
System Support for Bandwidth Management and Content
Adaptation in Internet Applications

David Andersen, Deepak Bansal, Dorothy Curtis, Srinivasan Seshan∗, Hari Balakrishnan
M.I.T. Laboratory for Computer Science

Cambridge, MA 02139
{dga, bansal, dcurtis, srini, hari}@lcs.mit.edu

Abstract

This paper describes the implementation and evaluation
of an operating system module, the Congestion Manager
(CM), which provides integrated network flow manage-
ment and exports a convenient programming interface
that allows applications to be notified of, and adapt to,
changing network conditions. We describe the API by
which applications interface with the CM, and the archi-
tectural considerations that factored into the design. To
evaluate the architecture and API, we describe our im-
plementations of TCP; a streaming layered audio/video
application; and an interactive audio application using
the CM, and show that they achieve adaptive behavior
without incurring much end-system overhead. All flows
including TCP benefit from the sharing of congestion
information, and applications are able to incorporate
new functionality such as congestion control and adap-
tive behavior.

1 Introduction

The impressive scalability of the Internet infrastructure
is in large part due to a design philosophy that advo-
cates a simple architecture for the core of the network,
with most of the intelligence and state management im-
plemented in the end systems [11]. The service model
provided by the network substrate is therefore primar-
ily a “best-effort” one, which implies that packets may
be lost, reordered or duplicated, and end-to-end delays
may be variable. Congestion and accompanying packet
loss are common in heterogeneous networks like the In-
ternet because of overload, when demand for router re-
sources, such as bandwidth and buffer space, exceeds
what is available. Thus, end systems in the Internet
should incorporate mechanisms for detecting and react-
ing to network congestion, probing for spare capacity
when the network is uncongested, as well as managing
their available bandwidth effectively.

Previous work has demonstrated that the result of
uncontrolled congestion is a phenomenon commonly
∗ Carnegie Mellon University, Pittsburgh, PA;

srini@seshan.org

called “congestion collapse” [9, 14]. Congestion collapse
is largely alleviated today because the popular end-to-
end Transmission Control Protocol (TCP) [31, 41] in-
corporates sound congestion avoidance and control al-
gorithms. However, while TCP does implement con-
gestion control [19], many applications including the
Web [7, 13] use several logically different streams in par-
allel, resulting in multiple concurrent TCP connections
between the same pair of hosts. As several researchers
have shown [3, 4, 28, 29, 43], these concurrent connec-
tions compete with – rather than learn from – each
other about network conditions to the same receiver,
and end up being unfair to other applications that use
fewer connections. The ability to share congestion in-
formation between concurrent flows is therefore a useful
feature, one that promotes cooperation among different
flows rather than adverse competition.

In today’s Internet is the increasing number of appli-
cations that do not use TCP as their underlying trans-
port, because of the constraining reliability and order-
ing semantics imposed by its in-order byte-stream ab-
straction. Streaming audio and video [26, 35, 42] and
customized image transport protocols are significant ex-
amples. Such applications use custom protocols that
run over the User Datagram Protocol (UDP) [30], often
without implementing any form of congestion control.
The unchecked proliferation of such applications would
have a significant adverse effect on the stability of the
network [4, 9, 14].

Many Internet applications deliver documents and
images or stream audio and video to end users and
are interactive in nature. A simple but useful figure-of-
merit for interactive content delivery is the end-to-end
download latency; users typically wait no more than a
few seconds before aborting a transfer if they do not
observe progress. Therefore, it would be beneficial for
content providers to adapt what they disseminate to the
state of the network, so as not to exceed a threshold
latency. Fortunately, such content adaptation is possi-
ble for most applications. Streaming audio and video
applications typically encode information in a range of
formats corresponding to different encoding (transmis-
sion) rates and degrees of loss resiliency. Image encod-
ing formats accommodate a range of qualities to suit a

variety of client requirements.
Today, the implementor of an Internet content dis-

semination application has a challenging task: for her
application to be safe for widespread Internet deploy-
ment, she must either use TCP and suffer the conse-
quences of its fully-reliable, byte-stream abstraction, or
use an application-specific protocol over UDP. With
the latter option, she must re-implement congestion
control mechanisms, thereby risking errors not just in
the implementation of her protocol, but also in the
implementation of the congestion controller. Further-
more, neither alternative allows for sharing conges-
tion information across flows. Finally, the common
application programming interface (API) classes for
network applications—Berkeley sockets, streams, and
Winsock [32]—do not expose any information about the
state of the network to applications in a standard way1.
This makes it difficult for applications running on ex-
isting end host operating systems to make an informed
decision, taking network variables into account, during
content adaptation.

1.1 The Congestion Manager
Our previous work provided the rationale, initial design,
and simulation of the Congestion Manager, an end-
system architecture for sharing congestion information
between multiple concurrent flows [4]. In this paper, we
describe the implementation and evaluation of the CM
in the Linux operating system. We focus on a version
of the CM where the only changes made to the current
IP stack are at the data sender, with feedback about
congestion or successful data receptions being provided
by the receiver CM applications to their sending peers,
which communicate this information to the CM via an
API. We present a summary of the API used by applica-
tions to adapt their transmissions to changing network
conditions, and focus on those elements of the API that
changed in the transition from the simulation to the im-
plementation.

We evaluate the Congestion Manager by posing and
answering several key questions:

Is its callback interface, used to inform ap-
plications of network state and other events, ef-
fective for a diverse set of applications to adapt
without placing a significant burden on develop-
ers?

Because most robust congestion control algorithms
rely on receiver feedback, it is natural to expect that
a CM receiver is needed to inform the CM sender of
successful transmissions and packet losses. However,
to facilitate deployment, we have designed our system
to take advantage of the fact that several protocols in-
cluding TCP and other applications already incorporate
some form of application-specific feedback, providing
1 Utilities like netstat and ifconfig provide some infor-

mation about devices, but not end-to-end performance
information that can be used for adapting content.

the CM with the loss and timing information it needs
to function effectively.

Using the CM API, we implement several case stud-
ies both in and out of the kernel, showing the applica-
bility of the API to many different application archi-
tectures. Our implementation of a layered streaming
audio/video application demonstrates that the CM ar-
chitecture can be used to implement highly adaptive
congestion controlled applications. Adaptation via the
CM helps these applications achieve better performance
and also be fair to other flows on the Internet.

We have also modified a legacy application—the In-
ternet audio tool vat from the MASH toolkit [24]—
to use the CM to perform adaptive real-time delivery.
Since less than one hundred lines of source code mod-
ification was required to CM-enable this complex ap-
plication and make it adapt to network conditions, we
believe it demonstrates the ease with which the CM
makes applications adaptive.

Is the congestion control correct?
As a trusted kernel module, the CM frees both trans-

port protocols and applications from the burden of im-
plementing congestion management. We show that the
CM behaves in the same network-friendly manner as
TCP for single flows. Furthermore, by integrating flow
information between both kernel protocols and user ap-
plications, we ensure that an ensemble of concurrent
flows is not an overly aggressive user of the network.

In today’s off-the-shelf operating systems,
does the CM place any performance limitations
upon applications?

We find that our implementation of TCP (which
uses the CM for its congestion control) has essentially
the same performance as standard TCP, with the added
benefits of integrated congestion management across
flows, with only small (0-3%) CPU overhead.

