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Abstract

Compressing protocol headers has traditionally been an attractive
way of conserving bandwidth over low-speed links, including those
in wireless systems. However, despite the growth in recent years in
the number of end-to-end protocols beyond TCP/IP, header com-
pression deployment for these protocols has not kept pace. This
is in large part due to complexities in implementation, which of-
ten requires a detailed knowledge of kernel internals, and a lack
of a common way of pursuing the general problem across a va-
riety of end-to-end protocols. To address this, rather than defin-
ing several new protocol-specific standards, we present a unified
framework for header compression. This framework includes a sim-
ple, platform-independent header description language that proto-
col implementors can use to describe high-level header properties,
and a platform-specific code generation tool that produces kernel
source code automatically from this header specification. Together,
the high-level description language and code generator free pro-
tocol designers from having to understand any details of the tar-
get platform, enabling them to implement header compression with
relatively little effort. We analyze the performance of compression
produced using this framework for TCP/IP in the Linux 2.0 kernel
and demonstrate that unified, automatically-generated header com-
pression without significant performance penalty is viable.

1 Introduction

Limited bandwidth is one of the fundamental challenges in mo-
bile and wireless networking systems. Even as the current explosive
growth in mobile systems encourages the deployment of more wire-
less infrastructure and channels, bandwidth remains scarce, partic-
ularly in comparison with processor or storage technologies. In ad-
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dition, many mobile links have considerations such as power con-
sumption or transceiver circuit complexity reduce their possible
bandwidth beyond the raw limitations of the physical medium or
appropriate radio regulatory restrictions.

But, at a time where wireless applications are becoming increas-
ingly important, network protocols and particularly their headers
are becoming more varied and more complex. Specialized and
application-specific protocols (e.g., RTP/RTCP [29], RTSP [30],
HTTP [9], NFS [25], AFS [14], SDP [12], RDP [26], RPC [34],
Java RMI [35]), various tunneling protocols, and those of popu-
lar media players [28, 3], are proliferating as the networked world
moves beyond its previous staples of bulk FTP transfers and tel-
net. Yet these headers can be bandwidth intensive; for example,
the header bandwidth of an RTP streaming media transmission at
20ms intervals amounts to 16kbps, which can be significant for a
low-bandwidth wide-area wireless link. Furthermore, relatively lit-
tle consideration is often given in design to protocols’ behavior over
low-speed links because application designers are rightfully con-
cerned about correctness and performance over conventional Inter-
net paths.

In addition, established protocols are becoming more complex with
the addition of IPv6 [4] and Mobile IP support [18]. The TCP/IP
protocol header, which is 40 bytes, can add significant delays to
interactive applications that use small packets. IPv6 increases the
size of this header to 60 bytes, and with Mobile IPv6 encapsula-
tion, the header grows to 100 bytes. Additional TCP options such as
the timestamp option [16] contribute as well. Reducing this header
size, which can be a significant per-packet penalty for mobile sys-
tems, goes a long way toward making low-bandwidth wireless ap-
plications more responsive and efficient. Header compression is a
method to do this, taking advantage of the commonality of header
fields across packets on any flow.

Thus, many end-to-end protocols will benefit from header com-
pression over low-bandwidth links. However, designing and imple-
menting this, particularly in the core of a networking stack, can
be a daunting task. Making the changes usually requires making
detailed modifications to the operating system kernel and adding
various drivers. For example, adding a simple header compression
algorithm to the Linux PPP driver required modifying well over
400 lines in various operating system files and daemon source code
before a line of compression code could be written. This problem
becomes even worse when there are many platforms to support.
In addition, validating and re-checking assumptions is tedious, and
the appropriate debugging tools are scarce. As a result, header com-
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Figure 1: The general usage model in this framework: A high-level
protocol description is given to the code generator tool, which pro-
duces all the applicable driver code changes.

pression schemes end up not being deployed in many places even
when they may be beneficial.

Losses further complicate the picture. Any header compression
scheme requires some state to be maintained at each end of the
constrained link. Unfortunately, a simple compression scheme with
little loss resilience may get its connection state corrupted from a
lossy link and end up worse off than without the compression. In
addition, if the link is fast enough, the possible savings may not
be worth the extra error probability that any compression scheme
could introduce. Header compression should only be performed
when it is truly beneficial.

To address these problems, we have developed a unified approach
to the header compression problem by providing a generic com-
pression format and mechanism that may be tailored to various
end-to-end protocols. Furthermore, we provide a set of tools that
allows header compression code to be automatically generated and
deployed from this high-level description of a protocol. This in-
cludes a simple protocol description language to characterize the
predictability of the header fields, which is easily extensible to sup-
port any number of user-defined protocols. From the protocol de-
scriptions, our tools automatically generate all the necessary ker-
nel and driver source code for the target platform. Using standard
header compression error-recovery algorithms, the code also pro-
vides a measure of protection against link losses. Finally, our results
indicate that automatically generated header compression provides
similar performance to hand-optimized solutions.

We demonstrate our system in a prototype implementation in the
Point to Point Protocol (PPP) [31, 13] stack (version 2.3.5) of the
Linux 2.0.36 operating system using the Redhat 5.2 distribution.
The tools can be ported to accommodate other implementation plat-
forms from the same protocol description. Even when a platform
has not been targeted, the extended and unextended versions of the
drivers are all interoperable due to the compression negotiation fea-
tures in the link layer.

Given this, we envision that an organization wanting to improve
performance over various low-bandwidth links with header com-
pression would be able to quickly write or modify appropriate pro-
tocol descriptions for even obscure and specialized protocols it
uses. End-to-end protocol designers only need to produce protocol-
specific details of their header fields, specifying the properties of

these fields in a readable language. As illustrated in Figure 1, they
would then be able to automatically generate the appropriate driver
files for each necessary platform by running the code generation
scripts. This model produces a rapidly deployable header com-
pression solution for a designed protocol, optimized for low-speed
links, without requiring any platform-specific coding or extensive
effort.

1.1 Goals

The major goal of our work is to provide and evaluate a toolkit for
compressing protocol headers based on a high-level specification.
This goals of this toolkit can be broken down into:

Producing a generic, unified compression format that may be
customized for different protocols.

