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Abstract

Advances in monitoring technology (e.g., sensors) and an increased demand for online infor-
mation processing have given rise to a new class of applications that require continuous, low-
latency processing of large-volume data streams. These “stream processing applications”
arise in many areas such as sensor-based environment monitoring, financial services, network
monitoring, and military applications. Because traditional database management systems
are ill-suited for high-volume, low-latency stream processing, new systems, called stream
processing engines (SPEs), have been developed. Furthermore, because stream processing
applications are inherently distributed, and because distribution can improve performance
and scalability, researchers have also proposed and developed distributed SPEs.

In this dissertation, we address two challenges faced by a distributed SPE: (1) fault-
tolerant operation in the face of node failures, network failures, and network partitions, and
(2) federated load management.

For fault-tolerance, we present a replication-based scheme, called Delay, Process, and
Correct (DPC), that masks most node and network failures. When network partitions
occur, DPC addresses the traditional availability-consistency trade-off by maintaining, when
possible, a desired availability specified by the application or user, but eventually also
delivering the correct results. While maintaining the desired availability bounds, DPC also
strives to minimize the number of inaccurate results that must later be corrected. In contrast
to previous proposals for fault tolerance in SPEs, DPC simultaneously supports a variety
of applications that differ in their preferred trade-off between availability and consistency.

For load management, we present a Bounded-Price Mechanism (BPM) that enables
autonomous participants to collaboratively handle their load without individually owning
the resources necessary for peak operation. BPM is based on contracts that participants
negotiate offline. At runtime, participants move load only to partners with whom they
have a contract and pay each other the contracted price. We show that BPM provides
incentives that foster participation and leads to good system-wide load distribution. In
contrast to earlier proposals based on computational economies, BPM is lightweight, enables
participants to develop and exploit preferential relationships, and provides stability and
predictability. Although motivated by stream processing, BPM is general and can be applied
to any federated system.

We have implemented both schemes in the Borealis distributed stream processing engine.
They will be available with the next release of the system.

Thesis Supervisor: Hari Balakrishnan
Title: Associate Professor of Computer Science and Engineering
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To my husband, Michel Goraczko.
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Chapter 1

Introduction

In recent years, a new class of data-intensive applications has emerged. These applications,
called stream processing applications, require continuous and low-latency processing of large
volumes of information that “stream in” from data sources at high rates. Stream processing
applications have emerged in several different domains motivated by different needs.

Advances in miniaturization and wireless networking have made it possible to deploy
specialized devices capable of sensing the physical world and communicating information
about that world. Examples of these devices include a wide variety of environmental sen-
sors [161], miniature tags for object tracking [60], location-sensing devices [77, 79, 133],
etc. Deploying these devices enables applications such as sensor-based environment moni-
toring (e.g., building temperature monitoring, air quality monitoring), civil engineering ap-
plications (e.g., highway monitoring, pipeline health monitoring), RFID-based equipment
tracking, military applications (e.g., platoon tracking, target detection), and medical ap-
plications (e.g., sensor-based patient monitoring). All these applications must continuously
process streams of information produced by the deployed devices.

In some areas, such as computer networks (e.g., intrusion detection, network monitoring,
tracking of worm propagation), web logs or clickstream monitoring, financial services (e.g.,
market feed processing, ticker failure detection), applications have traditionally involved
processing large volume data streams. These applications, however, typically store data
persistently and mine it offline [51], which introduces a significant delay between the time
when events occur and the time when they are analyzed. Alternatively, applications can
process data online using specialized software [136], but that is expensive to implement.

As has been widely noted [2, 17, 33], traditional database management systems (DBMSs)
based on the “store-then-process” model are inadequate for high-rate, low-latency stream
processing. As a result, several new architectures have been proposed. The new engines
are called stream processing engines (SPEs), data stream management systems (DSMS) [2,
117], or continuous query processors [33]. Their goal is to offer data management services
that meet the needs of all the above applications in a single framework. Because stream
processing applications are inherently distributed, and because distribution can improve the
performance and scalability of the processing engine, researchers have also proposed and
developed distributed SPEs [33, 37].

Several challenges arise when developing a distributed SPE. In this dissertation, we focus
on two challenges in particular: fault-tolerance in a distributed SPE and load management
in a federated environment. The goal of our fault-tolerance mechanism is to enable a dis-
tributed SPE to survive processing node failures, network failures, and network partitions.
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The goal of our load management approach is to create incentives and a mechanism for
autonomous participants to collaboratively handle their load without having to individu-
ally own and administer the necessary resources for peak operation. Our load management
technique is motivated by stream processing but is generally applicable to other federated
systems. We implemented both techniques in the Borealis distributed SPE [1, 27], and
evaluate their performance through analysis, simulations, and experiments.

In the rest of this chapter, we describe the main properties of stream processing applica-
tions and the key features of stream processing engines. We also present the fault-tolerance
and load management problems addressed in this dissertation, outline our contributions,
and discuss some of our key findings.

1.1 Stream Processing Applications

Stream processing applications differ significantly from traditional data management appli-
cations. The latter typically operate on bounded data-sets by executing one-time queries
over persistently stored data. A typical example is a retail business that needs an appli-
cation to keep track of its inventory, sales, equipment, and employees. DBMSs such as
Oracle [125], IBM DB2 [148], and Microsoft SQL Server [114] are designed to support such
traditional types of applications. In these systems, data is first stored and indexed. Only
then are queries executed over the data.

In contrast, as illustrated in Figure 1-1, in a stream processing application, data sources
produce unbounded streams of information and applications execute continuous, long-
running queries over these streams. Network monitoring is an example of a stream process-
ing application. In this application, the data sources are network monitors that produce
information about the traffic originating in or destined to machines on monitored subnet-
works. A possible goal of the application is to continuously compute statistics over these
streams, enabling a network administrator to observe the state of the network as well as
detect anomalies such as possible intrusion attempts.