In a CM system where no changes are made to the
receiver protocol stack, UDP-based applications must
implement a congestion feedback mechanism, resulting
in more overhead compared to the TCP applications.
However, we show that these applications remain vi-
able, and that the architectural change and API calls
reduce worst-case throughput by 0 - 25%, even for appli-
cations that desire fine-grained information about the
network on a per-packet basis.

To our knowledge, this is the first implementation
of a general application-independent system that com-
bines integrated flow management with a convenient
API to enable content adaptation. The end-result is
that applications achieve the desirable congestion con-
trol properties of long-running TCP connections, to-
gether with the flexibility to adapt data transmissions
to prevailing network conditions.

The rest of this paper is organized as follows. Sec-
tion 2 describes our system architecture and implemen-
tation. Section 3 describes how network-adaptive appli-
cations can be engineered using the CM, while Section 4
presents the results of several experiments. In Section 5,

we discuss some miscellaneous details and open issues
in the CM architecture. We survey related work in Sec-
tion 6 and conclude with a summary in Section 7.

2 System Architecture and Implemen-
tation

The CM performs two important functions. First, it en-
ables efficient multiplexing and congestion control by in-
tegrating congestion management across multiple flows.
Second, it enables efficient application adaptation to
congestion by exposing its knowledge of network con-
ditions to applications. Most of the CM functionality
in our Linux implementation is in-kernel; this choice
makes it convenient to integrate congestion manage-
ment across both TCP flows and other user-level pro-
tocols, since TCP is implemented in the kernel.

To perform efficient aggregation of congestion infor-
mation across concurrent flows, the CM has to identify
which flows potentially share a common bottleneck link
en route to various receivers. In general, this is a diffi-
cult problem, since it requires an understanding of the
paths taken by different flows. However, in today’s In-
ternet, all flows destined to the same end host take the
same path in the common case, and we use this group
of flows as the default granularity of flow aggregation2.
We call this group a macroflow: a group of flows that
share the same congestion state, control algorithms, and
state information in the CM. Each flow has a sending
application that is responsible for its transmissions; we
call this a CM client. CM clients are in-kernel protocols
like TCP or user-space applications.

The CM incorporates a congestion controller that
performs congestion avoidance and control on a per-
macroflow basis. It uses a window-based algorithm that
mimics TCP’s additive-increase/multiplicative decrease
(AIMD) scheme to ensure fairness to other TCP flows
on the Internet. However, the modularity provided by
the CM encourages experimentation with other non-
AIMD schemes that may be better suited to specific
data types such as audio or video.

While the congestion controller determines what the
current window (rate) ought to be for each macroflow,
a scheduler decides how this is apportioned among the
constituent flows. Currently, our implementation uses
a standard unweighted round-robin scheduler.

In-kernel CM clients such as a TCP sender use CM
function calls to transmit data and learn about net-
work conditions and events. In contrast, user-space
clients interact with the CM using a portable, platform-
independent API described in Section 2.1. A platform-
dependent CM library, libcm, is responsible for inter-
facing between the kernel and these clients, and is de-
scribed in Section 2.2. These components are shown in
2 This is not strictly true in the presence of network-layer

differentiated services. We address this issue later in this
section and in Section 5.

CM

TCP1 TCP2 TCP3
UDP
CC

UDP2 UDP3

IP

Network

Web server
HTTP Video

RTP1

Callbacks for orchestrating
transmissions and application
notification

libcm

Audio
RTP2

Figure 1. Architecture of the congestion manager at
the data sender, showing the CM library and the CM.
The dotted arrows show callbacks, and solid lines show
the datapath. UDP-CC is a congestion-controlled UDP
socket implemented using the CM.

Figure 1.
When a client opens a CM-enabled socket, the CM

allocates a flow to it and assigns the flow to the appro-
priate macroflow based on its destination. The client
initiates data transmission by requesting permission to
send data. At some point in the future depending on the
available rate, the CM issues a callback permitting the
client to send data. The client then transmits data, and
tells the CM it has done so. When the client receives
feedback from the receiver about its past transmissions,
it notifies the CM about these and continues.

When a client makes a request to send on a flow, the
scheduler checks whether the corresponding macroflow’s
window is open. If so, the request is granted and the
client notified, upon which it may send some data.
Whenever any data is transmitted, the sender’s IP layer
notifies the CM, allowing it to “charge” the transmis-
sion to the appropriate macroflow. When the client re-
ceives feedback from its remote counterpart, it informs
the CM of the loss rate, number of bytes transmitted
correctly, and the observed round trip time. On a suc-
cessful transmission, the CM opens up the window ac-
cording to its congestion management algorithm and
grants the next, if any, pending request on a flow as-
sociated with this macroflow. The scheduler also has
a timer-driven component to perform background tasks
and error handling.

2.1 CM API
The CM API is specified as a set of functions and call-
backs that a client uses to interface with the CM. It
specifies functions for managing state, for performing
data transmissions, for applications to inform the CM
of losses, for querying the CM about network state, and
for constructing and splitting macroflows if the default
per-destination aggregation is unsuitable for an appli-
cation. The CM API is discussed in detail in [4], which
presents the design rationale for the Congestion Man-
ager. Here we provide an overview of the API and a
discussion of those features which changed during the
transition from simulation to implementation.

2.1.1 State management

All CM applications call cm open() before using the
CM, passing the source and destination addresses and
transport-layer port numbers, in the form of a struct
sockaddr. The original CM API required only a des-
tination address, but the source address specification
was necesary to handle multihomed hosts. cm open re-
turns a flow identifier (cm flowid), which is used as a
handle for all future CM calls. Applications may call
cm mtu(cm flowid) to obtain the maximum transmis-
sion unit to a destination. When a flow terminates, the
application should call cm close(cm flowid).

2.1.2 Data transmission

There are three ways in which an application can use
the CM to transmit data. These allow a variety of adap-
tation strategies, depending on the nature of the client
application and its software structure.

(i) Buffered send. This API uses a conventional
write() or sendto() call, but the resulting data
transmission is paced by the Congestion Manager.
We use this to implement a generic congestion-
controlled UDP socket (without content adapta-
tion), useful for bulk transmissions that do not re-
quire TCP-style reliability or fine-grained control
over what data gets sent at a given point in time.

(ii) Request/callback. This is the preferred mode
of communication for adaptive senders that are
based on the ALF (Application-Level Fram-
ing [12]) principle. Here, the client does
not send data via the CM; rather, it calls
cm request(cm flowid) and expects a notifi-
cation via the cmapp send(cm flowid) callback
when this request is granted by the CM, at which
time the client transmits its data. This approach
puts the sender in firm control of deciding what to
transmit at a given time, and allows the sender to
adapt to sudden changes in network performance,
which is hard to do in a conventional buffered
transmission API. The client callback is a grant

for the flow to send up to MTU bytes of data.
Each call to cm request() is an implicit request
for sending up to MTU bytes, which simplifies the
internal implementation of the CM. This API is
ideally suited for an implementation of TCP, since
it needs to make a decision at each stage about
whether to retransmit a segment or send a new
one. In the implementation, the cmapp send call-
back now provides the client with the ID of the
flow that may transmit. To allow for client pro-
gramming flexibility, the client may now specify
its callback function via cm register send().

(iii) Rate callback. A self-timed application trans-
mitting on a fixed schedule may receive callbacks
from the CM notifying it when the parameters of
its communication channel have changed, so that
it can change the frequency of its timer loop or
its packet size. The CM informs the client of the
rate, round-trip time, and packet loss rate for a
flow via the cmapp update() callback. During im-
plementation, we added a registration function,
cm register update() to select the rate callback
function, and the cm thresh(down,up) function:
If the rate reduces by a factor of down or increases
by a factor of up, the CM calls cmapp update().
This transmission API is ideally suited for stream-
ing layered audio and video applications.