Providing a high-level language for characterizing important
features necessary for a protocol-specific header compression
algorithm.

Creating a platform for freeing the protocol designer from
having to deal with low-level OS kernel details.

Ensuring that errors can be tolerated by the resulting protocol.

Evaluating these generated protocols’ network performance,
as well as their use of the host machine both in terms of space
and CPU efficiency.

The rest of the paper follows the outline of these goals. Section
2 discusses related work, Section 3 provides an overview of the
compression scheme, and Section 4 discusses the header descrip-
tion language. Section 5 highlights error handling, while Sections
6, 7, 8, and 9 convey implementation, results, discussion, and our
conclusion.

2 Related work

One of the earliest examples of header compression was the Thin-
wire protocol [8], proposed in 1984, which uses a simple 20-bit
field to specify which of the packet header’s first 20 bytes have
changed. Thinwire was relatively protocol-neutral, but not opti-
mized for common traffic.

In early 1990, Van Jacobson proposed a TCP/IP-specific compres-
sion algorithm with many optimizations taking advantage of this
protocol’s intricacies [17]. Sending between 3-5 bytes of the 40-
byte header in the common case, VJ TCP header compression is
efficient, and the most widely deployed header compression pro-
tocol. However, VJ compression only works with TCP/IP packets,
and derives many of its strengths from its rigid specification.

Since then, specifications for the compression of a number of other
protocols have been written. Degermark proposed additional com-
pression algorithms for UDP/IP and TCP/IPv6 [5]. Detailed spec-
ifications for compressing these protocols, as well as others such
as RTP [29], were described in a number of subsequent RFCs in-
cluding 2507 [6], 2508 [1], and 2509 [7]. Each of these descriptions
specify a solution for a given protocol. While any protocol can be
characterized, building a new header compressor for that character-
ization must proceed from scratch every time. This impacts driver



availability, and, indeed, no header compression algorithms have
been very widely deployed since VJ TCP compression. We have
leveraged many ideas from this previous research to build a gener-
alized header compression tool.

3 Compression overview

Ideally, any header compression scheme will avoid sending redun-
dant data, while protecting the protocol from extra errors caused
by maintaining state over a potentially loss-prone link. In doing
this, the predictable properties of the underlying protocol need to be
identified and exploited. For example, VJ TCP header compression
identifies enough redundancy in TCP/IP to compress 40-byte head-
ers to as few as three bytes, including a two-byte checksum. As far
as any generalized compression scheme is concerned, the efficiency
will vary depending on the predictability of the protocol header and
how well this predictability can be captured in a specification.

Since many useful categorizations for fields have been identified
from previous work in header compression, we have chosen to use
similar terminology and style. The basic idea is to identify each
field in the protocol, which may be located at any bit offset and
length in the frame, and then to associate various attributes with the
field. While different schemes have been introduced for classifying
fields, we found it convenient to use a derivative of some of the
fields used by Degermark [5]. In particular, the four main attributes
for fields in our scheme are constant, delta, inferable, and random:

Constant fields do not change among the headers in a given
protocol session, connection, or “context.” These typically in-
clude the source and destination IP addresses.

Delta elements represent fields that change by small quantities
and may not change every time. An example of this field is
the TCP sequence numbers, where the compressor could gain
by sending the difference of the values between consecutive
packets. Since deltas may not change every packet, a bit field
can be used to send only non-zero changes.

Inferred fields can be determined based other known informa-
tion. This could include the packet length field, which can be
derived from the underlying framing layer.

Random fields, such as checksums, are elements with little
regular pattern that are best sent unchanged.

After classifying the header fields, the main idea behind compres-
sion is to send only the information that is needed to reconstruct
the header. In particular, only the delta and random fields need to
be sent per packet in the common case. Inferable fields need a for-
mula to derive the proper field value, but this does not require extra
data to be sent on a per-packet basis. Constant fields can be stored
at the receiver to decompress the packet, provided that there is a
mechanism to properly keep that information synchronized.

This information on the link is kept synchronized by occasionally
sending some uncompressed packets. These uncompressed “refer-
ence” packets will convey all the constant data necessary to expand
compressed packets that may be sent in the future. The details of
when reference packets are sent varies with the protocol and its er-
ror characteristics, but, for the most part, reference packets will only
be sent only a small fraction of the time.

Since a host may have several simultaneous connections, multiple
sets of constants are allowed to coexist in different contexts. The
problem is that individual streams of packets that each have con-
stants within their own stream may not share constants. This is sim-
ilar to the idea of having multiple lines in a memory cache. Thus,
to allow multiple sets of constants and hence multiple simultane-
ous connections efficiently, a small number of isolated contexts are
introduced. Normally, we use the same default value of 16 possi-
ble contexts that VJ compression uses. In specialized environments,
however, it may be beneficial to use a lower or higher maximum–
e.g. cellular phones may possibly only have one active connection
while PPP servers might have many more. Each packet is labeled
with a Context ID to show which set of constants it should use as
its context.

Context IDs are managed using a least-recently-used (LRU) algo-
rithm. A context is defined by a set of matching constant fields. To
determine a context for an outgoing packet, its fields are checked
against the constant fields of each active context. If a match is
found, the packet is sent with the matching context; otherwise, an
older context ID is reclaimed and used at the cost of sending an
uncompressed reference packet to change the context’s definition.
Since the number of contexts is preallocated, there is no need to free
context IDs before they get reused. This approach works regardless
of whether the protocol is connection-oriented or connectionless.

Given the classifications for the fields in a protocol, the compressed
packet format is easy to determine. Essentially, fields that need to
be sent are packed in order by their category. The general layout is
similar to how VJ TCP packets are formatted, with a bit-field, the
delta fields, and the random fields, since that is a reasonable way
to place the data. However, the goal is not to mimic VJ TCP or any
other format exactly1, but rather to generate an efficient compressed
packet format for any set of specified fields. Since this platform
generates both the compression and uncompression code, there is a
fair amount of latitude for producing an efficient encoding.

