect and respond to quota overruns.

We propose a spam control system called Spam-I-am
based on explicit email quotas. Spam-I-am separates
quota enforcement from allocation, letting us optimize
both pieces: investing great care in allocation so that spam-
mers cannot cheat to receive large quotas, while offering
an enforcement system running on a cheap, large-scale,
distributed, untrusted infrastructure, and scaling to meet
the significant demands of having to verify the validity of
every single received email message. This infrastructure is
based on a distributed hash table (DHT) [13] and does not
require a large resource allocation by any one party.

Spam-I-am requires that an email user (or user’s orga-
nization) contact a globally trusted quota allocator once
per year (say), and obtain a quota in exchange for pay-
ment.1 This quota is a digitally signed and dated certificate
of the user’s right to send a certain number of messages.
It is signed by the allocator, whose public key is widely
known. The user’s outgoing mail server (or email send-
ing program) manufactures a quota-limited number of un-
forgeable stamps using standard cryptographic operations,
and attaches one to each outgoing message. Spam-I-am
enforces the quota by helping any recipient determine if a
stamp is authentic and fresh. If a received stamp is both
authentic and fresh, the recipient knows that the message
was within the sender’s rightful quota. If not, the recipi-
ent may discard the message (or take some other action, as
described at the end of this section).

Spam-I-am’s enforcement infrastructure for verifying
whether a stamp is fresh is a collection of untrusted ma-
chines acting as a distributed quota manager (DQM). A
DQM stores all stamps used in some past time window. A
1The payment is not crucial; any suitable means of verifying the
user’s right to a quota would suffice. See Section 5.

recipient queries DQM to determine if a stamp is fresh,
while at the same time informing DQM, with suitable
proof, that it has received a message with a given stamp.

Spam-I-am meets the following key design goals:

Scalability. The system should scale to hundreds of mil-
lions of users and tens of billions of daily messages,
requiring only modest resources at each node.

Robustness. The system should resist senders who try to
violate their quotas, subversion by malicious partic-
ipants, and denial-of-service (DoS) attacks. Faults
should never interfere with the delivery of legiti-
mately stamped email, and no fault should let more
than a small amount of spam through.

Privacy. DQM nodes should not be able to infer who is
communicating with whom. In addition, a recipient
should not be able to prove that the sender sent it any
email, and the sender should not be able to prove that
the receiver received it.

User-transparency. The system should not require users
to expend additional effort to send (e.g., as with
CAPTCHAs [21]) or receive email.

The DQM infrastructure avoids many problems faced by
systems that use a central, trusted quota enforcer [1, 14].
A central enforcer needs to scale to meet the demands of
the global email system, imposing significant resource re-
quirements on its operator and constituting a single point
of failure. In particular, individuals who wish to violate
their quotas may mount attacks on the central enforcer. It
is also unclear whether offering a centralized enforcement
service is a profitable business; and if it were, it is unclear
how competing enforcers would interact and how ethical
each would be. Instead, we envision that DQM will be
composed of servers contributed by participating organi-
zations (e.g., ISPs, companies, universities, etc.), managed
like the Internet’s email and Domain Name System (DNS)
infrastructures.

Unlike the enforcement system, Spam-I-am’s quota al-
locator requires little state or computational power because
user interactions with it are rare. Since the allocator is not
used in enforcement, and users can proactively renew quo-
tas, outages in the allocator caused by faults or attacks will
not seriously affect email delivery. The main requirement
for the allocator is that it be trusted, a property many non-
profit organizations possess.

We expect that Spam-I-am would typically be used in
combination with passive spam filters. Most spam filters
have a tunable “level of paranoia” to balance false posi-
tives against false negatives. Spam-I-am provides a sec-
ond chance for legitimate email accidentally blocked by
filters: any such email can be passed with a legitimate
stamp. This extra protection from falsely blocked email
will let users make their filters much more aggressive, thus
blocking a larger fraction of true spam, even before Spam-
I-am is fully adopted.

2. RELATED WORK
Dwork and Naor proposed that each message come with

a signature that takes significant CPU time [9] or mem-
ory [8] to compute. Microsoft’s Penny Black proposal [1,
17] uses a centralized and trusted ticket server to allocate
tickets to clients based on such “proof-of-work”. Email re-
cipients contact the ticket server to validate tickets. Cam-
ram [6] uses a similar approach to have email senders at-
tach “hashcash” [2] stamps to their transmissions. Laurie
and Clayton [15] have argued convincingly that proof-of-
work schemes are unlikely to control spam because of the
ease with which spammers are able to subvert numerous
insecure computers on the Internet.