2.1.3 Application notifications

One of the goals of our work was to investigate a
CM implementation that requires no changes at the
receiver. Performing congestion management requires
feedback about transmissions: TCP provides this feed-
back automatically; some UDP applications may need
to be modified to do so, but without any system-
wide changes. Senders must then inform the CM
about the number of sent and received packets, type
of congestion loss if any, and a round-trip time sam-
ple using the cm update(cm flowid, nsent, nrecd,
lossmode, rtt) function. The CM distinguishes be-
tween “persistent” congestion as would occur on a TCP
timeout, versus “transient” congestion when only one
packet in a window is lost. It also allows congestion
to be notified using Explicit Congestion Notification
(ECN) [33], which uses packet markings rather than
drops to infer congestion.

To perform accurate bookkeeping of the congestion
window and outstanding bytes for a macroflow, the
CM needs to know of each successful transmission from
the host. Rather than encumber clients with reporting
this information, we modify the IP output routine to
call cm notify(cm flowid, nsent) on each transmis-
sion. (The IP layer obtains the cm flowid using a well-
defined CM interface that takes the flow parameters
(addresses, ports, protocol field) as arguments.) How-
ever, if a client decides not to transmit any data upon a
cmapp send() callback invocation, it is expected to call

cm notify(dst, 0) to allow the CM to permit some
other flows on the macroflow to transmit data.

2.1.4 Querying

If a client wishes to learn about its (per-flow) avail-
able bandwidth and round-trip time, it can use the
cm query() call, which returns these quantities. This
is especially useful at the beginning of a stream when
clients can make an informed decision about the data
encoding to transmit (e.g., a large color or smaller grey-
scale image).

2.2 libcm: The CM library
The CM library provides users with the convenience of
a callback-based API while separating them from the
details of how the kernel to user callbacks are imple-
mented. While direct function callbacks are convenient
and efficient in the same address space, as is the case
when the kernel TCP is a client of the CM, callbacks
from the kernel to user code in conventional operating
systems are more difficult. A key decision in the imple-
mentation of libcm was choosing a kernel/user interface
that maximizes portability, and minimizes both perfor-
mance overhead and the difficulty of integration with
existing applications. The resulting internal interface
between libcm and the kernel is:

1. select() on a single per-application CM control
socket. The write bit indicates that a flow may
send data, and the exception bit indicates that
network conditions have changed.

2. Perform an ioctl to extract a list of all flow IDs
which may send, or to receive the current network
conditions for a flow.

Note that client programs of the CM do not see
this interface; they see only the standard cm * func-
tions provided by libcm. The use of sockets or signals
does change the way the application’s event handling
loop interacts with libcm; after passing the socket into
libcm, the library performs the appropriate ioctls and
then calls back into the application.

2.2.1 Implementation alternatives

We considered a number of mechanisms with which to
implement libcm. In this section, we discuss our rea-
sons for choosing the control-socket+select+ioctl ap-
proach.

While much research has focused on reducing the
cost of crossing the user/kernel boundary (extensible
kernels in SPIN [8], fast, generic IPC in Mach [6], etc.)
many conventional operating systems remain limited
to more primitive methods for kernel-to-user notifica-
tion, each with their own advantages and disadvan-
tages. While functionality like the Mach port set-based

IPC would be ideal for our purposes, pragmatically we
considered four common mechanisms for kernel to user
communication: Signals, system calls, semaphores, and
sockets. A discussion of the merits of each follows.

Signals have several immediate drawbacks. First,
if the CM were to appropriate an existing signal for
its own use, it might conflict with an application us-
ing the same signal. Avoiding this conflict would re-
quire the standardization of a new signal type, a pro-
cess both slow and of questionable value, given the ex-
istence of better alternatives. Second, the cost to an
application to receive a signal is relatively high, and
some legacy applications may not be signal-safe. While
the new POSIX 1003.1b [18] soft realtime signals allow
delivering a 32-bit quantity with a signal, applications
would need to follow up a signal with a system call to
obtain all of the information the kernel wished to de-
liver, since multiple flows may become ready at once.
For these reasons, we consider mandating the use of
signals the wrong course for implementing the kernel
to user callbacks. However, we provide an option for
processes to receive a SIGIO when their control socket
status changes, akin to POSIX asynchronous I/O.

System calls that block do not integrate well with
applications that already have their own event loop,
since without polling, applications cannot wait on the
results of multiple system calls. A system call is able
to return immediately with the data the user needs,
but the impediments it poses to application integration
are large. System calls would work well in a threaded
environment, but this presupposes threading support,
and the select-based mechanism we describe below can
be used in a threaded system without major additional
overhead.

Semaphores suffer from the immediate drawback
that they are not commonly used in network applica-
tions. For an application that uses semop on an ar-
ray of semaphores as its event loop, a CM semaphore
might be the best implementation avenue, for many of
the same reasons that we chose sockets for network-
adaptive applications. However, most network appli-
cations use socket sets instead of semaphore sets, and
sockets have a few other benefits, which we discuss next.

Sockets provide a well-defined and flexible inter-
face for applications in the form of the select() sys-
tem call, though they have a downside similar to that of
signals: an application wishing to receive a notification
via a socket in a non-blocking manner must select()
on the socket, and then perform a system call to obtain
data from the socket. However, a select-based inter-
face meshes well with many network applications that
already have a select-loop based architecture. Utiliz-
ing a control socket also helps restrict the code changes
caused by the CM to the networking stack.

Finally, we decided to use a single control socket
instead of one control socket per flow to avoid unnec-
essary overhead in applications with large numbers of
open socket descriptors, such as select()-based web-

servers and caches. Because some aspects of select scale
linearly with the number of descriptors, and many op-
erating systems have limits on the number of open de-
scriptors, we deemed doubling the socket load for high-
performance network applications a bad idea.

2.2.2 Extracting data from the socket

Select provides notification that “some event” has oc-
cured. In theory, 7 different events could be sent by
abusing the read, write, and exception bits, but ap-
plications need to extract more information than this.
The CM provides two types of callbacks. Generally
speaking, the first is a “permission to send” callback
for a particular flow. To maintain even distribution
of bandwidth between flows, a loose ordering should
be preserved with these messages, but exact ordering
is unimportant provided no flows are ignored until the
application receives further updates (thereby starving
the flows). If multiple permission notifications occur,
the application should receive all of them so it can
send data on all available flows. The second callback
is a “status changed” notification. If multiple status
changes occur before the application obtains this data
from the kernel, then only the current status matters.

The weak ordering and lack of history prompted
us to choose an ioctl-based query instead of a read
or message queue interface, minimizing the state that
must be maintained in the kernel. Status updates sim-
ply return the current CM-maintained network state
estimate, and “who can send” queries perform a select-
like operation on the flows maintained by the kernel,
requiring no extra state, instead of a potentially expen-
sive per-process message queue or data stream. Return-
ing all available flows has an added benefit of reducing
the number of system calls that must be made if several
flows become ready simultaneously.

3 Engineering Network-adaptive Appli-
cations

In this section, we describe several different classes of
applications, and describe the ways those applications
can make use of the CM. We explore two in-kernel
clients, and several user-space data server programs,
and examine the task of integrating each with the CM.