As illustrated in Figure 2, the first portion in a typical compressed
header is the Context ID. The next portion contains a bit-field,
mostly for flagging when a delta value has changed. In case the
flags are not byte-aligned, our implementation pads the bit field to
make it byte-aligned. As an optimization, the implementation at-
tempts to fill any unused space with any existing 1-bit long random
fields. Otherwise, the bits are assigned sequentially for each delta.

Following the flags are the delta values–the change between the
fields in two consecutive packets. These values are placed in the or-
der of the flagged bit fields. Finally, the last bytes of the compressed
header before the payload are the random values. The order of the
random values, and those of the delta bit fields, are predetermined
and do not change between packets.

One further step would have been to allow the user to further con-
trol what the compressed packet would look like. For example, one

1If the user wants VJ TCP exactly, link layers such as PPP typi-
cally employ a compression negotiation protocol for interoperabil-
ity by which VJ TCP could be used for TCP packets, generated RTP
could be used for RTP packets, generated UDP could be used for
non-RTP UDP packets, etc.
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Figure 2: Layout of a typical compressed header, including Context
ID, bit-field for the deltas, values for the selected deltas, and random
values.

could assign specific bits or combinations of bits2 to have predeter-
mined meanings. However, at this point, we are not certain about
the general usefulness of such a feature.

4 Specification language

The protocol description language is designed to be a simple
method for describing the characteristics of a protocol’s header
fields. This consists of describing individual fields as well as higher-
level rules and actions. The language itself is simple, allowing for a
parser implementation as a set of Perl programs [36]. We emphasize
that the designer of an arbitrary higher-layer protocol only needs to
write this description; everything else is automatically taken care
of.

To illustrate the semantics of our high-level description language
we refer to the specification code in Figure 3, which is used to com-
press IP headers. Some other protocols are included in the appen-
dices.

The set of lines at the beginning includes the packet identification
codes to be used by the link layer, PPP in this case, to tag the com-
pressed and uncompressed packets that the compressor sends. It
simply serves as a unique type to identify this compression scheme.

4.1 Fields

The next group of lines beginning with PField characterizes the
header fields. The syntax for field descriptions is:

PField name , fsize= size in bits ,
ptype= NOCHANGE, DELTA, INFERRED,
RANDOM ;

First, the user must describe the fields in the order that they ap-

2For instance, in VJ TCP, together
signify echoed terminal traffic, where the SEQ and ACK are both
incremented by the last packet size.

 
 
 

class IPCompress { 
         NiceName Generated_IP_Compressor; 
  Compressed_ID 0x0081; 
  UnCompressed_ID 0x0083; 
 
  PField protover, fsize=4, ptype=NOCHANGE; 
  PField hdrlen, fsize=4, ptype=NOCHANGE; 
  PField tos, fsize=8, ptype=NOCHANGE; 
   PField totlen, fsize=16, ptype=INFERRED, 
                 formula=[length]; 
  PField packetid, fsize=16, ptype=DELTA,         
          encoding=VARONETHREE,   
                 negatives=DISALLOWED; 
  PField fragments, fsize=16, ptype=NOCHANGE; 
   PField ttl, fsize=8, ptype=NOCHANGE; 
  PField prot, fsize=8, ptype=NOCHANGE; 
  PField checksum, fsize= 16, ptype=RANDOM; 
  PField sourceIP, fsize=32, ptype=NOCHANGE; 
  PField destIP, fsize=32, ptype=NOCHANGE; 
  
  PRule SendAsIP, ruletext=[protover]!=4; # IPv4 only 
 
         StateVar expireTime, type=int, initvalue=0; 
         PRule SendReference, ruletext=[curTime]>{expireTime}; 
         PAction WhenSendReference, actiontext= 
  {expireTime}=[curTime]+5*[ticksPerSecond]; 
         PAction WhenSendReference, actiontext= 
  PrintDebugMessage("Sent reference packet\n"); 
         PComment WhenSendCompressed, actiontext= 
  PrintDebugMessage("Sent compressed packet\n"); 
} 

Figure 3: Major portion of a specification for a simple IP compres-
sor

pear in the actual header. Thus, in the 20-byte IP header, the proto-
col version field comes first and the destination address comes last.
Next, when identifying each particular field the user can arbitrarily
choose the name of the field. Then the size of the header field is
specified in bits, so for example sourceIP, which is the source IP
address field in IP, is marked with fsize=32 for thirty-two bits. Any
combination of bit sizes is allowed, but the resulting implementa-
tion is more efficient if all the fields are byte-aligned. Following the
field size is the field type, which we described earlier. Because the
Source IP address does not change between packets, we mark it as
ptype=NOCHANGE to indicate a Constant field type.

The label NOCHANGE implies that for a given “context” or con-
nection, the field’s value does not change. With this in mind, a
packet needing to be compressed is determined to be in a given con-
text if all its NOCHANGE fields match the NOCHANGE fields of
the context. If the packet matches none of the available contexts, an
LRU algorithm finds an older context to reuse.

Random fields, such as the checksum, need no other information
since by definition they are sent verbatim every time.

The two additional field types are Inferred and Delta. Inferred fields
are not sent in a compressed header, but the compression code must
know how to recalculate the field. Therefore when an Inferred field
is specified, the user must include a formula, which is then be trans-
lated and integrated into the resulting C code. The syntax is as fol-



lows:

PField name , fsize= size in bits ,
ptype=INFERRED, formula= reconstruction
formula

The reconstruction formula above can use arbitrary expressions, in-
cluding values from the header and special keywords. These sub-
stituted values and keywords must be enclosed in brackets (e.g.
[protover]), after which our generation tool uses regular-expression
processing to translate these into C expressions. For the totlen field
in the example description, the value [length] is a special keyword
corresponding to the frame length. Beyond that, the values of any
field can be used, so [totlen-hdrlen*4] would yield the value of the
totlen field minus four times the hdrlen field. There are a number
of other places in the file using this bracket notation, which adds
power to the specification language.

Some other features have been added to the reconstruction formula
language to suit different needs. Using the % sign in the brack-
ets, such as [%UrgPointer], indicates whether or not the field has
changed, which is useful in a TCP/IP description. Various connec-
tion state variables can be kept after using the StateVar directive.
These state variables, referenced in braces, include expireTime
in Figure 3, and can be used to periodically refresh state in a con-
nectionless protocol.

