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Abstract

Despite the popularity of mobile computing platforms, ap-
propriate system support for mobile operation is lacking
in the Internet. This paper argues this is not for lack of
deployment incentives, but because a comprehensive sys-
tem architecture that efficiently addresses the needs of mo-
bile applications does not exist. We identify five funda-
mental issues raised by mobility—location, preservation of
communication, disconnection handling, hibernation, and
reconnection—and suggest design guidelines for a system
that attempts to support Internet mobility.

In particular, we argue that a good system architecture
should (i) eliminate the dependence of higher protocol
layers upon lower-layer identifiers; (ii) work with any
application-selected naming scheme; (iii) handle (unex-
pected) network disconnections in a graceful way, expos-
ing its occurrence to applications; and (iv) provide mo-
bility services at the mobile nodes themselves, rather than
via proxies. Motivated by these principles, we propose a
session-oriented, end-to-end architecture calledMigrate,
and briefly examine the set of services it should provide.

1 Introduction

The proliferation of laptops, handheld computers, cellular
phones, and other mobile computing platforms connected
to the Internet has triggered much research into system sup-
port for mobile networking over the past few years. Yet,
when viewed as a large-scale, heterogeneous, distributed
system, the Internet is notoriously lacking in any form of
general support for mobile operation.

We argue that previous work has failed to comprehen-
sively address several important issues. This paper dis-
cusses some of these issues and describes a session-
oriented architecture we are developing to preserve end-
to-end application-layer connectivity under various mobile
conditions.

Mobility raises five fundamental problems:
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1. Locating the mobile host or service: Before any
communication can be initiated, the desired end-point
must be located and mapped to an addressable desti-
nation.

2. Preserving communication: Once a session has
been established between end points (typically ap-
plications), communication should be robust across
changes in the network location of the end points.

3. Disconnecting gracefully: Communicating applica-
tions should be able to rapidly discern when a discon-
nection at either end, or a network partition, causes
communication to be disrupted.

4. Hibernating efficiently: If a communicating host is
unavailable for a significant period of time, the sys-
tem should suspend communications, and appropri-
ately reallocate resources.

5. Reconnecting quickly:Communicating peers should
detect the resumption of network connectivity in a
timely manner. The system should support the re-
sumption of all previously established communication
sessions without much extra effort on the part of the
applications.

Most current approaches provide varying degrees of sup-
port for the first two problems. The last three—
disconnection, hibernation, and reconnection—have re-
ceived little attention outside of the file system context [17].
We argue that a complete—and useful—solution must ad-
dress all these issues.

One need look no further than interactive terminal appli-
cations likessh or telnet , one of the Internet’s oldest
applications, for a practical example of the continuing lack
of support for these important components. A user with
an open session might pick up her laptop and disconnect
from the network. After traveling for some period of time,
she reconnects at some other network location and expects
that her session continue where it left off. Unfortunately, if
there was any activity on the session during the period of
disconnectivity, she will find the connection aborted upon
reconnection to the network. The particular details of the
example are irrelevant, but demonstrate just how lacking
current support is, even for this simple scenario.
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Based on our own experience developing various mobile
protocols and services [1, 3, 12, 24] and documented re-
ports of several other researchers over several years [7, 11,
13, 16, 26], we identify four important guidelines that we
believe should be followed as hints in designing an appro-
priate network architecture for supporting mobile Internet
services and applications:

1. Eliminate lower-layer dependence from higher lay-
ers. A large number of problems arise because many
higher layers of the Internet architecture use iden-
tifiers from lower layers, assuming they will never
change during a connection.

2. Do not restrict the choice of naming techniques.Dy-
namic naming and location-tracking systems play an
important role in addressing mobility. In general,
whenever an end point moves, it should update a nam-
ing system with its new location—but forcing all ap-
plications to use a particular naming scheme is both
unrealistic and inappropriate.

3. Handle unexpected disconnections gracefully.We ad-
vocate treating disconnections as a common occur-
rence, and exposing them to applications as they oc-
cur.

4. Provide support at the end hosts.Proxies are attractive
due to their perceived ease of deployment. However,
it becomes markedly more difficult to ensure they are
appropriately located when hosts are mobile.