3.1 Software Architecture Issues
Typical network applications fall into one of several cat-
egories:

• Data-driven: Applications that transmit prespec-
ified data, such as a single file, then exit.

• Synchronous event-driven: Self-timed data deliv-
ery servers, like streaming audio servers.

• Asynchronous event-driven: File servers (http,
ftp) and other network-clocked applications.

The CM library provides several options for adap-
tive applications that wish to make use of its services:

1. Data-driven applications may use the buffered API
to efficiently pace their data transmissions.

2. An application may operate in an entirely
callback-based manner by allowing libcm to pro-
vide its own event loop, calling into the applica-
tion when flows are ready. This is most useful for
applications coded with the CM in mind.

3. Signal-driven applications may request a SIGIO
notification from the CM when an event occurs.

4. Applications with select-based event loops can
simply add the CM control socket into their select
set, and call the libcm dispatcher when the socket
is ready. Rate-clocked applications (or polling-
based applications) can perform a similar non-
blocking select test on the descriptor when they
awaken to send data, or, if they sleep, can re-
place the sleep with a timed blocking select call.

5. Applications may poll the CM on their own sched-
ule.

The remainder of this section describes how par-
ticular clients use different CM APIs, from the low-
bandwidth vat audio application, to the performance-
critical kernel TCP implementation. Note that all
UDP-based clients must implement application level
data acknowledgements in order to make use of the CM.

3.2 TCP
We implemented TCP as an in-kernel CM client.
TCP/CM offloads all congestion control to the CM,
while retaining all other TCP functionality (connection
establishment and termination, loss recovery and pro-
tocol state handling). TCP uses the request/callback
API as low-overhead direct function calls in the same
protection domain. This gives TCP the tight control
it needs over packet scheduling. For example, while
the arrival of a new acknowledgement typically causes
TCP to transmit new data, the arrival of three dupli-
cate ACKs causes TCP to retransmit an old packet.

Connection creation. When TCP creates a new
connection via either accept (inbound) or connect
(outbound), it calls cm open() to associate the TCP
connection with a CM flow. Thereafter, the pac-
ing of outgoing data on this connection is controlled
by the CM. When application data becomes avail-
able, after performing all the non-congestion-related
checks (e.g., the Nagle algorithm [41], etc.) data is
queued and cm request() is called for the flow. When
the CM scheduler schedules the flow for transmission,

the cmapp send() routine for TCP is called. The
cmapp send() for TCP transmits any retransmission
from the retransmission queue. Otherwise, it transmits
the data present in the transmit socket buffer by send-
ing up to one maximum segment size of data per call.
Finally, the IP output routine calls cm notify() when
the data is actually sent out.

TCP input. The TCP input routines now feed-
back to the CM. Round trip time (RTT) sample col-
lection is done as usual using either RFC 1323 times-
tamps [20] or Karn’s algorithm [22] and is passed to CM
via cm update(). The smoothed estimates of the RTT
(srtt) and round-trip time deviation are calculated by
the CM, which can now obtain a better average by com-
bining samples from different connections to the same
receiver. This is available to each TCP connection via
cm query(), and is useful in loss recovery.

Data acknowledgements. On arrival of an ACK
for new data, the TCP sender calls cm update() to in-
form the CM of a successful transmission. Duplicate ac-
knowledgements cause TCP to check its dupack count
(dup acks). If dup acks < 3, then TCP does noth-
ing. If dup acks == 3, then TCP assumes a simple,
congestion-caused packet loss, and calls cm update to
inform the CM. TCP also enqueues a retransmission of
the lost segment and calls cm request(). If dup acks
> 3, TCP assumes that a segment reached the receiver
and caused this ACK to be sent. It therefore calls
cm update(). Unlike duplicate ACKs, the expiration
of the TCP retransmission timer notifies the sender of
a more serious batch of losses, so it calls cm update
with the CM LOST FEEDBACK option set to signify
the occurrence of persistent congestion to the CM. TCP
also enqueues a retransmission of the lost segment and
calls cm request().

TCP/CM Implementation. The integration of
TCP and the CM required less than 100 lines of changes
to the existing TCP code, demonstrating both the flexi-
bility of the CM API and the low programmer overhead
of implementing a complex protocol with the Conges-
tion Manager.

3.3 Congestion-controlled UDP sockets
The CM also provides congestion-controlled UDP sock-
ets. They provide the same functionality as standard
Berkeley UDP sockets, but instead of immediately send-
ing the data from the kernel packet queue to lower lay-
ers for transmission, the buffered socket implementation
schedules its packet output via CM callbacks. When a
CM UDP socket is created, it is bound to a particu-
lar flow. When data enters the packet queue, the ker-
nel calls cm request() on the flow associated with the
socket. When the CM schedules this flow for transmis-
sion, it calls udp ccappsend() in the CM UDP mod-
ule. This function transmits one MTU from the packet
queue, and requests another callback if packets remain.
The in-kernel implementation of the CM UDP API adds

no data copies or queue structures, and supports all
standard UDP options. Modifying existing applications
to use this API requires only providing feedback to the
CM, and setting a socket option on the socket.

A typical client of the CM UDP sockets will behave
as follows, after its usual network socket initialization:

flow = cm_open(dst, port)
setsockopt(flow, ..., CM_BUF)
loop:

<send data on flow>
<receive data acknowledgements>
cm_update(flow, sent, received, ...)

3.4 Streaming Layered Audio and
Video

Streaming layered audio or video applications that have
a number of discrete rates at which they can transmit
data are well-served by the CM rate callbacks. Instead
of requiring a comparatively expensive notification for
each transmission, these applications are instead noti-
fied only in the rare event that their network condi-
tions change significantly. Layered applications open
their usual UDP socket, and call cm open() to obtain
a control socket. They operate in their own clocked
event loop while listening for status changes on either
their control socket or via a SIGIO signal. They use
cm thresh() to inform the CM about network changes
for which they should receive callbacks.

3.5 Real-time Adaptive Applications
Applications that desire last-minute control over their
data transmission (i.e. those that do not want any
buffering inside the kernel) use the request callback
API provided by the CM. When given permission to
transmit via the cmapp send() callback from the CM,
they may use cm query() to discover the current net-
work conditions and adapt their content based on that.
Other servers may simply wish to send the most up-
to-date content possible, and so will defer their data
collection until they know they can send it. The rough
sequence of CM calls that are made to achieve this in
the application are:

flow = cm_open(dst)
cm_request(flow)
<receive cmapp_send() callback from libcm>
cm_query(flow, ...)
<send data>
<receive data acks>
cm_update(flow, sent, lost, ...)

Other options exist for applications that wish to ex-
ploit the unique nature of their network utilization to
reduce the overhead of using the services of the Conges-
tion Manager. We discuss one such option below in the
manner in which we adapted the vat interactive audio
application to use the CM.

64K Audio

recvd/
lost Policer

App.
Buffer

Kernel
BufferData

CM

Acks

rate

Network

Figure 2. The adaptive vat architecture

3.6 Interactive Real-time Audio
The vat application provides a constant bit-rate source
of interactive audio. Its inability to downsample its au-
dio reduces the avenues it has available for bandwidth
adaptation. Therefore, the best way to make vat behave
in a network-friendly and backwards compatible man-
ner is to preemptively drop packets to match the avail-
able network bandwidth. There are, of course, compli-
cations. Network applications experience two types of
variation in available network bandwidth: long term
variations due to changes in actual bandwidth, and
short term variations due to the probing mechanisms
of the congestion control algorithm. Short-term varia-
tion is typically dealt with by buffering. Unfortunately,
buffering, especially FIFO buffering with drop-tail be-
havior, the de-facto standard for kernel buffers and net-
work router buffers, can result in long delay and signif-
icant delay variation, both of which are detrimental to
vat’s audio quality. Vat , therefore, needs to act like an
ALF application, managing its own buffer space with
drop-from-head behavior when the queue is full.