Stream processing applications have the following properties [2, 9, 17, 21, 33]:
1. A continuous-query processing model: In a traditional DBMS, clients issue one-time

queries against stored data (e.g., “Did any source attempt more than 100 connections
within a one minute period?”). In a stream processing application, clients submit
long-duration monitoring queries that must be processed continuously as new input
data arrives (e.g., “Alert me if a source attempts more than 100 connections within
a one minute period”). Clients submitting continuous queries expect periodic results,
or alerts when specific combinations of inputs occur.

2. A push-based processing model: In a stream processing application, one or more data
sources (e.g., sensor networks, ticker feeds, network monitors) continuously produce
information and push the data to the system for processing. Client applications
passively wait for the system to push them periodic results or alerts. This processing
model contrasts with the traditional model, where the DBMS processes locally stored
data, and clients actively pull information about the data when they need it.

3. Low latency processing: Many stream processing applications monitor ongoing phe-
nomena and require low latency processing of input data. For instance, in network
monitoring, current information about ongoing intrusions is more valuable than stale
information about earlier attacks. SPEs strive to provide low-latency processing but
do not make any hard guarantees.
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Figure 1-1: High-level view of stream processing. Data sources continuously produce
streams of information. These streams are then continuously processed and results are
pushed to client applications.

4. High and variable input data rates: In many stream processing applications, data
sources produce large volumes of data. Input data rates may also vary greatly. For
instance, a denial-of-service (DoS) attack may cause large numbers of connections to
be initiated. If network monitors produce one data item per connection, the data
rates on the streams they produce will increase during the attack. As the data rates
vary, the load on an SPE also varies because query operators process data arriving at
a higher rate.

1.2 Stream Processing Engines

To support stream processing applications, SPEs introduce new data models, operators, and
query languages. Their internal architectures also differ from those of traditional DBMSs.
They are geared toward processing new data as it arrives by pushing it through a set of
continuous queries registered in the system.

1.2.1 Data and Processing Model

Several data models have been proposed for stream processing [2, 10, 11, 100, 168]. These
models are based on the core idea that a stream is an append-only sequence of data items.
Data items are composed of attribute values and are called tuples. All tuples in the same
stream have the same set of attributes, which defines the type or schema of the stream.
Typically, each stream is produced by a single data source. Figure 1-2 shows an example of
streams, tuples, and schemas for a network monitoring application. In this example, net-
work monitors are data sources. They produce input streams, where each tuple represents
one connection and has the following schema: time when the connection was established,
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Figure 1-2: Example streams and schemas, in a network monitoring application.

source address, destination address, and destination port number. The output stream has
a different schema. Each tuple indicates how many connections were established by each
distinct source address for each per-defined period of time.

In stream processing applications, data streams are filtered, correlated, and aggregated
by operators to produce outputs of interest. An operator may be viewed as a function
that transforms one or more input streams into one or more output streams. Because
SPEs are inspired by traditional DBMSs, they support operators analogous to relational
operators such as Select, Join, Project, Union, and Aggregate [2, 10, 33]. Some engines
(e.g., Aurora [2]/Borealis [1]) also support user-defined operators. However, our experience
building various applications shows that most of application logic can be built directly using
pre-defined operators [21]. Because streams are unbounded in size and because applications
require timely output, operators can neither accumulate state that grows with the size of
their inputs nor can they wait to see all their inputs before producing a value. For this
reason, stream processing operators perform their computations over windows of data that
move with time. These windows are defined either by assuming that tuples on a stream are
ordered on their timestamp values [10, 100], or on one of their attributes [2], or by inserting
explicit punctuation tuples that specify the end of a subset of data [166, 167, 168]. Window
specifications make operators sensitive to the order of the input tuples.

In Aurora [2] and Borealis [1], applications determine how input streams should be
processed by composing the pre-defined and the user-defined operators into a workflow-
style loop-free, directed graph, called a query diagram. Other stream-processing engines
use SQL-style declarative query languages [10, 33, 43, 100] and translate declarative queries
into query diagrams. Figure 1-3 illustrates a simple query diagram. The query, inspired
by the type of processing performed in Snort [136] and Autofocus [51], is a simple network
monitoring application. Tuples in input streams each summarize one network connection:
source and destination addresses, connection time, protocol used, etc. First, the streams
from all the network monitors are unioned (operator a) into a single stream. The query then
transforms that stream to identify sources that are either active (operators b and c), or that
try to connect over too many distinct ports within a short time period (operators d and
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Figure 1-3: Example of a query diagram from the network monitoring applica-
tion domain.

e), or both (operator f). To count the number of connections and ports the query applies
windowed aggregate operators (b and d): these operators buffer connection information
for a time period T . In the example, T is 60 seconds. The operators then group the
information by source address and apply the desired aggregate function. Aggregate values
are then filtered to identify the desired type of connections. In the example, a source is
labeled as active if it establishes more than 100 connections within a 60-second interval or
connects over more than 10 distinct ports. Finally, operator f joins active sources with
those connecting over many ports on the source address field to identify sources that belong
in both categories.

Some systems allow queries over both streams and stored relations [11, 69, 162]. We
follow the model introduced in Aurora [2] and restrict processing to append-only data
streams. We allow, however, read and write operators [21] that perform a “SQL update”
command for every input tuple they receive, and may produce streams of tuples as output.

1.2.2 Distributed Operation

SPEs are an example of a naturally distributed system because data sources are often
spread across many geographic locations and belong to different administrative entities.
Distribution can also improve the performance and scalability of a stream processor, and
enables high-availability because processing nodes can monitor and take over for each other
when failures occur [2, 33].