For safety, the generated compressor checks whether the inferred
formula does in fact produce the correct results before sending the
packet. In the event that it does not, an uncompressed reference
packet is sent. This feature is also useful for encoding fields which
rarely change from a given value–a field can be set with formula=x,
and in the rare case where that is not true, a full packet is sent.

Deltas are the final field types in the language. These values are
supposed to change by small amounts, or perhaps not at all. Typi-
cally, the difference in these fields between packets can be sent in
less space than the whole fields themselves (e.g. a 32-bit sequence
number that increments by one segment size every packet), so that
is the general strategy. The complete syntax follows:

PField name , fsize= size in bits ,
ptype=DELTA, encoding= encoding method ,
negatives= [DIS]ALLOWED

Optimizations on this can be made. Since some fields seldom
change between packets, a bit-field is employed to prevent many
changes of 0 from being sent. And, in order to obtain maximum
flexibility, we also support a number of different encodings for the
differences.

Some applications may benefit from using a fixed-length encod-
ing scheme, knowing that the difference between fields almost al-
ways fits in perhaps 8, 16, or 32 bits. In the case where the dif-
ference does not fit, the packet needs to be sent uncompressed.
Otherwise, variable length encoding schemes may work well. The
VARONETHREE encoding, similar to the method for encoding dif-
ferences in VJ TCP, sends 8-bit differences (1-255) in one octet and
16-bit differences (256-65535) in three octets. It uses an initial zero

to signal the latter format. Variable length encoding works fairly
well for many fields in TCP/IP, but if this is not the case in others,
the encoding of a Delta field can be appropriately changed. Many
other possible encoding variations can be easily added to the lan-
guage, such as incorporating a “default change amount” for fields
that often change by a certain fixed size or adding a mechanism for
an adaptive encoding algorithm that learns how a field changes.

Other options for deltas include disallowing negative delta values,
which is useful for detecting a TCP retransmission; if an earlier
packet is resent, that causes a negative change in sequence number,
and it may signify than an error occured. This aids in error recovery.

4.2 Rules and actions

To further augment the language, we have provided the ability to
verify rules and execute actions in critical places. The basic syntax
for a rule looks as follows:

PRule Send[AsIP,Reference] ,
ruletext= formula to trigger rule ;

The rules used in the example description include additional
commands for when to pass the packet through as normal IP
(SendAsIP) and for when to send the packet uncompressed
(SendReference). These rules cause the ruletext to be evaluated
along with the rules that are naturally in the system.

In the SendAsIP example, the ruletext [protover]!=4 triggers the
packet not to be compressed if the IP version is not 4. Thus, IPv6
packets would be passed through this specific compressor without
processing. The SendReference rule in the example is used to
periodically refresh the compression state. In this case, an uncom-
pressed packet is sent every 5 seconds to help keep the context state
from errors.

Actions are statements executed at critical locations, and they are
formatted as shown below:

PAction whichaction ,
actiontext= action to execute ;

In the example IP code in Figure 3, an action is used to update a
state variable every time an uncompressed packet is sent. In par-
ticular, when the WhenSendReference condition is met, its ac-
tiontext = expireTime =[curTime]+5*[ticksPerSecond] action
is executed, which updates a state variable name expireTime, de-
fined elsewhere in the description, with a value derived from two
special-purpose quantities, curTime and ticksPerSecond.

Other potential uses of actions include printing debugging mes-
sages to the console when certain conditions are met. In addi-
tion to the WhenSendReference condition used in this example,
other conditions include WhenSendAsIP and WhenSendCom-
pressed, which encompasses the three possible output packet types
that this compressor can produce.



5 Error handling

A significant challenge with sending data over any medium, partic-
ularly wireless, is dealing with losses. While a corrupt packet in a
regular transmission situation can cause that packet to be lost, the
main problem is that a corrupt packet with header compression can
cause problems for future packets due to maintained state. For ex-
ample, in the case of VJ header compression, one corrupted packet
header will cause all future packets to be corrupted until an uncom-
pressed reference packet is sent, which will generally not happen
until a retransmission. This effectively disables TCP’s fast retrans-
mit algorithm and at least a transmission window worth of data is
dropped after the decompressor state is desynchronized from the
compressor.

Since the focus of our work is automated header compression gen-
eration, we confined the scope of error handling to match that of
standard header compressors. Nevertheless, we are confident that
the specification language can be extended to convey information
needed to support more sophisticated error recovery algorithms.
For now, however, we identify two areas where errors may affect
future packets: delta fields and context IDs. Deltas, including their
bit-fields and values, are susceptible since only inter-packet differ-
ences are represented. With context IDs, the number is mutated, so
both the intended and unintended contexts become desynchronized.
It would be possible to extend the tools to tag the most important
fields, such as the context ID, for forward error correction, as long
as this does not become excessively expensive in space or speed.

For connection-oriented protocols such as TCP/IP, uncompressed
reference packets need to be sent at the beginning of a given con-
text and whenever a corruption occurs, which can be signaled by
TCP retransmits. The method used in VJ TCP involves using hints
from the transport layer by noting that whenever a TCP retransmis-
sion takes place, the requested sequence number will be less than
the previous sequence number. This will cause a negative “delta”
for the sequence number. The same is true for the ACK numbers on
the ACK path. To implement this, the header description language
provides the ability on each delta to disallow negative delta values
and instead cause packets to be retransmitted. Disallowing the neg-
ative fields yields the same general error characteristics as the VJ
algorithm. Since the higher layer does the retransmission anyway,
we leave detecting and recovering from these errors to the transport
layer.

In connectionless protocols, such as those based on UDP, there is
usually no feedback that can be deduced from the transport layer.
Rather, most approaches make some use of the principle of soft
state [2, 27], which can keep the appropriate state updated by pe-
riodically sending uncompressed reference packets over the link.
In addition, the number of state changes is reduced, with the con-
cept of “generation numbers” from Degermark’s work on UDP/IP
to identify the state change to which a packet belongs [5]. Some of
this can be seen in the description of the IP header in Figure 3.