Various systems, including Bonded Sender [3], Van-
quish [18], and SHRED [14] have proposed that email
senders should forfeit money, or be sued (Habeas [12]), if
a recipient deems a message to be spam. Such a “bond” [3,
18] or “contingent liability” [14] requires users to mark up
the email they receive, or carefully tailor their spam filters.

The Sender Policy Framework [20] verifies if the sender
email address is consistent with information published in
DNS about valid email servers in the sending domain. It
provides some protection against forged sender addresses,
but none against spammers using unforged addresses.

Spam-I-am’s stamps and DQM infrastructure bear some
similarity to digital payment schemes [10]; quota allo-
cation corresponds to digital cash withdrawal, stamps
correspond to spending a small amount of digital cash
to send every message, and quota enforcement corre-
sponds to forgery prevention and double-spending detec-
tion. However, the looser requirements of spam blocking
—recipients do turn in their stamps for real cash, and a
small amount of double spending does not hurt—permit
a simpler design. Conversely, our approach may be use-
ful for digital cash schemes, allowing forgery and double-
spending to be detected in distributed fashion.

3. SPAM-I-AM DESIGN AND PROTOCOL
Spam-I-am’s protocol is underpinned by a trusted

quota allocator QA with a public/private key pair
(QApub, QApriv).

2 A participant S constructs a pub-
lic/private key pair (Spub, Spriv) and presents Spub to QA
together with either payment or some accepted form
of identity. After determining that S should be allo-
cated a quota, QA gives S a signed3 certificate CS =
{Spub, expiration time}QApriv

indicating that a quota has

been allocated, where “expiration time” is the time at
which the certificate CS expires (typically one year or so).
Anyone knowing QApub can verify that S has been allo-
cated a quota. It is possible to have several independent
(but globally trusted) quota allocators.
2Only QApub needs to be widely known; Spam-I-am does not
require a public key infrastructure (PKI).
3We denote signing operations as subscripts on messages.

For quota enforcement, Spam-I-am’s DQM requires a
(possibly faulty) “hash-table” interface, offering the op-
erations PUT(k, v) to associate value v with key k, and
GET(k) to determine the value previously associated with
key k. We also use a hash function, such as MD5 or SHA1,
which we assume every participant can compute but no
participant can invert.

3.1 Basic Protocol
We introduce our approach using a simple example in

which we wish to limit each user to sending m distinct
email messages. Sender S includes an unforgeable stamp
with each message sent to recipient R. Upon receipt of
the message, R checks with DQM whether the included
stamp has been used before by querying for an unforge-
able postmark that is used to “cancel” that stamp. R only
reads the message if the postmark for its stamp is not pub-
lished in DQM. R also constructs and publishes the stamp-
cancelling postmark in order to prevent the stamp from be-
ing reused later. It follows that each stamp can be used to
send exactly one message (that is read).

The sender S uses its private key to construct m stamps
of the form {CS , i}Spriv

, where i is an integer between

1 and m. We call i the counter; the intent is that each
counter value be used in a stamp exactly once. Note that
only S can construct its stamps since only it can sign with
Spriv. However, any recipient can check that a stamp is
valid by verifying the signature with Spub, contained in CS ,
confirming that 1 ≤ i ≤ M , and then consulting DQM to
test if the stamp is fresh or not.

R cancels stamp P by executing PUT(HASH(P), P);
i.e., R stores the stamp as the value associated with the
stamp’s postmark (the key), HASH(P). To prevent pre-
vent malicious participants from cluttering DQM, DQM
accepts this PUT only if the value is a valid stamp and
the hash of the value equals the key. Conversely, to de-
cide whether to read the message, R queries the postmark
by invoking GET(HASH(P)) to determine whether P was
previously cancelled. R blocks the mail as spam only if
the correct value (P) is returned as the result of its GET.

3.2 Security
This basic protocol has three key security properties.

First, no mail with a legitimate fresh stamp can ever be
blocked as a result of the protocol, regardless of malicious
third parties or DQM nodes. Second, when DQM operates
correctly, no malicious third party (spammer) can prevent
used stamps from being cancelled. Third, each fault in a
DQM node allows only a limited number of reuses of can-
celled stamps.