A distributed SPE is composed of multiple physical machines. Each machine, also called
a processing node (or simply node), runs an SPE. Each node processes input streams and
produces result streams that are either sent to applications or to other nodes for further
processing. When a stream goes from one node to another, the two nodes are called upstream
and downstream neighbors, respectively. Figure 1-4 illustrates a possible deployment for the
query from Figure 1-3. The data sources are at remote and distributed locations, where
the network monitors are running. All input streams are unioned at Node 1 before being
processed by operators running at Nodes 1, 2, and 3. Each operator receives input tuples
through its input queues. When streams cross node boundaries, the output tuples are
temporarily buffered in output queues.
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Figure 1-4: Example of distributed stream processing.

1.3 Challenges and Contributions

There are several challenges in building a distributed and possibly federated stream pro-
cessing engine. In this dissertation, we address the following two problems: fault-tolerant
distributed stream processing and load management in a federated environment. For each
problem, we devise an approach, describe its implementation in the Borealis distributed
SPE, and demonstrate its properties through analysis, simulations, and experiments.

1.3.1 Fault-Tolerance Challenges

In a distributed SPE, several types of failures can occur: (1) processing nodes can fail
and stop, (2) the communication between nodes can be interrupted, and (3) the system
can partition. All three types of failures can disrupt stream processing: they can affect
the correctness of the output results and can even prevent the system from producing any
results. We address the problem of protecting a distributed stream processing engine from
these three types of failures. For node failures, we focus on crash failures. We do not address
Byzantine failures, which cause nodes to produce erroneous results.

Ideally, even though failures occur, we would like client applications to receive the correct
output results. For many node and network failures, the system can provide this property
by replicating each processing node and ensuring that replicas remain mutually consistent,
i.e., that they process their inputs in the same order, progress at roughly the same pace,
that their internal computational state is the same, and that they produce the same output
in the same order. If a failure causes a node to lose one of its input streams, the node can
then switch and continue processing from a replica of the failed or disconnected upstream
neighbor. The state of replicas and the output seen by clients remain identical to a state
and output that could have existed with a single processing node and without failures.

The challenge is that some types of failures, such as network partitions, can cause a
node to lose access to all replicas that produce one of its input streams. To maintain
consistency, the node must then block, making the system unavailable. Fault-tolerance
through replication is widely studied and it is well known that it is not possible to provide
both consistency and availability in the presence of network partitions [28, 68]. Many
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stream processing applications are geared toward monitoring tasks, and can benefit from
early results even if these results are somewhat inaccurate because they are based on a
subset of input streams. Some applications may even prefer to see approximate results
early, rather than wait for correct results. For example, even if only a subset of network
monitors is available, processing their data might suffice to identify some potential network
intrusions, and low latency processing is critical to mitigate attacks. We therefore propose
that nodes continue processing available inputs in order to maintain availability. Because
client applications typically monitor some ongoing phenomenon and passively wait for the
system to send them results, we define availability as a low per-tuple processing latency.
This definition differs from that of traditional optimistic replication schemes [140].

We do not want to sacrifice consistency completely, however, because for many applica-
tions that favor availability, the correct results are also useful. In network monitoring, for
example, it may be important for an administrator to eventually know about all attacks that
occurred in the network or to know the exact values of different aggregate computations
(e.g., traffic rates per customer). Hence, the main fault-tolerance challenge that we address
is to ensure that client applications always see the most recent results but eventually also
receive the correct output results, i.e., we would like the system to maintain availability
and provide eventual consistency.1

To achieve the above goal, the SPE may have to allow replicas to become temporarily
inconsistent. We measure inconsistency by counting the number of inaccurate results that
must later be corrected, since that is often a reasonable proxy for replica inconsistency.
Because it is expensive to process then correct results in an SPE, our second goal is to
study techniques that minimize the number of inaccurate results, i.e., we seek to minimize
inconsistency while maintaining a required availability. We observe that stream processing
applications differ in their preferred trade-offs between availability and consistency, and we
propose to use these preferences to minimize inconsistency. Some applications (e.g., sensor-
based patient monitoring) may not tolerate any inconsistent results. Other applications
(e.g., network intrusion detection) may have to see the most recent data at any time. Other
applications yet (e.g., sensor-based environment monitoring) may tolerate bounded increase
in processing latency if this helps reduce inconsistency. We propose to enable applications
to set their desired trade-off between availability and consistency, by specifying how much
longer than usual they are willing to wait for results, if this delay reduces inconsistency. The
system should minimize inconsistency, while striving to always produce new results within
the required time-bound. Providing a flexible trade-off between availability and consistency
distinguishes DPC from previous techniques for fault-tolerant stream processing that handle
only node failures [83] or strictly favor consistency over availability [146]. DPC is thus better
suited for many monitoring applications, where high availability and near real-time response
is preferable to perfect answers. At the same time, DPC supports, in a single framework,
a wide variety of applications with different preferred trade-offs between availability and
consistency.

Achieving the two main goals above entails a significant set of secondary challenges.
First, we must devise a technique for replicas to remain mutually consistent in the absence
of failures. In contrast to traditional databases and file systems, an SPE does not operate

1Correcting earlier results requires replicas to eventually reprocess the same input tuples in the same
order, and by doing so reconcile their states. We thus call the eventual correctness guarantee eventual
consistency, based on the same notion introduced by optimistic replication schemes for databases and file
systems [140], although for an SPE, eventual consistency additionally includes the correction of previously
produced results.
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Figure 1-5: Types of failures and fault-tolerance goals.

on a persistent state but rather on a large and rapidly changing transient state. Addition-
ally, in a distributed SPE, the output produced by some nodes serves as input to other
nodes, and must also be consistent. These two properties make the replication problem
different from that addressed in previous work. Similarly, traditional approaches to record
reconciliation [93, 169] are ill-suited to reconcile the state of an SPE because the SPE state
is not persistent and depends on the order in which the SPE processed its input tuples. We
thus need to investigate new techniques to reconcile SPE states. Third, to provide eventual
consistency, processing nodes must buffer some intermediate tuples. For failures that last
a long time, the system may not be able to buffer all the necessary data. We thus need a
way to manage the intermediate buffers and handle long-duration failures. Finally, we need
to enhance stream data models to support the distinction between a new tuple and a tuple
correcting an earlier one.