We elaborate upon these guidelines in Section 2. They
have served as a guide in our development of an end-to-
end, session-oriented system architecture, calledMigrate,
over which mobile networking applications and services
can be elegantly layered. We describe our proposed archi-
tecture in Section 3, discussing how it addresses four of the
five problems mentioned above: preserving communica-
tion, and handling disconnection, hibernation, and resump-
tion. We do not provide or enforce a particular location or
naming scheme, instead leveraging domain-specific nam-
ing services (e.g., DNS, service discovery schemes [1, 10],
etc.) for end-point location.

An attractive feature of our architecture is that it accom-
plishes these tasks without sacrificing common-case per-
formance. Migrate provides generic mechanisms for man-
aging disconnections and reconnections in each application
session, and for handling application state and context. We
briefly discuss related work in Section 4 before concluding
in Section 5.

2 Design guidelines

In this section, we elaborate on our four design guidelines
for supporting applications on mobile hosts.

2.1 Eliminate lower-layer dependence

The first step in enabling higher-layer mobility handling
is to remove inter-layer dependences. In a 1983 retrospec-
tive paper on the DoD Internet Architecture, Cerf wrote [6]:
“TCP’s [dependence] upon the network and host addresses
for part of its connection identifiers” makes “dynamic re-
connection” difficult, “a problem. . . which has plagued
network designers since the inception of the ARPANET
project in 1968.” The result is that when the underlying
network-layer (IP) address of one of the communicating
peers changes, the end-to-end transport-layer (TCP) con-
nection is unable to continue because it has bound to the
network-layer identifier, tacitly (but wrongly) assuming its
permanence for the duration of the connection.

A host of other problems crop up because of similar link-
ages. For example, the increasing proliferation of network
address translators (NATs) in the middle of the network
has caused problems for applications (like FTP) that use
network- and transport-layer identifiers as part of their in-
ternal state. These problems can be avoided by removing
any assumption of stability of lower-layer identifiers. If a
higher layer finds it necessary to use a lower-layer identi-
fier as part of its internal state, then the higher layer should
allow for it to change, and continue to function across such
changes.

Furthermore, each layer should expose relevant changes to
higher layers. In today’s Internet architecture, applications
have almost no control over their network communication
because lower layers (for the most part) do not concern
themselves with higher-layer requirements. When impor-
tant changes happen at a lower layer, for example to the
network-layer address, they are usually hidden from higher
layers. The unfortunate consequence of this is that it makes
it hard for any form of adaptation to occur.

For example, a TCP sender attempts to estimate the prop-
erties of the network path for the connection. A significant
change in the network-layer attachment point often implies
that previously discovered path properties are invalid, and
need to be rediscovered. This consequence is not limited
to classical TCP congestion management—for example, if
mobile applications are notified of changes in their envi-
ronment and given the power to effect appropriate changes,
significant improvements in both performance and usabil-
ity can be realized [17, 19]. Similar results have also been
shown in the network layer [7, 11, 28], and in the area of
transport optimization over wireless links [3, 5, 24].

2.2 Beware the Siren song of naming

Many researchers have observed that the first problem
raised by mobility, namely locating the mobile host or ser-
vice, can be addressed through a sophisticated naming sys-
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tem, hence most proposals for managing Internet mobility
attempt to provide naming and location services as a fun-
damental part of the mobility system.1 Unfortunately, the
tight binding between naming schemes and mobility sup-
port often causes the resulting system to be inefficient or
unsuitable for various classes of applications. For exam-
ple, Mobile IP assumes that the destination of each packet
needs to beindependentlylocated, thereby necessitating a
home agent to intercept and forward messages to a mobile
host. The utility of alternative proposals to use agile nam-
ing [1] or IP multicast [18] for mobility support hinges on
widespread deployment of their location systems.