The resulting architecture is detailed in figure 2.
The input audio stream is first sent to a policer, which
provides long-term adaptation via preemptive packet
dropping. The policer outputs into the application level
buffer, which can be configured in various sizes and
drop policies. This buffer feeds into the kernel buffer
on-demand as packets are available for transmission.

4 Evaluation

This section describes several experiments that quantify
the costs and benefits of our CM implementation. Our
experiments show that using the Congestion Manager in
the kernel has minimal costs, and that even the worst-
case overhead of the request/callback user-space API is
acceptably small.

The tests were performed on the Utah Network
Testbed [23] using 600MHz Intel Pentium III proces-
sors, 128MB PC100 ECC SDRAM, and Intel EtherEx-
press Pro/100B Ethernet cards, connected via 100Mbps

50

100

150

200

250

300

350

400

450

500

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

T
hr

ou
gh

pu
t (

K
by

te
s/

s)

Packet Loss Rate (%)

TCP/CM
TCP/Linux

Figure 3. Comparing throughput vs. loss for
TCP/CM and TCP/Linux. Rates are for a 10Mbps
link with a 60ms RTT.

Ethernet through an Intel Express 510T switch, with
Dummynet channel simulation. CM tests were run on
Linux 2.2.9, with Linux and FreeBSD clients.

To ensure the proper behavior of a flow, the con-
gestion control algorithm must behave in a “TCP-
compatible” [9] manner. The CM implements a TCP-
style window-based AIMD algorithm with slow start.
It shares bandwidth between eligible flows in a round-
robin manner with equal weights on the flows.

Figure 3 shows the throughput achieved by
the Linux TCP implementation (TCP/Linux) and
TCP with congestion control performed by the CM
(TCP/CM). The linux kernel against which we com-
pare has two algorithmic differences from the Conges-
tion Manager: It starts its initial window at 2 packets,
and it assumes that each ACK is for a full MTU. The
Congestion Manager instead performs byte-counting for
its AIMD algorithm. The first issue is Linux-specific,
and the last is a feature of the CM.

4.1 Kernel Overhead
To measure the kernel overhead, we measured the
CPU and throughput differences between the optimized
TCP/Linux and TCP/CM. The midrange machines
used in our test environment are sufficiently powerful
to saturate a 100Mbps Ethernet with TCP traffic.

There are two components to the overhead imposed
by the congestion manager: The cost of performing ac-
counting as data is exchanged on a connection, and a
one-time connection setup cost for creating CM data
structures. A microbenchmark of the connection es-
tablishment time of a TCP/CM vs. TCP/Linux indi-
cates that there is no appreciable difference in connec-
tion setup times.

We used long (megabytes to gigabytes) connections
with the ttcp utility to determine the long-term costs

11390

11400

11410

11420

11430

11440

11450

11460

11470

11480

1000 10000 100000 1e+06

T
hr

ou
gh

pu
t (

K
by

te
s/

se
co

nd
)

Buffers transmitted

Congestion Manager
Native Linux TCP

Figure 4. 100Mbps TCP throughput comparison.
Note that the absolute difference in the worst case be-
tween the Congestion Manager and the native TCP is
only 0.5% and that the Y axis begins at 11 megabytes
per second.

imposed by the congestion manager. The impact of the
CM on extremely long term throughput was negligi-
ble: in a 1 gigabyte transfer, the congestion manager
achieved identical performance (91.6 Mbps) as native
Linux. On shorter runs, the throughput of the CM di-
verged slightly from that of Linux, but only by 0.5%.
The throughput rates are shown in figure 4. The dif-
ference is due to the CM using an initial window of 1
MTU and Linux using 2 MTU, not CPU overhead.

Because both implementations are able to saturate
the network connection, we looked at the CPU uti-
lization during these transmissions to determine the
steady-state overhead imposed by the Congestion Man-
ager. In figure 5 we see that the CPU difference be-
tween TCP/Linux and TCP/CM converges to slightly
less than 1%.

4.2 User-space API Overhead
The overhead incurred by our adaptation API occurs
primarily because the applications must process their
ACKs in user-space instead of in the kernel. Therefore,
these programs incur extra data copies and user/kernel
boundary crossings. To quantify this overhead, our
test programs sent packets of specified sizes on a UDP
socket, and waited for acknowledgement packets from
the server. We compare these programs to a webserver-
like TCP client which sendt data to the server, and
performed a select() on its socket to determine if the
server has sent any data back. To facilitate compari-
son, we disabled delayed ACKs for the one TCP test to
ensure that our packet counts were identical.

Figure 6 shows the wall-clock time required to send
and process the acknowledgement for a packet, based on
transmitting 200,000 packets. For comparison, we in-

0

20

40

60

80

100

1000 10000 100000 1e+06

%
 C

P
U

 u
til

iz
at

io
n

Buffers transmitted

Congestion Manager
Native Linux TCP

Figure 5. CPU overhead comparison between
TCP/Linux and TCP/CM. For long connections, the
CPU overhead converges to slightly under 1% for the
unoptimized implementation of the CM.

ALF/noconnect 1 cm notify (ioctl)
ALF 1 cm request (ioctl)

1 extra socket
Buffered 1 recv, 2 gettimeofday
TCP/CM –baseline–

Table 1. Cumulative sources of overhead for different
APIs using the Congestion Manager relative to sending
data with TCP.

clude TCP statistics as well, where the TCP programs
set the maximum segment size to achieve identical net-
work performance. The “nodelay” variant is TCP with-
out delayed acks. The tests were run on a 100Mbps
network on which no losses occured.

Table 1 breaks down the sources of overhead for us-
ing the different APIs. Using the CM with UDP re-
quires that applications compute the round-trip-time
(RTT) of their packets, requiring a system call to
gettimeofday, and requires that they process their
ACKs in user-space, requiring a system call to recv and
the accompanying data copy into their address space.
The ALF API further requires that the application ob-
tain an additional control socket and select upon it,
and that it make an explicit call to cm request before
transmitting data. Finally, if the kernel is unable to de-
termine the flow to which to charge the transmission, as
with an unconnected UDP socket, the application must
explicitly call cm notify

These test cases represent the worst-case behavior
of serving a single high-bandwidth client, because no
aggregation of requests to the CM may occur. The CM
programs can achieve similar reductions in processing
time by using delayed acks, so the real API overhead
can be determined by comparing the ALF/noconnect
case to the TCP/CM case. For 168 byte packets,

0

20

40

60

80

100

120

0 200 400 600 800 1000 1200 1400

M
ic

ro
se

co
nd

s
pe

r
pa

ck
et

Packet size (bytes)

ALF/noconnect
ALF

Buffered
TCP/CM nodelay

TCP/CM
TCP/Linux

Figure 6. API throughput comparison on a 100Mbps
link. The worst-case throughput reduction incurred
by the CM is 25% from TCP/CM nodelay to
ALF/noconnect.

ALF/noconnect results in a 25% reduction in through-
put relative to TCP without delayed ACKs.