In summary, fault-tolerance is a widely-studied problem, but the unique requirements
and environment of stream processing applications create a new set of challenges. We
propose to devise a new approach to fault-tolerance geared specifically toward distributed
SPEs. The main challenge of the approach is to provide eventual consistency while main-
taining an application-defined level of availability. The second challenge that we address is
to study techniques that achieve the first goal in a manner that minimizes inconsistency.
Figure 1-5 summarizes the types of failures that we would like a distributed SPE to handle
and the fault-tolerance goals that we would like the SPE to achieve.

1.3.2 Fault-Tolerance Contributions

The main contribution of our work is to devise an approach, called Delay, Process, and
Correct (DPC) [22] that achieves the goals outlined in the previous section.

The core idea of DPC is to favor replica autonomy. In DPC, nodes independently
detect failures of their input streams and manage their own availability and consistency, by
following a state-machine composed of three states: a stable state, an upstream failure state,
and a stabilization state. To ensure replica consistency in the stable state, we define a simple
data-serializing operator, called SUnion, that takes multiple streams as input and produces
one output stream with deterministically ordered tuples. Additionally, we use a heartbeat-
based mechanism that enables a node to decide, with respect to its inputs, when a failure
has occurred. With these two techniques, a node need only hear from one replica of each one
of its upstream neighbors to maintain consistency. Replicas do not need to communicate
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with each other. When a node detects the failure of one or more of its inputs, it transitions
into the upstream failure state, where it guarantees that available inputs capable of being
processed are processed within the application-defined time threshold. At the same time, the
node tries to avoid or at least minimize the inconsistency that it introduces into the system
by finding stable upstream replicas, and, when necessary, judiciously suspending or delaying
the processing of new data. Once a failure heals and a node receives the previously missing
or inconsistent input, it transitions into the stabilization state. During stabilization, nodes
reconcile their states and correct earlier output results (thus ensuring eventual consistency),
while maintaining the availability of output streams. To achieve consistency after a failure
heals, we develop approaches based on checkpoint/redo and undo/redo techniques. To
maintain availability during stabilization, we develop a simple inter-replica communication
protocol that ensures at least one replica remains available at any time. Finally, to support
DPC, we also introduce an enhanced streaming data model in which results based on partial
inputs are marked as tentative, with the understanding that they may subsequently be
modified; all other results are considered stable and immutable.

We implemented DPC in Borealis and evaluated it through analysis and experiments.
We show that DPC achieves the desired availability/consistency trade-offs even in the face
of diverse failure scenarios including multiple simultaneous failures and failures during re-
covery. We find that requiring each node to manage its own availability and consistency
helps handle complex failure scenarios.

We also show that DPC has a low processing latency overhead. The main overhead
of DPC comes from buffering tuples at the location of failures in order to reprocess them
during stabilization. For certain common types of query diagrams, however, DPC supports
arbitrarily-long failures, while still ensuring that, after failures heal, the system converges
to a consistent state and the most recent tentative tuples get corrected.

To reconcile the state of a node, we find that checkpoint/redo outperforms undo/redo.
We also find that it is possible to reconcile the state of an SPE using checkpoints and redo,
but limiting checkpoints and reconciliation to paths affected by failures and avoiding any
overhead in the absence of failures.

We show that DPC performs especially well in the face of the non-uniform failure du-
rations observed in empirical measurements of system failures: most failures are short, but
most of the downtime of a system component is due to long-duration failures [54, 72]. DPC
handles short failures by suspending processing and avoiding inconsistency. In fact, we find
that is possible for the system to avoid inconsistency for all failures shorter than the appli-
cation defined maximum incremental latency, independently of the size of the distributed
system and the location of the failure. For long-duration failures, one of the greatest chal-
lenges of DPC is the guarantee to process all available tuples within a pre-defined time
bound, while also ensuring eventual consistency. To maintain availability at all times, we
show that it is necessary to perform all replays and corrections in the background. Every
time a node needs to process or even simply receive old input tuples, it must nevertheless
continue to process the most recent input tuples.

Overall, with DPC, we show that it is possible to build a single scheme that enables a
distributed SPE to cope with a variety of failures, in a way that provides applications the
freedom to chose the desired trade-off between availability and consistency.
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Figure 1-6: Different types of load allocations in a system of two nodes.

1.3.3 Load Management Challenges

The second problem that we address is the management of load variations in a distributed
and federated system.

When a user submits a query, a distributed SPE assigns individual operators to different
processing nodes. Because queries are continuous and long running, the amount of resources
(memory, bandwidth, CPU) that each operator uses is likely to vary during the lifetime
of the query. The variations are typically caused by changes in the data rates or data
distributions on input streams. Users may also dynamically add and remove queries from
the system, causing further load variations. In response to these changes, the system may
eventually need to modify the original allocation of operators to nodes, in order to improve
overall performance or at least avoid serious performance degradation.

The problem of dynamically managing load in a distributed system by continuously
reallocating tasks or resources is well-studied (e.g., [49, 64, 96]). Traditional techniques
define a system-wide utility function, such as average total processing time [64, 96] or
throughput [96] and aim to reach an allocation that optimizes this utility. Figure 1-6(a)
shows an example of a system with two processing nodes. Each node has a function that
gives the total processing cost for a given total load. The cost could, for example, represent
the average queue size at the node. In this example, an optimal load allocation minimizes
the sum of the processing costs (i.e., minimizes D1 + D2). By doing so, the allocation
optimizes system-wide utility given by the total number of messages queued in the system.