There is some debate over the merits of explicit retransmission re-
quests. The introduction of retransmission makes what could have
been a purely simplex transmission into a full duplex conversation
and can cause an implosion problem over multicast. The merits of
either side of this debate can be seen in reading Jacobson and Cas-

ner [1], who advocate retransmission in compressed RTP, and in
reading Degermark [5, 19], who advocates a pure simplex model
and repair attempts on damaged packet headers. In our implemen-
tation, we are agnostic toward either stance, although the code re-
flects the simplex model. Rather, the error handling characteristics
of the tool can be extended as the need arises, perhaps in a protocol-
specific manner.

5.1 Analysis

We now analyze the throughput of a TCP connection using header
compression, deriving the conditions under which compression is
worthwhile. The key to the analysis is to observe that if there are
no losses across the bandwidth-constrained link, header compres-
sion always has a marginal utility, under the reasonable assumption
that the computational costs of header compression are negligible.3

If the loss rate is higher than some threshold, then header com-
pression has the potential to degrade throughput because the loss
of one or more packets in a stream desynchronizes the state of the
decompressor relative to the compressor, and requires one or more
reference packets for recovery. Observe that all the packets sent in
the interim are unrecoverable, because they decompress to a mes-
sage with a bad end-to-end checksum and are therefore discarded
by the higher-layer protocol.

Suppose is the number of bits saved on average due to header
compression when no losses occur, the payload size in bits, and
the transmission bandwidth of the constrained link in bits/second.
Let be the average time for state resynchronization to occur
after a loss (for TCP, would be on the order of a retransmis-
sion timeout, ), the packet loss rate across the constrained
link, and the average round-trip time, which is the time to
recover a packet using a fast retransmission triggered by three du-
plicate acknowledgments [33]. We assume for tractability that link
packet losses are independently distributed and that a single loss
causes desynchronization. Then, when header compression is en-
abled, single packet losses in effect become burst losses of size

packets, distributed at the same loss rate as the origi-
nal case.

Consider the average time for a payload of size to be transmit-
ted when no header compression is done. With probability ,
it takes time , while with probability , it takes time

, since the loss of a packet followed by a retransmis-

sion occurs in a time duration on the order of , and is
the time for the packet to get successfully get through the second
time round. A third term equal to
accounts for the case when the original transmission and a retrans-
mission are lost, followed by a successul one after a TCP time-
out. We ignore higher-order terms in , as they occur in the header-
compressed case as well, and are not significant when is relatively
small.

3Given a relatively low-bandwidth link. Compression times in
our implementation are generally on order of 5-25 s, dominated
by a packet memory copy. This is 1-3 bits on a 115kbs link. If it be-
comes more significant, it can simply be subtracted from the header
savings in the analysis.



Simplifying this expression leads to the following expression for
:

(1)

When header compression is implemented, a single loss requires
time to recover, but the no-loss case only takes time . This
leads to the following expression for :

(2)

This factor includes an , but after that, we need to ac-
count for the required retransmission. The TCP window consists
of up to packets, and the connection resumes in slow start
[15]. We assume that is cut in half, with half of the pack-
ets being transmitted using slow start. The number of round trips4

to reach that point is . At this point, the remaining
packets can be transmitted in one final round trip since the window
size is equal to the amount of remaining data:

(3)

Thus, we conclude that , provided that
, which yields:

(4)

For a typical telnet-like TCP application over a 28.8 Kbps link with
an RTO of 1.5 s and an RTT of 200 ms, header compression is a gain
when the packet loss rate is less than about 0.3%. Lower transfer
rates allow it to be a gain at higher loss rates. Figure 4 shows how
beneficial it is for different payload sizes to be compressed with
these same parameters as a function of the bit error rate.

For an unreliable protocol such as RTP [29] where corrupted data
is dropped rather than retransmitted, the application observes a
higher burst error rate. Given an average synchronization time after
a loss of , each single packet loss will cause a burst loss of

packets, where is the stream’s packet transmission
rate. This in effect also magnifies the compressed packet loss rate

to , assuming that errors on input loss rate
are uniformly distributed.

The value of here depends on the resynchronization mech-
anism. A simple periodic refreshing mechanism has the potential to
produce large bursts, whereas an explicit notification scheme may
limit this burst size on the order of an . A packet repair mech-
anism such as the “twice” algorithm [5] decreases the loss rate by
avoiding the need to resynchronize in some cases.

How this effects the end-to-end protocol and target application de-
pends on the protocol’s tolerance for error. Any application using

4We assume no delayed ACKs. The analysis for delayed ACKs
is similar.
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Figure 4: Header compression ratio for different payload sizes as
the bit error rate is varied, assuming a 28.8Kbps link, an RTT of
200ms, and an RTO of 1.5s. When the ratio falls below one, header
compression is not advantageous.

an unreliable protocol should be expected to operate at a “normal”
quality under some error rate, . Consequently, if using header
compression increases the loss rate beyond what is acceptable to the
application, e.g., , the compression should be turned
off.

6 Implementation

In this section we describe the tools for converting a specification in
the description language to a target platform and the approach for
using the produced code. The process for deploying header com-
pression in any environment can be thought of in three parts: writing
the protocol description, which is platform-independent; generating
the C code from the description; and deploying the produced code.
Since the header description language was described in Section 3,
the latter two parts occupy this section.

6.1 Code generation

The tools for generating the C code were written using Perl scripts
for simplicity. We also used a utility called Jeeves [32], a Perl-based
tool for aiding the development of code generation programs. The
scripts work by parsing the protocol’s high-level description and
then expanding a C “template” file based on the description.

The template file is the code outline that the tools use to translate
the header information found in the description file to protocol-
dependent C compression code. The template file is essentially C
code with Perl generation directives interspersed. Instead of pre-
senting every aspect of the code generation process, we mention
some particulars of the methodology. This includes the means by
which we implement the protocol fields and an outline of the core
functions in the output file. We note that higher layer protocol de-
signers do not have to deal with this template code at all.