4.3 Benefits of Sharing
One benefit of integrating congestion information with
the CM is immediately clear. A client that sequen-
tially fetches files from a webserver with a new TCP
connection each time loses its prior congestion infor-
mation, but with concurrent connections with the CM,
the server is able to use this information to start subse-
quent connections with more accurate congestion win-
dows. Figure 7 shows a test we performed across the
vBNS between MIT and the University of Utah, where
an unmodified (non-CM) client performed 9 retrievals
of the same 128k file with a 500ms delay between re-
trievals, resulting in a 40% improvement in the transfer
time for the later requests. (Other file sizes and delays
yield similar results, so long as they overlap. The ben-
efits are comparatively greater for smaller files). The
CM requires an additional RTT (75ms) for the first
transfer, because Linux sets its initial congestion win-
dow to 2 MTUs instead of 1. This pattern of mul-
tiple connections is still quite common in webservers
despite the adoption of persistent connections: Many
browsers open 4 concurrent connections to a server, and
many client/server combinations do not support persis-
tent connections. Persistent connections [29] provide
similar performance benefits, but suffer from their own
drawbacks, which we discuss in section 6.

4.4 Adaptive Applications
In this section, we demonstrate some of the network
adaptive behaviors enabled by the CM.

350

400

450

500

550

600

650

700

750

800

850

0 2 4 6 8 10

M
ili

se
co

nd
s

to
 c

om
pl

et
e

re
qu

es
t

Client Request #

TCP/CM
TCP/Linux

Figure 7. Sharing TCP state: The client requests
the same file 9 times with a 500ms delay between re-
quest initiations. By sharing congestion information
and avoiding slow-start, the CM-enabled server is able
to provide faster service for subsequent requests, despite
a smaller initial congestion window.

As noted earlier, applications that require tight
control over data scheduling use the request/callback
(ALF) API, and are notified by the CM as soon as they
can transmit data. The behavior of an adaptive layer-
ing application run across the vBNS using this API is
shown in figure 8. This application chooses a layer to
transmit based upon the current rate, but sends pack-
ets as rapidly as possible to allow its client to buffer
more data. We see that the CM is able to provide suffi-
cient information to the application to allow it to adapt
properly to the network conditions.

For self-clocked applications that base their trans-
mitted data upon the bandwidth to the client (such as
conventional layered audio servers), the CM rate call-
back mechanism provides a low-overhead mechanism for
adaptation, and allows clients to specify threshholds
for the notification callbacks. Figure 9 shows appli-
cation adaptation using rate callbacks for a connection
between MIT and the University of Utah. Here, the ap-
plication decides which of the four layers it should send
based on notifications from the CM about rate changes.

From figures 8 and 9, we see from the increased oscil-
lation rate in the transmitted layer that the ALF appli-
cation is more responsive to smaller changes in available
bandwidth, whereas the rate callback application relies
occasionally on short-term kernel buffering for smooth-
ing. There is an overhead vs. functionality trade-off
in the decision of which API to use, given the higher
overhead of the ALF API, but applications face a more
important decision about the behavior they desire.

Some applications may be concerned about the over-
head from receiver feedback. To mitigate this, an ap-
plication may delay sending feedback; we see this in a
minor and inflexible way with TCP delayed acks. In

0

500

1000

1500

2000

2500

0 5 10 15 20 25

R
at

e
(in

 K
B

ps
)

Time (in sec)

Rate Callback application using CM

Transmission Rate
Rate reported by CM

Figure 8. Bandwidth perceived by an adaptive layered
application using the request callback (ALF) API.

0

500

1000

1500

2000

2500

0 2 4 6 8 10 12 14 16 18 20

R
at

e
(in

 K
B

ps
)

Time (in sec)

Rate Callback application using CM

Transmission Rate
Rate reported by CM

Figure 9. Bandwidth perceived by an adaptive layered
application using the rate callback API.

figure 10, we see that delaying feedback to the CM
causes burstiness in the reported bandwidth. Here, the
feedback by the receiver was delayed by min(500 acks,
2000ms). The initial slow start is delayed by 2s wait-
ing for the application, then the update causes a large
rate change. Once the pipe is sufficiently full, 500 acks
come relatively rapidly, and the normal, though bursty,
non-timeout behavior resumes.

5 Discussion

We have shown several benefits of integrated flow man-
agement and the adaptation API, and have explored the
design features that make the API easy to use. This sec-
tion describes an optimization useful for busy servers,
and discusses some drawbacks and limitations of the
current CM architecture.

0

500

1000

1500

2000

2500

3000

0 10 20 30 40 50 60 70

R
at

e
(in

 K
B

ps
)

Time (in sec)

Rate Callback app using CM with delayed feedbacks (min(500packets,2s))

Transmission Rate
Rate reported by CM

Figure 10. Adaptive layered application using rate
callback API with delayed feedback

Optimizations. Servers with large numbers of con-
current clients are often very sensitive to the overhead
caused by multiple kernel boundary crossings. To re-
duce this overhead, we can batch several sockets into
the same cm request call with the cm bulk request
call, and likewise for query, notify, and update calls.

By multiplexing control information for many sock-
ets on each CM call, the overhead from kernel crossings
is mitigated at the expense of managing more compli-
cated data structures for the CM interface. Bulk query-
ing is already performed in libcm when multiple flows
are ready during a single ioctl to determine which
flows can send data, but this completes the interface.

Trust issues. Because our goal was an architec-
ture that did not require modifications to receivers, we
devised a system where applications provide feedback
using the cm update() call. The consequence of this is
that there is a potential for misuse, due to bugs or mal-
ice. For example, the CM client could repeatedly mis-
inform the CM about the absence of congestion along
a path and obtain higher bandwidth. This does not
increase the vulnerability of the Internet to such prob-
lems, because such abuse is already trivial. More im-
portant are situations where users on the same machine
could potentially interfere with each other. To prevent
this, the Congestion Manager would need to ensure that
only kernel-mediated (e.g. TCP) flows belonging to dif-
ferent users can belong in the same macroflow. Our
current implementation does not make an attempt to
provide this protection. Savage [38] presents several
methods by which a malicious receiver can defeat con-
gestion control. The solutions he proposes can be easily
used with the CM; we have already implemented byte-
counting to prevent ACK division.

Macroflow construction When differentiated ser-
vices, or any system which provides different service to
flows between the same pair of hosts, start being de-
ployed, the CM would have to reconsider the default

choice of a macroflow. We expect to be able to gain
some benefit by including the IP differentiated-services
field in deciding the composition of a macroflow.

Finally, we observe that remote LANs are not often
the bottleneck for an outside communicator. As sug-
gested in [43, 37] among others, aggregating congestion
information about remote sites with a shared bottleneck
and sharing this information with local peers may bene-
fit both users and the network itself. A macroflow may
thus be extended to cover multiple destination hosts
behind the same shared bottleneck link. Efficiently de-
termining such bottlenecks remains an open research
problem.

Limitations The current CM architecture is de-
signed only to handle unicast flows. The problem of
congestion control for multicast flows is a much more
difficult problem which we deliberately avoid. UDP ap-
plications using the CM are required to perform their
own loss detection, requiring potential additional appli-
cation complexity. Implementing the Congestion Man-
ager protocol discussed in [4] would eliminate this need,
but remains to be studied.

6 Related work

Designing adaptive network applications has been an
active area of research for the past several years. In
1990, Clark and Tennenhouse [12] advocated the use
of application-level framing (ALF) for designing net-
work protocols, where protocol data units are chosen
in concert with the application. Using this approach,
an application can have a greater influence over decid-
ing how loss recovery occurs than in the traditional lay-
ered approach. The ALF philosophy has been used with
great benefit in the design of several multicast transport
protocols including the Real-time Transport Protocol
(RTP) [39], frameworks for reliable multicast [15, 34],
and Internet video [25, 36].