Most previous approaches assume a collaborative environment, where all nodes work
together to maximize overall system performance. Distributed systems are now fre-
quently deployed in federated environments, where different autonomous organizations
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own and administer subsets of processing nodes and resources. Examples of such fed-
erated systems include computational grids composed of computers situated in different
domains [3, 29, 61, 164], overlay-based computing platforms such as Planetlab [131], Web-
service-based cross-company workflows where end-to-end services require processing by dif-
ferent organizations [48, 94], and peer-to-peer systems [38, 45, 97, 120, 137, 153, 174]. Our
goal is to enable load management in these new settings. Although motivated by stream
processing, our approach is general and can be applied to any federated system.

Several issues make load management in a federated system challenging. Most im-
portantly, participants do not strive to optimize system-wide utility but are driven by
self-interest. They collaborate with others only if the collaboration improves their utility.
Therefore, we need a scheme that provides incentives for participants to handle each other’s
load; we need to design a mechanism [86, 127] (i.e., an incentive mechanism).

A computational economy, where participants provide resources and perform computing
for each other in exchange for payment,2 is a natural technique to facilitate collaborative
load management between selfish participants. Several computational economies have been
proposed in the past (e.g., [3, 29, 154, 175]), but they have all failed to gain widespread
acceptance in practice. This observation leads us to argue that traditional computational
economies are not the correct solution. They provide a mechanism for participants to
improve their utility by performing computation for others, but this facility appears to be
insufficient to motivate widespread adoption.

In contrast to computational economies, bilateral agreements are frequently used in prac-
tice to enable collaborations between autonomous parties. Service level agreements (SLAs)
routinely govern relationships between customers and service providers [81, 171, 178], be-
tween companies interconnecting through Web services [42, 94, 138], or between Internet
Service Providers (ISPs) who agree to carry each other’s traffic [53, 176]. Similarly to
computational economies, bilateral agreements offer participants incentives to collaborate
because participants agree to reward each other for the service they provide. Bilateral agree-
ments, however, provide several additional features. They provide partners with privacy
in their interactions with each other. They enable price and service discrimination [101],
where a participant offers different qualities of service and different prices to different part-
ners. Because they are based on long-term relationships, pairwise agreements also offer
stability and predictability in interactions between participants. Finally, agreements make
runtime interactions simpler and more lightweight than computational economies because
most conditions are pre-negotiated, reducing runtime overhead.

Our goal is to develop a load management mechanism that enables a federated system to
achieve good load distribution while providing the same benefits as bilateral agreements: in-
centives to collaborate, privacy in interactions, predictability in prices and load movements,
stability in relationships, and runtime simplicity.

1.3.4 Load Management Contributions

Inspired by the successful use of contracts in practice, we propose a distributed mechanism,
the Bounded-Price Mechanism (BPM) [23], for managing load in a federated system based
on private pairwise contracts. Unlike computational economies that use auctions or imple-
ment global markets to set resource prices at runtime, our mechanism is based on offline
contract negotiation. Contracts set tightly bounded prices for migrating each unit of load

2Non-payment models, such as bartering, are possible too. See Chapter 2 for details.
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between two participants and may specify the set of tasks that each is willing to execute
on behalf of the other. With BPM, runtime load transfers occur only between participants
that have pre-negotiated contracts, and at a unit price within the contracted range. The
load transfer mechanism is simple: a participant moves load to another if the expected local
processing cost for the next time-period is larger than the payment it would have to make
to the other participant for processing the same load (plus the migration cost).

We argue that optimal load balance is not an important goal in a federated system. Most
participants will own sufficient resources to provide good service to their clients most of the
time. Instead, our goal is to achieve an acceptable allocation, a load distribution where either
no participant operates above its capacity, or, if the system as a whole is overloaded, all
participants operate above their capacity. Figure 1-6(b) illustrates an acceptable allocation.
The allocation does not minimize the sum of all processing costs but ensures that the
load level, Xi, at each node is below the node’s pre-defined capacity, Ti. Because we
aim at achieving an acceptable allocation rather than an optimal load balance, our work
significantly differs from other approaches geared toward selfish participants.

We have designed and implemented our approach in Borealis. Using analysis, simula-
tions, and experiments, we show that the mechanism provides enough incentives for selfish
participants to handle each other’s excess load, improving the system’s load distribution.
We also show that the mechanism efficiently distributes excess load when the aggregate
load both underloads and overloads total system capacity. The mechanism ensures good
stability: it handles most load variations without reallocating any load. We show that it
is sufficient for each participant to have a handful of contracts in order to get most of the
benefits of the system. Additionally, contracts only need to specify a small price-range in
order for the mechanism to always converge to acceptable allocations. With a price range,
we show that the optimal strategy for participants is to quickly agree on a final price. Most
of the time, the best approach is to not negotiate at all. We further show that the mecha-
nism works well even when participants establish heterogeneous contracts at different unit
prices with each other. Finally, we show that our approach has low runtime overhead.

Overall, we show with BPM that a simple, lightweight, and practical technique that
leverages offline, long-term relationships between participants can lead to excellent load
balance properties: acceptable and stable load allocations. At the same time, BPM provides
participants with privacy, predictability in prices and possible runtime load movements, and
possibility for service customization.

1.4 Organization

The rest of this dissertation is organized as follows. In Chapter 2, we present an overview
of related work on stream processing, fault-tolerance in SPEs and other data management
systems, and load-management in federated environments. Because our implementation is in
the Borealis SPE, in Chapter 3, we outline some aspects of the Borealis system architecture
relevant to this work. In Chapter 4, we present and analyze DPC. In Chapter 5, we
discuss the implementation of DPC in Borealis and evaluate DPC’s performance through
experiments with our prototype implementation. In Chapter 6, we present and analyze
BPM. In Chapter 7, we complement the analysis with simulation results, describe BPM’s
implementation in Borealis, and present the results of some experiments with our prototype
implementation. Finally, in Chapter 8, we conclude and discuss possible areas for future
work.
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Chapter 2

Background and Related Work

In this chapter, we discuss in more details the differences between traditional DBMSs and
SPEs. We present related work on fault-tolerance in DBMSs, SPEs, and other data man-
agement systems, and related work on load management in federated environments.