We first argue that no legitimate mail can be blocked by
our protocol. Since it is signed, a stamp cannot be gener-
ated by anyone other than the sender. Furthermore, since
the hash function is hard to invert, no one but a recipient of

stamp P—not even a malicious DQM node, upon receipt
of the query GET(HASH(P))—can generate a postmark for
it. In other words, the only way a cancelling postmark
will be found is if some entity received the corresponding
stamp and cancelled it.4 Now recall that when a recipient
fails to locate a valid cancellation, they accept the mail as
legitimate. Since we have just argued that such a cancel-
lation cannot exist for a fresh stamp, we can conclude that
no mail carrying a fresh stamp will be blocked.

We now consider the converse attack—ways that spam-
mers might attempt to reuse their stamps by preventing
cancellations. Since recipients ignore invalid cancellations
(in case DQM is corrupted), an attacker might hope to in-
sert an invalid cancellation of their stamp. However, since
DQM verifies all PUT operations, no incorrect value can
be associated with a key. Thus, no third party (spammer)
can prevent a stamp from being cancelled by inserting an
invalid postmark for it.

Beyond cheating in the protocol, spammers may attempt
to interfere with its execution using DoS or subversive at-
tacks on DQM. We discuss such attacks in Section 4.

If a sending account is compromised and comman-
deered to send spam, it can send to at most m emails
before its stamps are exhausted. At this point, the com-
promised account’s users will suddenly discover that their
legitimate email transmissions are being bounced due to
cancelled stamps. These bounces will provide a strong hint
that the machine is compromised, and an equally strong in-
centive to fix the problem. Our approach moves the cost
of being hacked to the person being hacked, rather than
to the multitude of email recipients. Once the owner of
the affected machine has disinfected the machine and re-
ceived new certificates for the senders using the machine,
the affected senders can resume sending email.

3.3 Privacy
As presented thus far, the protocol violates some com-

munication privacy because the sender’s identity, as part
of the stamp, is published in DQM. Revealing the sender’s
identity in the stamp allows DQM (or any eavesdropper)
to determine that the sender is sending some email, and
possibly connect that email to the recipient performing the
query. To eliminate this violation of privacy, we note that
DQM is needed only to bind postmarks to stamps; DQM
does not need to understand the contents of a stamp. Thus,
instead of using the information-carrying stamp P as the
value in DQM, we can use HASH(P). With this method,

4If email is not sealed, then nodes in the relaying of the path be-
tween S and R can act as “recipients,” cancel stamps, and cause
email to be flagged as spam. But this problem already prevails
under today’s email design where nodes en route can usually
modify or drop messages. To preclude this attack, S could seal
the message with R’s public key, obtaining that in some fash-
ion. Our system may increase the motivation for spammers to
“hijack” email, dropping the body, and taking the stamp for their
own use, so such sealing may become more important.

R executes PUT(HASH(HASH(P)), HASH(P)) to cancel
stamp P . Since the recipient receives P , it can construct
both key and value, but DQM cannot.

Figure 1 summarizes this improved protocol.

1. STAMP = {CS , i}Spriv

2. S → R : {STAMP, msg}.
3. Upon receiving a message, R verifies using S’s pub-

lic key from CS that STAMP is valid. If it is not, then
R discards the message. Otherwise, R computes
POSTMARK = HASH(HASH(STAMP)).

4. R → DQM : GET(POSTMARK). R considers STAMP

used only if HASH(STAMP) is returned.
5. R → DQM : PUT(POSTMARK, HASH(STAMP)).

Figure 1: Spam-I-am’s privacy-preserving protocol.

This modified protocol prevents DQM (or anyone else
without access to the stamp) from associating the sender
and recipient. The recipient, by exhibiting the stamp,
can prove that the sender sent some message to someone.
However, since the stamp is not determined by the mes-
sage or recipient, the recipient cannot prove what message
what sent, or to whom.5 If the sender randomizes the order
of his counter, the recipient cannot even draw conclusions
about the number of messages sent by that sender.

Conversely, the sender, by checking for a postmark,
might become confident that the the receiver received the
message; however, since intermediate relays (or the sender
itself) can cancel the stamp, the recipient can plausibly
deny having received the message.

3.4 Expiring stamps
Spam-I-am’s stamp protocol requires DQM to remem-

ber cancelled stamps for as long as the sender’s certifi-
cate is valid. If a postmark is dropped from DQM, anyone
can reuse the corresponding stamp. However, remember-
ing cancelled stamps for that long could be a significant
undertaking—it requires a significant quantity and robust-
ness of storage.