6.1.1 Core compression functions

In our implementation, after the tool has evaluated the protocol de-
scription and template files, it generates C code for the compression



routines and various support files for integration into the Linux ker-
nel. The core of the compressor consists of three routines:

int compress(struct connect data, char*
input buffer, int buffersize, char* output buffer,
char** real output, int* output type);

int uncompress(struct connect data, char*
input buffer, int buffersize);

int remember(struct connect data, char*
input buffer, int buffersize);

The above are function prototypes for the compression routines that
are generated by the tool. Compress() decides whether an outgo-
ing packet can be compressed can send it as one of three types:

Regular IP (entirely passed through, e.g., a UDP packet
through a TCP compressor),

Compressed packet (deltas + random)

Uncompressed reference packet (all the data)

On the receiving end, platform support code calls uncompress()
when a compressed packet is received and remember() when an
uncompressed reference packet arrives. The remember() function
stores the constants and last delta values necessary to decompress
future packets for a given Context ID. Likewise, uncompress()
uses this stored context state to decompress the packets it receives.
Since the tool produces both the compression and decompression
portions, it is free to make as many optimizations as possible be-
tween the sender and receiver to reduce the link bandwidth.

6.1.2 Field support

In the generated C compressor code, one key to the design is creat-
ing #define macros to abstract the process of retrieving and setting
each header field. This is particularly important since we allow pro-
cessing of fields at any bit alignment.

To produce these #define macros, we have a large amount of Perl
code near the top of the template file to generate appropriate ac-
cessor functions given the bit sizes and alignments. The Perl code
needs to generate C #define code to correct for network byte order
and to work at any bit alignment. But, for the common byte-aligned
case, the code is generated as efficiently as possible. Shown below
is an example of the generated #define code.

#define GEThdrlen(obj) (((obj)[0] (0))&15)

#define SEThdrlen(obj,val)
((obj)[0])=((((obj)[0])& 15) ((val&15) 0))

GEThdrlen and SEThdrlen are generated by the tool based on the
framework in our template file. Since the header length field is only
four bits and because C does not provide a simple way to access bit
information, this tool generates the appropriate shifts and masks to
access the data.

6.1.3 Platform support code

Before any of these compression functions can be used on incom-
ing data, some support infrastructure needs to be in place. The com-
pression code is generated using a template, though separately from
the core compressor code to isolate platform-specific portions. We
used the Linux operating system in our implementation, and we
used PPP as the underlying link layer because most low-bandwidth
links today use PPP framing.

PPP is a protocol to tunnel IP and other protocols, such as IPX [24]
and Appletalk [11], over a point-to-point link, and is particularly
suited for low bandwidth links. There are two important capabilities
in PPP that support these new compression modes, which are packet
tagging and its native header compression negotiation protocol.

Each packet sent in PPP is tagged with a specific packet type. This
allows the receiver to give incoming packets to the correct process-
ing code–IP, AppleTalk, and VJ TCP compressed packets can be
demultiplexed to the proper receiving routines. These packet tags,
standardized by the IETF, are 16-bit quantities [31], yet only a small
number of them5 are used in practice. It is foreseeable that the IETF
could allocate an “experimental” region for these tags. In any case,
we allocate two packet tags for every new header compressor. This
includes a tag to identify Compressed packets and a tag to identify
Uncompressed Reference packets. Packets that are not supported
by a given compressor retain their Regular IP tag. At that point,
Regular IP packets may in fact be processed in turn by subsequent
header compressors until one can successfully handle that packet
type.

The IP Control Protocol in PPP (IPCP) is then used to negotiate
which packets can be sent within a PPP connection [23]. Among
its many options, the IPCP can negotiate for supported header
compressor algorithms for the link. This is an extensible proto-
col already used for negotiating VJ TCP compression. Here, each
side communicates the compression protocols which it understands,
identified by their packet tags, and proceeds by sending affirming
and negating messages until the maximal common set is mutually
agreed upon. The platform-specific template file generates this ne-
gotiation code for every header compressor specification in the de-
scription.

6.2 Platform deployment

The tools eventually generate fifteen platform-specific files in the
Linux implementation for the compression infrastructure, in addi-
tion to a C and header file produced for each generated header com-
pressor type. These platform files include:

Kernel PPP code, including the compression/decompression
routines and modifications to allow the PPP code to call these
new routines.

Modifications to the PPP daemon, so that it might negotiate
the use of the generated algorithms with other PPP daemons
using the IPCP.

5Less than a dozen (out of a namespace represented by a 16-bit
field) in our Linux PPP v2.3.5 implementation.
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Figure 5: Comparing compression ratios of different classes of traf-
fic between generated TCP code and Van Jacobson TCP compres-
sion.

An enhanced PPPStats program to generate extra statistics
and to aid in debugging.

In practice, compilation and deployment is not very difficult–the
generating scripts produce two tar files, one which should be un-
packed in the kernel source directory and the other which should be
unpacked in the PPP source directory. At this point, the kernel does
need to be rebuilt by invoking a Makefile, but otherwise the deploy-
ment process is fairly straightforward. With extra scripts, this could
be automated to generate appropriate files for many platforms, but
we have found the current deployment process to be convenient
enough.

7 Results

We have a working implementation of the system, including de-
scriptions for a number of protocols such as TCP/IP, UDP, and
RTP. In addition, the header compression language supports fea-
tures such as per-context state variables and using them in formu-
lae, as well as support for passing variable length fields such as IP
options.

The experiments for this section were done using a laptop computer
connected to a desktop host via a 115Kbps null modem cable. Both
machines are Pentium II systems, running the RedHat 5.2 Linux
distribution, including kernel version 2.0.36 and PPP version 2.3.5.
We made further modifications in the kernel to simulate drop rates.

7.1 Performance

One of our major goals was to compare the generated compression
protocols with hand-produced equivalents, both in terms of space
and speed efficiency. Despite the different protocols that could be
generated, the best available baseline for comparison is VJ TCP,
which has been deployed widely in part due to its space and speed
efficiency.