Adaptation APIs in the context of mobile informa-
tion access were explored in the Odyssey system [27].
Implemented as a user-level module in the NetBSD op-
erating system, Odyssey provides API calls by which
applications can manage system resources, with upcalls
to applications informing them when changes occur in
the resources that are available. In contrast, our CM
system is implemented in-kernel since it has to manage
and share resources across applications (e.g., TCP) that
are already in-kernel. This necessitates a different ap-
proach to handling application callbacks. In addition,
the CM approach to measuring bandwidth and other
network conditions is tied to the congestion avoidance
and control algorithms, as compared to the instrumen-
tation of the user-level RPC mechanism in Odyssey.
We believe that our approach to providing adaptation
information for bandwidth, round-trip time, and loss
rate complements Odyssey’s management of disk space,
CPU, and battery power.

The CM system uses application callbacks or up-
calls as an abstraction, an old idea in operating systems.
Clark describes upcalls in the Swift operating system,
where the motivation is a lower layer of a protocol stack
synchronously invoking a higher-layer function across a
protection boundary [10]. The Mach system used the
notion of ports, a generic communication abstraction for
fast inter-process communication (IPC). POSIX speci-
fies a standard way of passing “soft real-time signals”
that can be used to send a notification to a user-level
process, but it restricts the amount of data that can be
communicated to a 32-bit quantity.

Event delivery abstractions for mobile computing
have been explored in [2], where “monitored” events
are tracked using polling and “triggered” events (e.g.,
PC card insertion) are notified using IPC. This work
defines a language-level mechanism based on C++ ob-
jects for event registration, delivery, and handling. This
system is implemented in Mach using ports for IPC.

Our approach is to use a select() call on a con-
trol socket to communicate information between kernel
and user-level. The recent work of Banga et al. [5] to
improve the performance of this type of event delivery
can be used to further improve our performance.

The Microsoft Winsock implementation is largely
callback-based, but here callbacks are implemented as
conventional function calls since Winsock is a user-level
library within the same protection boundary as the ap-
plication [32]. The main reason we did not implement
the CM as a user-level daemon was because TCP is al-
ready implemented in-kernel in most UNIX operating
systems, and it is important to share network informa-
tion across TCP flows.

Quality-of-service (QoS) interfaces have been ex-
plored in several operating systems, including Neme-
sis [17]. Like the exokernel approach [21] and SPIN [8],
Nemesis enables applications to perform as much of the
processing as possible on their own using application-
specific policy, supported by a set of operating system
abstractions different from those in UNIX. Whereas
Nemesis treats local network-interface bandwidth as the
resource to be managed, we take a more end-to-end ap-
proach of discovering the end-to-end performance to dif-
ferent end-hosts, enabling sharing across common net-
work paths. Furthermore, the API exported by Nemesis
is useful for applications that can make resource reser-
vations, while the CM API provides information about
network conditions. Some “web switches” [1] provide
traffic shaping and QoS based upon application infor-
mation, but do not provide integrated flow management
or feedback to the applications creating the data.

Multiple concurrent streams can cause problems for
TCP congestion control. First, the ensemble of flows
probes more aggressively for bandwidth than a single
flow. Second, upon experiencing congestion along the
path, only a subset of the connections usually reduce
their window. Third, these flows do not share any in-
formation between each other. While we propose a gen-

eral solution to these problems, application-specific so-
lutions have been proposed in the literature. Of partic-
ular importance are approaches that multiplex several
logically distinct streams onto a single TCP connection
at the application level, including Persistent-connection
HTTP (P-HTTP [29], part of HTTP/1.1 [13]), the Ses-
sion Control Protocol (SCP) [40], and the MUX pro-
tocol [16]. Unfortunately, these solutions suffer from
two important drawbacks. First, because they are
application-specific, they require each class of applica-
tions (Web, real-time streams, file transfers, etc.) to re-
implement much of the same machinery. Second, they
cause an undesirable coupling between logically differ-
ent streams: if packets belonging to one stream are lost,
another stream could stall even if none of its packets
are lost because of the in-order “linear” delivery forced
by TCP. Independent data units belonging to different
streams are no longer independently processible and the
parallelism of downloads is often lost.

7 Conclusion

The CM system enables applications to obtain an un-
precedented degree of control over what they can do
in response to different network conditions. It incorpo-
rates robust congestion control algorithms, freeing each
application from having to re-implement them. It ex-
poses a rich API that allows applications to adapt their
transmissions at a fine-grained level, and allows the ker-
nel and applications to integrate congestion information
across flows.

Our evaluation of the CM implementation shows
that the callback interface is effective for a variety of ap-
plications, and does not unduly burden the programmer
with restrictive interfaces. From a performance stand-
point, the CM itself imposes very little overhead; that
which remains is mostly due to the unoptimized nature
of our implementation. The architecture of programs
implemented using UDP imposes some additional over-
head, but the cost of using the CM after this architec-
tural conversion is quite small.

Many systems exist to deliver content over the In-
ternet using TCP or home-grown UDP protocols. We
believe that by providing an accessible, robust frame-
work for congestion control and adaptation, the Con-
gestion Manager can help improve both the implemen-
tation and performance of these systems.

The Congestion Manager implementation for Linux
is available from our web page, http://nms.lcs.mit.
edu/projects/cm/.

Acknowledgements

We would like to thank Suchitra Raman and Alex Sno-
eren for their helpful feedback and suggestions; and the
Flux research group at the University of Utah for pro-

viding their network testbed 3. Finally, we would like
to thank our shepherd, Peter Druschel, and the anony-
mous reviewers for their numerous helpful comments.
This work was supported by grants from DARPA, IBM,
Intel, and NTT Corporation.

References

[1] Bandwidth Management - Scalable, Granular Resource
Control for Web Data Centers. Unpublished whitepa-
per, http://www.alteonwebsystems.com/products/
whitepapers/bandwidthmanageme%nt/BWM_WP.pdf.

[2] Badrinath, B. R., and Welling, G. Event Delivery
Abstraction for Mobile Computing. Tech. Rep. LCSR-
TR-242, Rutgers University, 1995.

[3] Balakrishnan, H., Padmanabhan, V. N., Seshan,
S., Stemm, M., and Katz, R. TCP Behavior of a
Busy Web Server: Analysis and Improvements. In Proc.
IEEE INFOCOM (San Francisco, CA, Mar. 1998),
vol. 1, pp. 252–262.

[4] Balakrishnan, H., Rahul, H. S., and Seshan, S.
An Integrated Congestion Management Architecture
for Internet Hosts. In Proc. ACM SIGCOMM (Sep
1999), pp. 175–187.

[5] Banga, G., Mogul, J. C., and Druschel, P. A scal-
able and explicit event delivery mechanism for unix. In
Proc. of the USENIX 1999 Annual Technical Confer-
ence (June 1999), pp. 253–266.

[6] Barrera, J. S. A fast Mach network IPC implementa-
tion. In Proc. of the Second USENIX Mach Symposium
(Nov. 1991), pp. 1–12.

[7] Berners-Lee, T., Fielding, R., and Frystyk, H.
Hypertext Transfer Protocol–HTTP/1.0. Internet En-
gineering Task Force, May 1996. RFC 1945.