Our solution to this problem is to use stamps that ex-
pire (become unusable) within a small number of days, say
a week,6 at which point their postmarks can be dropped
from DQM. We augment each stamp with a weekstamp,
a continuously increasing integer indicating the particular
week during which the stamp is valid. The stamp thus
becomes {CS, i, w}Spriv

, where w is a weekstamp. Recip-

ients can easily check that stamps are being used in the
right week, but the weekstamp serves as a nonce that pre-
vents anyone else from generating valid new stamps from

5Schemes that hash the message to produce a stamp would vio-
late this property.
6This interval is chosen because of the particulars of email; it
results in reasonable storage requirements, copes with email de-
lays, and permits burst email transmissions.

the stamps used in past weeks. The rest of the protocol is
the same as in Figure 1.

Since we cannot hope to precisely synchronize all par-
ticipants, and since email may be delayed in delivery (but
probably not by more than a week), the recipient should
accept stamps from the previous week as well. Even so,
DQM needs to hold on to stamps from the current and
previous week only, dramatically reducing its storage and
reliability requirements.

Note that the easier alternative of making certificates
expire every week forces frequent (and therefore undesir-
able) interactions with the centralized quota allocator.

4. A DHT-BASED DQM
The DQM protocol involves huge numbers of indepen-

dent hash-table queries, and is naturally implementable
over a DHT [13]. DHTs provide the PUT/GET interface
required by DQM, assigning each key (postmark) to a par-
ticular machine in the network, and providing a scalable
and dynamic routing protocol that lets any machine locate
and query the node responsible for a given key.

A rough calculation suggests that each postmark-stamp
pair requires 32 bytes, and that each insertion will gener-
ate roughly 100 bytes of PUT and GET traffic. Assuming
that roughly 1011 emails are sent daily [15], the average
bandwidth for verifying this volume of email is about 1
Gbit/s, and the packet rate is about 2 million packets/s.
The peak rates may perhaps be 10 or 20 times higher.
We would need to store roughly 1012 stamps (two weeks’
worth), for a total of about 30 terabytes of storage. While
these numbers might be daunting for a single machine, this
load could easily be handled by a DHT of 2000-10000 ma-
chines, each storing 6-30 GBytes of postmarks and serving
at an average rate of 100 Kbits/s to 500 Kbits/s. This DHT
could be an open DHT platform such as [16], or could be
bundled with SMTP servers.

4.1 Security
We have previously considered attacks on the protocol;

we must also consider attacks on the DHT that implements
it. We do not attempt to solve the problem of attacks on the
DHT routing layer—that is a subject of much current work
within the DHT community [7]. We focus our attention on
the DQM-specific attacks that adversaries may make.

For each key, the DHT implicitly specifies a routing tree
through the DHT nodes, rooted at the node responsible
for the key. For load balance, this tree is of low degree—
typically, degree d = O(log n) for an n-node system.

Suppose that the adversary is able to crash or compro-
mise some of the machines. Although DHTs cope well
with crashes, subversion is another matter. As discussed
before, no action by DQM can block receipt of legiti-
mately stamped mail; however, an adversary might hope
to use their compromised DQM machines to let their own

spam get through; e.g., by failing to respond correctly to
queries about cancelled stamps.

Caching can cope with such adversarial attacks, at the
expense of increased storage. The DQM nodes along the
DHT path from the query origin to the root responsible for
the key can cancel the stamp at every node on the query
path. A node making a postmark query can stop anywhere
along the path, as soon as it gets a positive response.

With this approach, an adversary cannot get their mail
through by sending so many copies of a stamp that the ma-
chine responsible for holding its postmark gets swamped
by the recipients’ queries. Instead, each node will receive
only one query for a given postmark routed through each
of its children, for a total of at most d queries, before its
children all know the answer and insulate it from future
queries.

A similar argument applies to adversarial DQM nodes.
Any node may choose to maliciously answer “no” to a
postmark query instead of “yes.” However, a response
of “no” will just lead to the receiver continuing along
the routing path, querying other nodes. Thus, the effect
of a false “no” is to exclude the malicious node from
the DHT, slightly increasing the query-answering load on
some other nodes. The only exception to this argument is
at the root for a key: if the root answers “no,” then the re-
cipient believes the mail to be legitimate. But because the
recipient cancels the stamp all along the query path, each
time the malicious root node answers “no”, another of that
root’s children caches that cancellation. Using this argu-
ment, we can show that if k machines are compromised but
n > kd, the number of additional spam messages accepted
by recipients is small. We can further improve robustness
by cancelling stamps and querying for postmarks at multi-
ple roots, at the expense of increased communication.