The three classes of traffic analyzed for the TCP/IP tests were Bulk,
ACK, and simulated Interactive traffic. The Bulk data test included
transferring a 3MB file using scp over the 115kbps link. The MTU
was 1536 bytes. The ACK traffic corresponds to the bulk data ACKs
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Figure 6: An illustration of more specific characterization of a pro-
tocol (Naive IP vs. IP vs. full TCP/IP) allowing better compression.

from the reverse link for this test. Interactive traffic was simulated
with a Java program that sent a text file to the destination echo port
with a random inter-character time distributed between 0 and 250
ms. The comparison graphs display the ratio between the total num-
ber of bytes sent after using the compressor, including those sent as
uncompressed and reference packets, to the number of bytes input
to the compressor.

From the comparison graph in Figure 5 between our generated
TCP/IP compressor implementation and the VJ implementation, we
make several observations. For bulk traffic and ACK traffic, the re-
sults are roughly even. In the case of bulk traffic, there were no
significant gains from saving 30 bytes on a 1500 byte packet. ACK
traffic, since it has no payload, experiences much better compres-
sion properties, which might also speed TCP/IP window size con-
vergence. Interactive traffic, which primarily consists of 41-byte
packets compared to 40-byte ACK packets, compresses better than
ACK traffic in both cases. This is partially due to smaller inter-
packet deltas that can be encoded in 1 byte rather than 3 bytes.
But, the performance for the VJ algorithm is still noticeably bet-
ter. The better performance stems from some special cases the VJ
algorithm handles, such as echo traffic mode. This echo mode is sig-
nified by special-case bit combinations and signifies that the ACK
and Sequence numbers both increment by the last packet size. From
this observation, we learn that the benefit from handling this special
case is in fact significant, and that adding these for our TCP com-
pressor would be a good idea.

One hypothesis that we wanted to quantify was whether giving
more specific information about a protocol enables a more effi-
cient compressor to be written. To this end, we generated three
compressors, giving them different amounts of information about
the TCP/IP protocol. This included a Naive IP compressor, which
treats every field as a delta; an IP-only compressor; and our TCP/IP
compressor from the last example. From the tests shown in the Fig-
ure 6, we find that extra specificity helps, but in this case, defining a
larger part of header (e.g. IP vs. TCP/IP) gave a better incremental
improvement than defining an existing portion better (e.g. Naive IP
vs. IP). The difference between the Naive IP and regular IP com-
pressor was much smaller than expected, which indicates that a
naive compressor is not a particularly poor compressor. Most of
the improvement came after adding the 20-byte TCP header to the
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Figure 7: Average CPU time in protocol compression code by
classes of traffic for three generated protocols, then for Van Jacob-
son compression.

analysis. This indicates that it may be fruitful to continue work to
higher-level layers, research that our platform effectively enables.

To test CPU efficiency, we measured the time used by the compres-
sion code with CPU cycle counters. We tested the three different
compressors outlined in the specificity analysis and compared the
results to the results of VJ TCP/IP. Overall, as the graph in Figure 7
shows, the generated code does incur a performance penalty, partic-
ularly with the full-blown TCP/IP example, but it is relatively small.
Much of the inefficiency comes from the simplifying abstractions
and not being able to do comparisons and assignments in the most
efficient manner. One factor that buffered the differences across the
board in our specific platform is that the compressor needs to do a
memory copy of the payload to the end of the compressed packet
being constructed. This dominates, particularly in the bulk case.

One interesting factor we observed was that given a description
of a protocol in an RFC (e.g. RTP), we could often implement a
rough characterization of it using the generation tools in much less
time than it took to compile the resulting code and test the protocol.
There was some trial and error in refining the various protocols de-
scriptions, as an incorrect characterization could cause all packets
to be sent as uncompressed. One could also further refine the gen-
erated C code if desired, but what we have seems to be a promising
way to compress arbitrary end-to-end protocols.

8 Discussion

After finding that specificity does significantly increase the proto-
col’s space efficiency, particularly as the specification spans more
protocol layers, an obvious next step is to look at other higher-level
protocol headers. Looking at usage trends on the Internet, we pro-
ceeded to consider string-based protocols such as HTTP [9].

The specification language as described works well for binary for-
mats where most of the data fields are fixed in length. We have
experimented with support for some variable length fields as would
be needed to work with IP options, but one step beyond this is sup-
port for string-based protocols, particularly HTTP. Before embark-
ing on implementing string-based primitives, we first ran some tests
on HTTP trace data to determine if the task would be worthwhile.

Using dialup Web trace data from UC Berkeley [10], we found that
even with making generous assumptions for the size the the HTTP
request header, only 6.3% of the data packets transmitted consist
of HTTP request and response headers. Seeking to minimize the
effects of a few outlying large files, we found that restricting the
statistics to downloads under 250kB, 50kB, and 10kB yielded total
header bandwidth of 9.3%, 11.1%, and 19.9%, respectively. Even
if many web downloads are under 10kB, we did not feel that an im-
provement on the order of 20% would be worth putting the equiv-
alent of an HTTP parser in the operating system kernel, even one
that was automatically generated.

For this reason, while we recognize that there could be some ob-
servable gains from a compressor that simply tokenized string-
based protocols and kept minimal state, we decided that this type
of compression for the most part would not be worth pursuing im-
mediately in the context of HTTP.

In addition, some further work on error handling and adding support
for either error reconstruction algorithms such as the “twice” algo-
rithm [5] or explicit retransmission requests [19] is one more area
where work can be done. More work as well on efficiently packing
the data into a compressed packet format, as well as providing spe-
cial flag combinations to exploit for the common case, may also be
helpful.

Integration and analysis with IP Security [22] is another area for
future work. While very little of an Encapsulating Security Payload
[21] packet header is compressible, packets using only the Authen-
tication Header [20] can be compressed since the fields are unen-
crypted and the header can be fully reconstructed for the receiver
authentication layer to process.

We believe that our work has demonstrated the effectiveness of a
unified header compression framework and that it is relatively easy
for higher-layer protocol designers to specify compression direc-
tives in a simple language. More work in this area would also in-
clude interfacing to more operating systems and link layers. In our
own experience, a disproportionate amount of the effort was spent
on Linux hacking and getting the platform to work correctly. We
suspect from the experience that the amount of necessary back-
ground kernel effort required for any header compression does in
fact contribute to hindering its widespread implementation and de-
ployment.