[8] Bershad, B. N., Savage, S., Pardyak, P., Sirer,
E. G., Fiuczynski, M. E., Becker, D., Chambers,
C., and Eggers, S. Extensibility, safety, and perfor-
mance in the SPIN operating system. In Proc. of the
15th ACM Symposium on Operating Systems Principles
(Copper Mountain, CO, Dec. 1995), pp. 267–284.

[9] Braden, B., Clark, D., Crowcroft, J., Davie,
B., Deering, S., Estrin, D., Floyd, S., Jacobson,
V., Minshall, G., Partridge, C., Peterson, L.,
Ramakrishnan, K., Shenker, S., Wroclawski, J.,
and Zhang, L. Recommendations on Queue Manage-
ment and Congestion Avoidance in the Internet. Inter-
net Engineering Task Force, Apr 1998. RFC 2309.

[10] Clark, D. The Structuring of Systems Using Up-
calls. In Proceedings of the 10th ACM Symposium on
Operating Systems Principles (SOSP ’85) (Dec. 1985),
pp. 171–180.

[11] Clark, D. The Design Philosophy of the DARPA
Internet Protocols. In Proc. ACM SIGCOMM (Aug.
1988), pp. 109–114.

3 Supported by NSF grant ANI-00-82493, DARPA/AFRL
grant F30602-99-1-0503 and Cisco

[12] Clark, D., and Tennenhouse, D. Architectural
Consideration for a New Generation of Protocols. In
Proc. ACM SIGCOMM (September 1990), pp. 200–
208.

[13] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
and Berners-Lee, T. Hypertext Transfer Protocol—
HTTP/1.1. Internet Engineering Task Force, Jan 1997.
RFC 2068.

[14] Floyd, S., and Fall, K. Promoting the Use of End-
to-End Congestion Control in the Internet. IEEE/ACM
Trans. on Networking 7, 4 (Aug. 1999), 458–472.

[15] Floyd, S., Jacobson, V., McCanne, S., Liu, C. G.,
and Zhang, L. A Reliable Multicast Framework for
Light-weight Sessions and Application Level Framing.
In Proc. ACM SIGCOMM (Sept. 1995), pp. 342–356.

[16] Gettys, J. MUX protocol specification, WD-MUX-
961023. http://www.w3.org/pub/WWW/Protocols/
MUX/WD-mux-961023.html, 1996.

[17] I. Leslie and D. McAuley and R. Black and T.
Roscoe and P. Barham and D. Evers and R. Fair-
bairns and E. Hyden. The design and implementa-
tion of an operating system to support distributed mul-
timedia applications. IEEE Journal on Selected Areas
in Communications 14, 7 (September 1996), 1280–1297.

[18] Institute of Electrical and Electronics Engi-
neers, Inc. IEEE Standard for Information Technol-
ogy — Portable Operating System Interface (POSIX)
— Part 1: System Application Programming Interface
(API) — Amendment 1: Realtime Extension [C Lan-
guage], 1994. Std 1003.1b-1993.

[19] Jacobson, V. Congestion Avoidance and Control. In
Proc. ACM SIGCOMM (Aug 1988), pp. 314–329.

[20] Jacobson, V., Braden, R., and Borman, D. TCP
Extensions for High Performance. Internet Engineering
Task Force, May 1992. RFC 1323.

[21] Kaashoek, M. F., Engler, D. R., Ganger, G. R.,
Briceño, H. M., Hunt, R., Mazières, D., Pinck-
ney, T., Grimm, R., Jannotti, J., and Mackenzie,
K. Application performance and flexibility on exokernel
systems. In Proceedings of the 16th ACM Symposium on
Operating Systems Principles (SOSP ’97) (Saint-Malô,
France, October 1997), pp. 52–65.

[22] Karn, P., and Partridge, C. Improving Round-Trip
Time Estimates in Reliable Transport Protocols. ACM
Transactions on Computer Systems 9, 4 (Nov. 1991),
364–373.

[23] Lepreau, J., Alfeld, C., Andersen, D., and
Maren, K. V. A large-scale network testbed. Un-
published, in 1999 SIGCOMM works-in-progress. http:
//www.cs.utah.edu/flux/testbed/, Sept. 1999.

[24] The MASH Project Home Page. http://www-mash.cs.
berkeley.edu/mash/, 1999.

[25] McCanne, S., Jacobson, V., and Vetterli, M.
Receiver-driven Layered Multicast. In Proc ACM SIG-
COMM (Aug. 1996), pp. 117–130.

[26] Microsoft Windows Media Player. http://www.
microsoft.com/windows/mediaplayer/.

[27] Noble, B., Satyanarayanan, M., Narayanan, D.,
Tilton, J., Flinn, J., and Walker, K. Agile
Application-Aware Adaptation for Mobility. In Proc.
16th ACM SOSP (Oct 1997), pp. 276–287.

[28] Padmanabhan, V. Addressing the Challenges of Web
Data Transport. PhD thesis, Univ. of California, Berke-
ley, Sep 1998.

[29] Padmanabhan, V. N., and Mogul, J. C. Improving
HTTP Latency. In Proc. Second International WWW
Conference (Oct. 1994).

[30] Postel, J. B. User Datagram Protocol. Internet En-
gineering Task Force, August 1980. RFC 768.

[31] Postel, J. B. Transmission Control Protocol. Internet
Engineering Task Force, September 1981. RFC 793.

[32] Quinn, B., and Shiute, D. Windows Sockets Network
Programming. Addison-Wesley, Jan. 1999.

[33] Ramakrishnan, K., and Floyd, S. A Proposal to
Add Explicit Congestion Notification (ECN) to IP. In-
ternet Engineering Task Force, Jan 1999. RFC 2481.

[34] Raman, S., and McCanne, S. Scalable Data Naming
for Application Level Framing in Reliable Multicast. In
Proc. ACM Multimedia (Sept. 1998), pp. 391–400.

[35] Real Networks. http://www.real.com/.

[36] Rejaie, R., Handley, M., and Estrin, D. RAP: An
End-to-end Rate-based Congestion Control Mechanism
for Realtime Streams in the Internet. In Proc. IEEE
INFOCOM (March 1999), vol. 3, pp. 1337–1345.

[37] Savage, S., Cardwell, N., and Anderson, T. The
Case for Informed Transport Protocols. In Proc. 7th
Workshop on Hot Topics in Operating Systems (HotOS
VII) (Mar 1999), pp. 58–63.

[38] Savage, S., Cardwell, N., Wetherall, D., and
Anderson, T. TCP Congestion Control with a Mis-
behaving Receiver. In ACM Computer Comm. Review
(Oct 1999).

[39] Schulzrinne, H., Casner, S., Frederick, R., and
Jacobson, V. RTP: A Transport Protocol for Real-
Time Applications. Internet Engineering Task Force,
Jan 1996. RFC 1889.

[40] Spero, S. Session Control Protocol (SCP).
http://www.w3.org/pub/WWW/Protocols/HTTP-NG/
http-ng-scp.html, 1996.

[41] Stevens, W. R. TCP/IP Illustrated, Volume 1.
Addison-Wesley, Reading, MA, Nov 1994.

[42] Tan, W., and Zakhor, A. Real-time Internet Video
Using Error Resilient Scalable Compression and TCP-
friendly Transport Protocol. IEEE Trans. on Multime-
dia 1, 2 (May 1999), 172–186.

[43] Touch, J. TCP Control Block Interdependence. Inter-
net Engineering Task Force, April 1997. RFC 2140.