More specifically, in Section 2.1, we discuss the limitations of traditional DBMSs to sup-
port stream processing applications, and present various extensions that have been proposed
in the past to enhance DBMS capabilities. We also discuss traditional techniques to achieve
fault-tolerance. In Section 2.2, we present the main research projects in the area of SPEs
and discuss the specific efforts to achieve fault-tolerant stream processing. In Sections 2.3
through 2.7, we discuss fault-tolerance in workflow systems, publish/subscribe systems, sen-
sor networks, state-machine replication, and rollback recovery. Finally, in Section 2.8, we
present related work on load management in federated environments.

2.1 Traditional DBMSs and Extensions

Stream processing applications require continuous, low-latency processing of large volumes
of streaming data. These requirements contrast with the capabilities of traditional DBMSs
in three ways.

First, stream processing applications require new or at least extended data models,
operators, and query languages. Law et al. [100] formally study the mismatch between
SQL capabilities and the requirements of stream processing queries. The main problem
is that the relational algebra assumes data sets are bounded in size, which is reflected
in the operator design. For example, some relational operators (e.g., aggregate operators
such as min, max, or average) may need to process their whole input before producing a
result. Stream processing applications typically monitor some ongoing phenomenon and
want periodic updates rather than a single value at the end of a stream. Other relational
operators (such as Join) accumulate state that grows with the size of their inputs. Such state
management is inappropriate for streams, where tuples arrive continuously and the input
can be potentially unbounded in size. To address these shortcoming, most SPE propose the
use of some type of windowed specifications [2, 9, 33] as a way to process tuples in groups.

Second, the traditional data processing model requires that data be persistently stored
and indexed before queries can be executed over that data. More generally, DBMSs assume
they can dictate the movements of data to and from disk and can examine the same tuples
multiple times, if necessary. These assumptions and this processing model break for continu-
ously streaming inputs. SPEs propose an architecture where data is processed continuously
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as it arrives before or even without being stored [2, 9, 33, 43, 158]. Linear Road [12] is
a benchmark developed for measuring and comparing the performance of stream process-
ing engines. The authors of the benchmark show that, for stream processing workloads, a
specialized SPE can outperform a traditional DBMSs by at least a factor of five.

Finally, traditional DBMSs have only limited support for alerting and continuous query
capabilities, which are the main types of stream processing queries. A materialized view [73]
is a type of continuous query. It is a derived stored relation defined in terms of base stored
relations. A materialized view is thus like a cache that must be updated (incrementally or
through re-execution) as the base relations change. Materialized views, however, are not
designed for the push-based style of processing required by stream processing applications.
The user must poll the state of a materialized view.

2.1.1 DBMS Extensions

Stream processing applications are not the first applications to break the traditional
database management model. Before SPEs, various extensions to DBMS had already been
proposed. Some of these extensions, such as triggers, main-memory processing, real-time
processing, support for sequenced data, and the notion of time, bear similarities with the
goals of SPEs. We now present and overview of some of these earlier proposals.

A traditional DBMS performs only one-time queries on the current state of persistently
stored relations. Active databases [74, 130, 144, 155, 177] aim to enhance a DBMS with
monitoring and alerting capabilities. In commercial databases, triggers [75, 95, 103] are
the most commonly adopted technique to turn a passive database into an active one. A
trigger is a pre-defined action executed by the DBMS when some pre-defined combination of
events and conditions occurs. Both actions and events are database operations. In contrast
to SPEs, active databases still operate on the current state of locally-stored relations. They
simply monitor this state and react to changes in that state. A naive implementation of
triggers does not scale, because every event requires the system to scan all relevant triggers to
find those with matching conditions, and testing each condition may correspond to running
an expensive query. To enable a greater scalability, triggers can be grouped into equivalence
classes with an index built on their different conditions [75]. SPEs, however, claim that their
new processing model is more scalable and better suited for stream processing applications
than a trigger-based model [2].

In the relational model, an important design decision was to treat relations as unordered
sets of tuples. This choice facilitates query optimization but fails to support applications
that need to express queries over sequences of data rather than data sets. One example of
such applications is in the financial services area, where applications need to examine stock
price fluctuations. Sequence databases [87, 102, 112, 145] address this shortcoming. They
propose new data models (e.g., array data type [112], sequence enhanced abstract data
type [145], or arrable [102]), new operators (e.g., order preserving variants of relational
operators), and query languages (e.g., support for “ASSUMING ORDER on” clauses or
definitions of windows of computation) to support data sequences in a relational engine.
Sequence databases have greatly influenced the design of query languages for streams (e.g.,
[2, 11]), but the latter face a few additional challenges that sequence databases ignore. In
stream processing data is not stored and readily available. Instead, it streams continuously,
possibly at a high rate. Tuples may arrive at least somewhat out of order but it is not
possible to wait until the end of the stream to sort all the data and start processing it.
SPEs thus either assume only bounded disorder [2, 11] and drop tuples out-of-order, or use
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DBMS exten-
sion

Similarity to SPE Key difference

Active Monitoring and alerting
capabilities

The traditional processing model of active
databases is geared toward low event rates. Active
databases operate on the current state of locally
stored relations.

Sequence Notion of tuple order Sequence databases assume sequences are
bounded in size and stored locally. In SPEs, data
is pushed continuously into the system.

Temporal Notion of time Temporal databases enable queries over different
physical or logical states of a database. In con-
trast, SPEs annotate tuples with timestamps pri-
marily for ordering purposes.