Another possible attack on the DHT might come in the
form of an exhaustion attack, in which the adversary tries
to fill the DHT with so many bogus, cancelled postmarks
that the DHT has no room to store the valid ones. If we
store the stamps explicitly rather than as a hash, then the
adversary cannot mount this attack because they cannot
generate valid stamps. The price we pay for email privacy
is that DQM can no longer tell from looking at a stamp
whether it is real. Our solution to this problem is to use
the DQM idea recursively, treating DQM storage as the re-
source whose quota should be enforced per-recipient. We
reserve the details for a longer version of this paper.

5. ALLOCATING EMAIL QUOTAS
We now consider various mechanisms for allocating

quotas. Simply throttling the number of daily messages
sent per user is not effective because of the ease with
which spammers can create new accounts. But sev-
eral approaches do show promise. One possibility is to
use “proof-of-work” for allocation, and use Spam-I-am’s

DQM to enforce quotas. Yet another approach would be
some form of trust network rooted at the central server.
A third would involve some government agency—a user
could pick up their key in person, while renewing their
driver’s license or passport. Another is to require payment,
whose value depends on the statistics and economics of
spam. This section explores this last possibility—our goal
is to determine a suitable price for email that would cut
spam by a factor of ten.

The Radicati Group estimated that in November 2003,
57 billion emails were sent daily [15]; at the same time,
Brightmail estimated that 56% of all email was spam [5].
That means that there were about 32 billion spam mes-
sages daily (it is likely that the number is larger today).
The same survey estimated that spammers took in roughly
US $10 million/day in email revenue, or roughly 0.03
cents per message. This number is consistent with pub-
lished estimates of rates charged by spammers [11, 4].

We now make an unjustified assumption. Given the ease
with which spammers can send bulk email today, they
must already be receiving as much income as marketers
are willing to pay them, regardless of the quantity of email
sent—if there were more demand, it could easily be met.
We therefore take $10 million/day as an upper bound on
spammers’ total “budget” available to spend sending email
(this estimate is generous, since it assumes that spammers
have no operating costs). If we charge for quotas at a
rate of $3 for 1000 messages, then spammers on that bud-
get can afford to purchase at most 3 billion messages per
day—a factor of 10 reduction in current rates. We remark
that the two authors sent less than 13,000 messages each in
the past year, which would have cost them less than $40.

Should this per-email charge seem high, proof of pay-
ment to some other institution could be used. A promis-
ing possibility is donation to a known-legitimate charitable
organization of the sender’s choice. With this approach,
email no longer “costs extra.”

6. OTHER ISSUES

6.1 Stamp reuse
Most legitimate users send email in their “social net-

work” of friends, colleagues, and acquaintances, and every
once in a while to someone new. In contrast, a spammer
benefits from new recipients reading his messages. These
observations suggest that the ability to reuse stamps in
conversations that have already been established between
a sender and receiver could reduce the number of stamps
needed by most users, reducing their costs. The quota then
becomes the number of distinct recipients that a sender can
contact. (The two authors each sent messages to less than
2,000 distinct recipients in the past year.)

To allow stamp reuse, each recipient simply needs to
remember which senders (certificates) initially contact it

with a valid stamp, and continue to accept email from
those senders with those (cancelled) stamps. We continue
to require the stamp, but we use it only for identification
to prevent sender spoofing. We also need to prevent replay
attacks, for which standard techniques suffice.

One way in which a spammer might subvert stamp reuse
is to first send legitimate-looking email to a recipient, get
his stamp “whitelisted,” and then send spam using that
stamp. Similarly, when a sender’s machine is compro-
mised, recipients that have approved the sender’s stamp
can become targets for large quantities of spam. To solve
this problem, a recipient’s spam filter should cancel a
stamp if there is even a small suspicion of spam. In ad-
dition, the sender should check if a previous stamp can be
reused before sending a message with the stamp.

6.2 Mailing lists
Mailing lists pose problems because using a different

stamp for each recipient may be too expensive, especially
for large lists. When mailing lists are managed or moder-
ated, DQM provides sender verification that can be used
to pass through email from the mailing list. For large, un-
moderated mailing lists with no control over who can send,
our approach does not alleviate the problem. A single mes-
sage within the sender’s quota can reach a huge number of
recipients. Such lists are a boon to spammers.