9 Conclusion

We conclude that it is in fact possible to automatically generate
header compression algorithms both quickly and efficiently from a
high-level description of the protocol. Furthermore, we find that the
generated code can behave roughly comparably to hand-designed
algorithms and code. Our tool is flexible enough to handle sev-
eral available protocols, and it can be expanded upon in the future
to support emerging protocols and applications. We therefore be-
lieve that it is the right direction given the increasing proliferation
of application-level protocols.

The source code and examples for the tool are available at http:
//nms.lcs.mit.edu/software/headercompress/.
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A Other Protocol Descriptions

TCP.sc - a description of the TCP/IP protocol

class TCP

NiceName Generated TCP Lookalike;
Compressed ID 0x0085;
UnCompressed ID 0x0087;
Parameter maxslots, ipcp type = u char,

uput=PUTCHAR, uget=GETCHAR, size=1,
ioctlname=PPPIOCSMAXGEN0081SLOT,
pmin=2, pmax=16, pdefault=16;

PField protover, fsize=4, ptype=NOCHANGE;
PField hdrlen, fsize=4, ptype=NOCHANGE;
PField tos, fsize=8, ptype=NOCHANGE;
PField totlen, fsize=16, ptype=INFERRED,

formula=[length], checkformula=false;
PField packetid, fsize=16, ptype=DELTA,

encoding=TWOBYTE, negatives=DISALLOWED;
PField fragments, fsize=16, ptype=NOCHANGE;
PField ttl, fsize=8, ptype=NOCHANGE;
PField prot, fsize=8, ptype=NOCHANGE;
PField IPchecksum, fsize= 16, ptype=RANDOM;
PField sourceIP, fsize=32, ptype=NOCHANGE;
PField destIP, fsize=32, ptype=NOCHANGE;
PField TCPsourcePort, fsize=16, ptype=NOCHANGE;
PField TCPdestPort, fsize=16, ptype=NOCHANGE;
PField TCPsequenceno, fsize=32, ptype=DELTA,

encoding=VARONETHREE,
negatives=DISALLOWED;

PField TCPACKNo, fsize=32, ptype=DELTA,
encoding=VARONETHREE,
negatives=DISALLOWED;

PField TCPhdrlen, fsize=4, ptype=NOCHANGE;
PField TCPreserved, fsize=6, ptype=NOCHANGE;
PField URGflag, fsize=1, ptype=INFERRED,

formula=[%UrgPointer], checkformula=true;
PField ACKflag, fsize=1, ptype=RANDOM; PField

PSHflag, fsize=1, ptype=RANDOM;
PField RSTflag, fsize=1, ptype=INFERRED,

formula=0, checkformula=false;
PField SYNflag, fsize=1, ptype=INFERRED,

formula=0, checkformula=false;
PField FINflag, fsize=1, ptype=INFERRED,

formula=0, checkformula=false;
PField WindowSize, fsize=16, ptype=DELTA,

encoding=VARONETHREE,
negatives=DISALLOWED;

PField TCPchecksum, fsize=16, ptype=RANDOM;
PField UrgPointer, fsize=16, ptype=DELTA,

encoding=VARONETHREE,
negatives=DISALLOWED;

PFlag DetailedDebugMessages, status=off;
# want IP version 4

PRule SendAsIP, ruletext=[protover]!=4;
# don’t handle IP options here

PRule SendAsIP, ruletext=[hdrlen] 5;
# make sure it’s TCP (proto#6)

PRule SendAsIP, ruletext=[prot]!=6;
# don’t send fragments

Prule SendAsIP, ruletext=[fragments]&0x3fff;
# don’t send SYN/FIN/RST packets

PRule SendAsIP, ruletext=[SYNflag]!=0;
PRule SendAsIP, ruletext=[FINflag]!=0;
PRule SendAsIP, ruletext=[RSTflag]!=0;
PComment WhenSendAsIP,

Actiontext=PrintDebugMessage (”Sent as IP n”);
PComment WhenSendReference,

actiontext=PrintDebugMessage (”Sent reference
packet n”);

PComment WhenSendCompressed,
actiontext=PrintDebugMessage(”Sent compressed
packet n”);

PVarField IPOptions, $ruletext=[hdrlen] 5,
$sizetext=([hdrlen]-5) 4, $maxsize=54,
$starttext=4 5;

NaiveIP.sc - a “naive” protocol description based on Thinwire [8]
which contains a large bit-field to indicate which of the first 20
header octets have changed.

class NaiveIP

NiceName Naive IP;
Compressed ID 0x0089;
UnCompressed ID 0x008b;
Parameter maxslots, ipcp type = u char,

uput=PUTCHAR, uget=GETCHAR, size=1,
ioctlname=PPPIOCSMAXGEN0081SLOT,
pmin=2, pmax=16, pdefault=16;

PField fld1, fsize=8, ptype=NOCHANGE;
PField fld2, fsize=8, ptype=DELTA,

encoding=ONEBYTE, negatives=ALLOWED;
PField fld3, fsize=8, ptype=DELTA,

encoding=ONEBYTE, negatives=ALLOWED;
PField fld4, fsize=8, ptype=DELTA,

encoding=ONEBYTE, negatives=ALLOWED;
PField fld5, fsize=8, ptype=DELTA,

encoding=ONEBYTE, negatives=ALLOWED;
... fields 6 – 17 ...
PField fld18, fsize=8, ptype=DELTA,

encoding=ONEBYTE, negatives=ALLOWED;
PField fld19, fsize=8, ptype=DELTA,

encoding=ONEBYTE, negatives=ALLOWED;
PField fld20, fsize=8, ptype=DELTA,

encoding=ONEBYTE, negatives=ALLOWED;
PFlag DetailedDebugMessages, status=off;
StateVar expireTime, type=int, initvalue=0;
PRule SendReference,

ruletext=[curTime] expireTime ;
PAction WhenSendReference,

actiontext= expireTime =[curTime]+
5 [ticksPerSecond];