Real-time Process with deadlines Real-time databases strive to complete one-time
queries by given deadlines. SPEs provide low-
latency processing of continuous queries without
guarantees.

Main-memory Keep data in-memory Main-memory databases assume all tuples fit in
memory. SPEs continuously receive new tuples
and drop old tuples.

Adaptive React to changing condi-
tions during query execu-
tion

Adaptive databases are designed for one-time
queries over data sets bounded in size rather than
continuous queries.

Table 2.1: Extensions to DBMSs and their similarities with SPE features.

constructs such as punctuation [168] to tolerate disorder.
In traditional DBMSs, users query the current state of the database. There is no notion

of a timeline showing when different updates occurred or when different tuples were valid.
Temporal databases [126, 150] address this problem and support either one or both of
the following notions of time. Transaction time (aka, physical time) is the time when
information is stored in the database. With transaction time, an application can examine
the state of the database at different points in time. For instance, an application could
examine the state of the database as of last Friday. Valid time (aka, logical time) is the time
when the stored information models reality. Valid time enables applications to record history
and edit that history, as necessary. An application could record the history of an employee’s
salary over time and for example change the time when an employee received a raise if that
time was initially incorrectly entered. All current databases also support a third notion of
time, which is simply user-defined time in the form of a timestamp attribute. SPEs do not
have such powerful support for time-based operations. Tuples are typically annotated with
a timestamp value but these values serve ordering more than timing purposes. Recently,
however, Borealis [1] started to explore more advanced notions of time in SPEs. Borealis
studies possibilities for time travel, when an SPE goes back in time and re-processes some
tuples or goes into the future and operates over predicted data.

Real-time databases [91, 98, 126] are databases where transactions have deadlines and
the goal of the system is to complete transactions by their deadlines. SPEs strive for low-
latency processing because they support monitoring applications, but they do not make any
specific guarantees.

Traditional DBMSs operate on data that is stored on disk. In contrast, in a main-
memory database [66], all data resides permanently in memory and only backups are written
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to disk. Because accessing memory is faster than accessing a disk, main-memory databases
can achieve greater performance. These types of architectures are thus especially suitable for
applications that have small data sets and real-time processing requirements [66]. Current
SPEs are main-memory databases. In contrast to previous proposals, their architecture is
geared toward streaming applications. They cannot assume that all data will fit in memory.
They continuously receive new data and drop old data.

Adaptive databases address yet another shortcoming of traditional DBMSs. With the
advent of the Internet, DBMSs no longer solely process data stored locally but also operate
on data transferred from remote locations [85]. Remote data may have to be accessed over
the wide area and may reside under a different administrative domain. For this reason, it
is difficult if not impossible for the query optimizer to have access to accurate statistics
about the data (e.g., cardinality, arrival rate) when it decides on the query plan. The query
processor must instead be able to react and adapt to changes or unexpected conditions [15,
84, 170]. This adaptation requires the ability to change the order in which tuples are
processed as the query proceeds. SPEs must also be adaptive as they typically receive
data from remote locations. The adaptation is particularly challenging because queries
are continuous and long-running, making it likely that conditions will change during query
execution.

Table 2.1 summarizes all these different extensions to traditional DBMSs, emphasizing
their key similarities and differences with SPEs.

2.1.2 Fault-Tolerance in Traditional DBMSs

Fault-tolerance in traditional DBMSs and their different variants is usually achieved by
running one or more replicas of the processing engine.

The simplest technique is for a DBMS to have a single backup server that waits, as
standby, and takes over operations when the primary engine fails. This model is frequently
called the process-pair model [25, 70]. There exist several variants of the process-pair model
differing in runtime overhead and level of protection they provide. In the “cold-standby”
variant, the primary periodically transmits a log of operations to the backup. The backup
processes these operations asynchronously. With this approach, a failure of the primary can
cause the loss of all operations not yet transmitted to the backup. Although logs of opera-
tions are commonly used, the primary can also send (incremental) checkpoints of its state.
In the more expensive, “hot-standby”, variant the primary and backup servers perform all
operations synchronously, i.e., they both perform every update before returning a result to
the client. The process-pairs model is widely adopted by many existing DBMSs [40, 135].

The process-pair approach protects the system only against node failures, and with
a single backup only one node can fail at any time for the system to remain available.
To cope with network failures and larger numbers of node failures, a larger number of
replicas spread across the wide-area network is needed. Fault-tolerance schemes with larger
numbers of replicas can be categorized into one of two classes: eager or lazy replication.
Eager replication favors consistency by having a majority of replicas perform every update
as part of a single transaction [65, 67]. Eager replication, however, sacrifices availability
because it forces minority partitions to block.

Lazy replication favors availability over consistency. With lazy replication all replicas
process possibly conflicting updates even when disconnected and must later reconcile their
state. They typically do so by applying system- or user-defined reconciliation rules [93, 169],
such as preserving only the most recent version of a record [71]. It is unclear how one could
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define such rules for an SPE and reach a consistent state, because SPEs operate on a large
transient state that depends on the exact order in which they processed their input tuples.

One class of lazy replication techniques uses tentative transactions during partitions and
reprocesses transactions, possibly in a different order, during reconciliation [71, 163]. With
these approaches, all replicas eventually have the same state, and that state corresponds to
a single-node serializable execution. Our approach applies the ideas of tentative results to
stream processing. We cannot, however, directly reuse the same concepts and techniques.
Indeed, transactions are processed in isolation, while tuples in an SPE can all be part of a
single query (there is no concept of a transaction). Tuples are aggregated and correlated
rather than being processed in isolation. For this reason, we cannot reuse the notion of
a tentative transaction. Instead, we introduce the notion of tentative and stable tuples.
Additionally, we define availability as low-latency processing of the most recent input data.
We must devise a protocol that maintains this property in spite of failures and reconcil-
iations. Traditional lazy replication systems do not have such a constraint. Finally, in a
distributed SPE, the output of processing nodes serves as input to other nodes and must
also be eventually consistent.