We believe that inexorably binding mobility handling with
naming unnecessarily complicates the mobility services,
and restricts the ability to integrate advances in naming
services. On the face of it, it appears attractive that a
“good” naming scheme can provide the level of indirection
by which to handle mobility. In practice, however, it is im-
portant to recognize and separate two distinct operations.
The first is a “location” operation: The process of finding
an end point of interest based on an application-specific
name. The second is a “tracking” operation: Preserving
the peer-to-peer communication in some way. There are
two problems with using a new idealized naming scheme:
First, there are a large number of ways in which applica-
tions describe what they are looking for, which forces this
ideal naming scheme to perform the difficult task of accom-
modating them all. Experience shows that each application
is likely to end up using a naming scheme that best suits
it (e.g. INS, DNS, JINI, UPnP), rather than suffer the in-
adequacies of a universal one. Second, if this tracking is
done through the same name resolution mechanism, every
packet would invoke the resolution process, adding signifi-
cant overhead and degrading performance.

We therefore suggest that an application use whichever
naming scheme is sufficiently adept at providing the appro-
priate name-to-location binding in a timely fashion. This
service is used at the beginning of a session between peers,
or in the (unlikely) event that all peers change their net-
work locations “simultaneously.” At all other times, the
onus of preserving communication across moves rests with
the peers themselves. In the common case when only a sub-
set of the peers moves at a time, the task of reconnection is
efficiently handled by the peers themselves. We have previ-
ously described the details of such a scheme in the context
of TCP connection migration [24].

2.3 Handle unexpected disconnections

The area of Internet mobility that has received the least at-
tention is support for efficient disconnection and reconnec-

1Indeed, the authors of this paper are guilty of having taken this posi-
tion in the past.

tion. While significant work has been done in the area of
disconnected file systems [13, 17], less attention has been
paid to preserving application communication when a dis-
connection occurs, enabling it to quickly resume upon re-
connection. The key observation about disconnections is
that they are usually unexpected. Furthermore, they last for
rather unpredictable periods of time, ranging from a few
seconds to several hours (or more). Today’s network stacks
terminate a connection as soon as a network disconnection
is detected, with unfortunate consequences—the applica-
tion (and often the user) has to explicitly reinitiate connec-
tivity and application state is usually lost.

Like all other aspects of network communication, we be-
lieve the system should therefore provide standard sup-
port for unexpected disconnection, enabling applications
to gracefully manage session state, releasing system re-
sources and reallocating them when communication is re-
stored. Even if the duration of the disconnection period
is short enough to avoid significantly impacting commu-
nication or draining system resources, the disconnection
and ensuing reconnection events are often hidden by cur-
rent network stacks, leaving the higher network layers and
application to eventually discover (often with unfortunate
results) that network conditions have changed dramatically.

2.4 Provide services at the end points

A great deal of previous work in mobility management
has relied on a proxy-based architecture, providing en-
hanced services to mobile hosts by routing communica-
tions through a (typically fixed) waypoint that is not col-
located with the host [3, 8, 9, 15, 20, 26]. It is often easier
to deploy new services through a proxy, as the proxy can
provide enhanced services in a transparent fashion, inter-
operating with legacy systems. Unfortunately, in order to
provide adequate performance, it is not only necessary to
highly engineer the proxy [15], but locate the proxy appro-
priately as well.

Several researchers have proposed techniques to migrate
proxy services to the appropriate location, avoiding the
need to preconfigure locations [8, 25]. Unfortunately, all
candidate proxy locations must be appropriately preconfig-
ured to participate. Further, in the face of general mobility,
proxies (or at least their internal state) must be able to move
with the mobile host in order to remain along the path from
the host to its correspondent peers. This is a complex prob-
lem [26]; we observe that it can be completely avoided if
the support is collocated with the mobile host itself.

3 Migrate approach

We now describe the Migrate approach to mobility, which
leverages application naming services and informed trans-
port protocols to provide robust, low-overheadcommunica-
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tion between application end points. We describe a session-
layer protocol that handles both changes in network attach-
ment point and disconnection in a seamless fashion, but is
flexible enough to allow a wide variety of applications to
maintain sufficient control for their needs.

3.1 Service model

The number of communication paradigms in use on the
Internet remains small, but the type and amount of mo-
bility support needed varies dramatically across modali-
ties [7]. In particular, the notion of a session is application-
dependent and varies widely, from a set of related connec-
tions (e.g. FTP’s data and control channels) to an individual
datagram exchange such as those often found in RPC-based
applications (e.g. a cached DNS response). As session
lengths grow longer and sessions become more complex in
terms of the system resources they consume, applications
can benefit from system support for robust communication
between application end points. However, due to the dis-
parate performance and reliability requirements of different
session-based applications, it is important that a mobility
service enables the application to dictate its requirements
through explicit choice of transport protocols and policy
defaults.