6.3 Mail forwarding
Some users may wish to forward their mail to one or

more other addresses. Since the first check for a stamp’s
freshness would also cancel the stamp, the subsequent
hops may wrongly consider a legitimate message to be
spam. An easy solution is for each hop to forward the mes-
sage with authentication, so the subsequent hops know that
the stamp has already been validated. Another possibility
is to use a “fresh” stamp for each hop. With stamp reuse,
this approach uses few additional stamps.

7. CONCLUSION
Quotas can prevent the large-scale abuse of resources

in a distributed system. With quotas, the system designer
wishing to prevent resource abuse has two issues to re-
solve: how to allocate quotas, and how to enforce them.
In the context of email, the primary resource being abused
is recipient time, for which the quota should control the
number of emails sent per sender. This paper outlined a
scheme for scalable, privacy-preserving distributed quota
enforcement, and suggested ways in which email quotas
could be allocated. Our approach could reduce spam by at
least one order of magnitude, for a modest annual payment
per user. The general approach is also likely to be useful
in controlling spam in other systems, such as instant mes-
saging and Short Message Service (SMS).

One consequence of adopting Spam-I-am is that users

can be much more aggressive about their email spam fil-
ters, because it prevents legitimate messages that are mis-
takenly caught by spam filters from going unread.

Spam-I-am’s DQM is a useful service in large dis-
tributed system where a plentiful, but not infinite, resource
needs to be protected from excessive consumption by self-
ish individuals or applications. Some examples include
disk storage in a file or backup system and computational
cycles in a peer-to-peer system or computational economy.

Acknowledgments
We thank David Andersen, Susan Hohenberger, David
Maziéres, Ronald Rivest, Stuart Schechter, Mythili Vu-
tukuru, Michael Walfish, and the HotNets reviewers for
their comments. This work was supported by the NSF un-
der Cooperative Agreement No. ANI-0225660.

8. REFERENCES
[1] ABADI, M., BIRRELL, A., BURROWS, M., DABEK, F., AND

WOBBER, T. Bankable postage for network services. In Proc.
Advances in Computing Science (Mumbai, India, December 2003).

[2] BACK, A. Hashcash.
http://www.cypherspace.org/adam/hashcash/.

[3] Bonded Sender Program.
http://www.bondedsender.com/info_center.jsp.

[4] BOUTIN, P. Interview with a spammer. Infoworld (April 2004).
[5] Brightmail, inc.: Spam percentages and spam categories.

http://www.brightmail.com/spamstats.html.
[6] Camram. http://www.camram.org/.
[7] CASTRO, M., DRUSCHEL, P., GANESH, A., ROWSTRON, A.,

AND WALLACH, D. S. Secure routing for structured peer-to-peer
overlay networks. In Proc. 5th USENIX OSDI Conf. (Boston,
Massachusetts, December 2002).

[8] DWORK, C., GOLDBERG, A., AND NAOR, M. On
memory-bound functions for fighting spam. In Proc. CRYPTO
Conf. (2003), pp. 426–444.

[9] DWORK, C., AND NAOR, M. Pricing via processing or combatting
junk mail. In Proc. CRYPTO Conf. (1992), pp. 139–147.

[10] Electronic Cash. http://www.tcs.hut.fi/˜helger/
crypto/link/protocols/ecash.html.

[11] GOODMAN, J., AND ROUNTHWAITE, R. Stopping Outgoing
Spam. In Proc. ACM Conf. on Electronic Commerce (EC) (New
York, NY, May 2004).

[12] Habeas Sender Warranted Email.
http://www.habeas.com/.

[13] Project IRIS. http://project-iris.net/.
[14] KRISHNAMURTHY, B., AND BLACKMOND, E. SHRED: Spam

Harassment Reduction via Economic Disincentives.
http://www.research.att.com/˜bala/papers/
shred-ext.ps, 2004.

[15] LAURIE, B., AND CLAYTON, R. “Proof-of-Work” Proves Not to
Work. http://www.apache-ssl.org/proofwork.pdf,
May 2004.

[16] OpenDHT. http://openhash.org/.
[17] The Penny Black Project. http://research.microsoft.

com/research/sv/PennyBlack/.
[18] RAYMOND, P. R. System and method for discouraging

communications considered undesirable by recipients. US Patent
6,697,462, February 2004.

[19] SpamAssassin. http://spamassassin.apache.org/.
[20] Sender Policy Framework. http://spf.pobox.com/.
[21] VON AHN, L., BLUM, M., HOPPER, N. J., AND LANGFORD, J.

CAPTCHA: Using Hard AI Problems for Security. In Proc.
EUROCRYPT (Warsaw, Poland, May 2003).