Hence we propose an optional session layer. This layer
presents a simple, unified abstraction to the application
to handle mobility: a session. Sessions exist between
application-level end points, and can survive changes in the
transport, network, and even other session layer protocol
states. It also includes basic check-pointing and resumption
facilities for periods of disconnection, enabling compre-
hensive, session-based state management for mobile-aware
applications. Unlike previous network-layer approaches,
our session layer exports the specifics of the lower layers to
the application, and provides an API to control them, if the
application is inclined to do so.

3.2 Session layer

Applications specify their notion of a session by explicitly
joining together related transport-layer connections (or des-
tinations in connectionless protocols). Once established, a
session is identified by a locally-unique token, or Session
ID, and serves as the system entity for integrated account-
ing and management. The session layer exports a unified
session abstraction to the application, managing the con-
nections as a group, adapting to changes in network attach-
ment point as needed. The selection of network end point
and transport protocol, however, remains completely under
the application’s control.

To assist in the timely detection of connectivity changes,
the session layer accepts notification from lower layers
(e.g., loss of carrier, power loss, change of address, etc.),

the application itself, or appropriately authorized external
entities that may be concurrently monitoring connection
state [2]. Since a session may span multiple protocols, con-
nections, destinations, and application processes, there may
be several sources of connectivity information. Regardless
of the source, the session manager handles notification of
disconnection and reconnection in a consistent fashion.

3.2.1 Disconnection.If a host can no longer communicate
with a session end point due to mobility, as signaled by
changes in the network layer state, transport layer failure,
or other mechanisms, it informs the application. If the ap-
plication is not prepared to handle intermittent connectivity
itself, the session layer provides appropriate management
services, depending on the transport layers in use, includ-
ing data buffering for reliable byte streams. Specifically, it
may block or buffer stream sockets, selectively drop unre-
liable datagrams, etc. Additional application and transport-
specific services can be provided, such as disabling TCP
keep-alives.

Depending on the system configuration, the session layer
may need to actively attempt to reestablish communication,
or it may be notified by network or transport layers when it
becomes available again. System policy may dictate trying
multiple network interfaces or transport protocols. In either
case, if the period of disconnection becomes appropriately
long (as determined by system and application configura-
tion), it will attempt to conserve resources by reducing the
state required in the network, transport, and session lay-
ers (with possibly negative performance implications upon
reconnection), and notify the application, enabling addi-
tional, domain-specific resource reallocation.

3.2.2 Reconnection.Upon reattachment, a mobile host
contacts each of its correspondent hosts directly, informing
them of its new location. Some transport layers may be
unable to adequately or appropriately handle the change in
network contexts. In that case, the session layer can restart
them, using the session ID to re-sync state between the end
points. In either case, the session layer informs the appli-
cation of reattachment, and resynchronizes the state of the
corresponding session layers.

The complexity of synchronization varies with the trans-
port protocols in use; a well-designed transport layer can
handle many things by itself. By using a transport-layer to-
ken, andnota network layer binding, the persistent connec-
tion model can provide limited support for changes in at-
tachment point, often with better performance than higher-
layer approaches [21, 24]. Similarly, the performance of
even traditional transport protocols can be enhanced when
the network layer exposes the appropriate state [3, 5]. Sim-
ilarly, grouping multiple transport instances between the
same end points into sessions can provide additional per-
formance improvement [2, 22].
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Legacy transport protocols may be completely unable to
handle changes in network addresses. In that case, the
session layer may initiate an entirely new connection, and
resynchronize them transparently at the session layer. In
the worst case, the application itself may be unable to han-
dle unexpected address changes, and provide no means of
system notification. Such applications are still supported
via IP encapsulation. The correspondent session layers es-
tablish an IP tunnel to the new end point, and continue to
send application data using the old address.

If a correspondent end point is no longer reachable (possi-
bly because the other end point also moved), the applica-
tion is instructed to perform another naming/location res-
olution operation in attempt to locate the previous corre-
spondent, returning a network end point (host, protocol,
port) to use for communication. The particular semantics
of suitable alternative end points and look-up failure are
application specific. It may be a simple matter of another
application-layer name resolution (perhaps a fresh DNS
query), or the application may which wish to perform its
own recovery in addition to or in place of reissuing the lo-
cation query.

While the amount overhead varies with the capabilities of
the available lower layer technologies, overhead is incurred
almost exclusively during periods of disconnectivity and
reconnection. This provides high performance for the com-
mon case of communication between static peers.

3.3 State management

In a spirit similar to Coda, our architecture considers dis-
connection to be a natural, transient occurrence that should
be handled gracefully by end hosts. For extended periods of
disconnection, resource allocation becomes an additional
concern. While managing application state is outside the
scope of our architecture, enabling efficient strategies is de-
cidedly not. In particular, since disconnection often occurs
without prior notice, applications may require system sup-
port to reclaim resources outside of their control.

There has been a great deal of study on application specific-
methods of dealing with disconnected or intermittent op-
eration. Most of it has focused on providing continued
service at the disconnected client, and has not addressed
the scalability of servers. If our approach becomes pop-
ular, and disconnected sessions begin to constitute a non-
negligible fraction of the connections being served, servers
will need to free resources dedicated to those stalled con-
nections, and be able to easily reallocate them later. We are
considering a variety of state management services the ses-
sion layer should implement, and briefly hypothesize about
two: migrating session state between the system and appli-
cation, and providing contextual validation of session state.

3.3.1 State migration.We believe the session abstraction
may be a useful way to compartmentalize small amounts of
connection state, reducing the amount of state applications
need to store themselves, and simplifying its management.
Furthermore this state could be tagged as being associated
with a particular communication session, and managed in
an efficient fashion together with system state [4]. Sys-
tem support may allow intelligent paging or swapping of
associated state out of core if the period of disconnection
becomes too long.

3.3.2 Context management.There is a significant amount
of context associated with a communication session, and
it may be the case that some (or all) of it will be inval-
idated by disconnection and/or reconnection. In particu-
lar, previous work has shown that context changes in the
transport layer can be leveraged to adapt application pro-
tocol state [23]. Hence any state the session layer man-
ages needs to be revalidated, possibly internally, possibly
through application-specific up-calls. Changes in context
may dictate that buffers be cleared, data be reformatted, al-
ternate transport protocols be selected, etc. This requires a
coherent contextual interface between the application and
the session layer.

4 Related work

The focus of the Migrate architecture is on preserving end-
to-end application communication across network location
changes and disconnections. Much work has been done in
the area of system support for mobility over the past few
years; this section outlines the work most directly related
to ours.

At the network-layer, several schemes have been proposed
to handle mobile routing including Mobile IP [20] and
multicast-based mobility [18]. Mobile IP uses a home
agent as to intercept and forward packets, with a route
optimization option to avoid triangle routing. The home-
agent-based approach has also been applied at the transport
layer, as in MSOCKS [15], where connection redirection
was achieved using a split-connection proxy, providing so-
called transport-layer mobility. Name resolution and mes-
sage routing were integrated to implement a “late binding”
option that tracks highly mobile services and nodes in the
Intentional Naming System [1].

Most TCP-specific solutions for preserving communica-
tion across network-layer changes [21, 24] do not handle
the problems associated with connections resuming after
substantial periods of disconnectivity. A “persistent con-
nection” scheme where the communication end-points are
location independent was proposed for TCP sockets and
DCE RPC [27], but the mapping between global endpoint
names and current physical endpoints is done through a
global clearinghouse, which notifies everyone of binding
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updates. Session layer mobility [14] explored moving en-
tire sessions by utilizing a global naming service to provide
endpoint bindings; address changes are affected through a
TCP-specific protocol extension.

5 Conclusion

In this paper, we have defined five salient issues concerning
host mobility in the Internet. We presented a set of design
guidelines for building a system to address these issues,
distilled from a decade of research in mobile applications
and system support for mobility on the Internet. Follow-
ing these principles, we outlinedMigrate, a basic session-
based architecture to preserve end-to-end application-layer
communication in the face of mobility of the end points.
We believe the general abstractions for disconnection, hi-
bernation, and reconnection provided by the session layer
define an appropriate set of interfaces to enable more ad-
vanced system support for mobility.
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