Similar to our low-latency processing goal, there exist techniques for traditional query
processing that enable trade-offs between result speed and consistency. The goal of most
techniques is to produce meaningful partial results early during the execution of long-
running queries. Previous work has addressed the problem of computing aggregates in
an online fashion, producing results with increasingly greater precision [78, 159]. These
schemes, however, assume that data is available locally and the query processor can chose
the order in which it reads and processes tuples (for example, it can carefully sample inputs).
This assumption does not hold for stream processing applications. Some approaches have
been developed for querying data sources spread across the Internet. They process data as
it arrives, focusing on materializing query outputs one row or even one cell at a time [134].
These schemes, however, require the query processor to buffer partial results until the query
completes, and are thus unsuitable for unbounded data streams and long-duration failures.

Finally, some distributed query processing techniques offer users fine-grained control
over the trade-off between query precision (i.e., consistency) and performance (i.e., resource
utilization) [123, 124]. Users specify a consistency bound and the system strives to minimize
resource utilization while ensuring the desired consistency. Users can also let the system
optimize the consistency to within a given maximum resource utilization bound.

2.2 SPEs and Continuous Query Processors

SPEs and continuous query processors address the limitations of traditional DBMSs by
proposing new architectures and investigating new techniques to provide low-latency pro-
cessing of large numbers of continuous queries over high-rate data streams. Table 2.2
summarizes the main differences between DBMSs and SPEs.

2.2.1 Stream Processing Engines

We now present some of the main research projects in the area of stream processing and
continuous query processing. Table 2.3 summarizes these main projects and their primary
contributions. We present the projects in approximate chronological order of when they
first started. After introducing these projects, we discuss specific efforts to achieve fault-
tolerance in SPEs.
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DBMS SPE
Data location persistently stored streaming
Data size bounded potentially unbounded input streams
Data model unordered sets append-only sequences
Operators relational, can block mostly windowed operators
Queries primarily one-time primarily continuous
Processing model store, index, then process process on arrival, storing optional

Table 2.2: Key differences between DBMSs and SPEs.

Tapestry [162] was one of the first systems to introduce the notion of stateful continuous
queries. Tapestry is built on top of a regular DBMS, so it first stores and indexes data before
including it in any continuous query. The advantage is that implementing Tapestry requires
only small changes to a regular DBMS. The drawback is that Tapestry does not scale with
the rate of the input streams nor the number of continuous queries. Tapestry focuses on
append only data repositories such as databases of mail or bulletin board messages. The goal
of the system is to enable users to issue continuous queries that identify some documents of
interest and notify users when such documents are inserted into the repository. Tapestry
supports only monotone queries: it returns all records that satisfied the query at any point
in time. It never indicates that a record no longer satisfies a query. In Tapestry, users
express queries in TQL, a language similar to SQL. Tapestry transforms user queries into
incremental queries that it can execute periodically. Each execution produces a subset of the
final results. Executing incremental queries is significantly more efficient than re-running
complete queries.

Tribeca [157, 158] was an early SPE for network monitoring applications. Tribeca queries
are expressed in the form of dataflows using a specific dataflow oriented query language.
Queries can have only one input stream but can have multiple result streams. Indeed,
Tribeca has limited support for join operations. It supports windowed aggregates and
provides operators for splitting and merging streams (these operators are similar to a Group-
By and a Union, respectively). Tribeca is thus a very application-specific engine.

NiagaraCQ [36] focuses on scalable continuous query processing over XML documents.
The novelty in NiagaraCQ is its aim to support millions of simultaneous queries by grouping
them together dynamically based on similarities in their structure. NiagaraCQ performs
the grouping incrementally. As new queries arrive, they are added to existing groups. When
needed, groups can be re-factored. Grouping queries improves performance because queries
share computation, fewer execution plans exist and can thus all reside in memory, and
when new data arrives, testing which queries need to be executed is performed at the group
level. NiagaraCQ even groups queries that need to execute periodically with those that
execute when a specific event occurs. For additional scalability, the system evaluates all
queries incrementally. The NiagaraCQ also studies new query optimization techniques for
queries over streams [173]. Traditional optimizers use information about the cardinality of
relations. For streams, a more suitable metric is the rate of input streams, and the query
optimizer should strive to maximize the output rate of the query.

TelegraphCQ [33] is one of the first engines to process data continuously as it arrives
instead of storing it first. In TelegraphCQ, users express queries in SQL, except that
each query has an extra clause defining the input windows over which the results should
be computed. The emphasis of TelegraphCQ is on adaptive processing [15, 47, 108]. In
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Project name Main features
Tapestry [162] One of first continuous query engines, based on a DBMS
Tribeca [157] Early SPE effort geared solely toward network monitoring.
NiagaraCQ [36] Continuous query processor for streaming XML documents. Fo-

cuses on scalability to millions of simultaneous queries.
TelegraphCQ [33] Continuous and adaptive query processor. Also investigates sup-

port for querying historical stream data, as well as load man-
agement and fault-tolerance in parallel data flows.

STREAM [9] SPE that enables queries over both streaming data and stored
relations. Explores efficient processing at a single site.

Aurora [2] SPE where users express queries directly by composing operators
into data-flow diagrams. Explores efficient single-site processing
optimizing quality-of-service on output streams.

Medusa [37] Distributed and federated SPE built on top of Aurora.
Borealis [1] Distributed SPE built on Aurora and Medusa. Focuses on dis-

tributed optimization, fault-tolerance, load management, tuple
revisions, and integration with sensor networks.

Gigascope [44] SPE for network monitoring. Queries are compiled into code.
Focuses on techniques for high-rate stream processing.

Table 2.3: Continuous query processors and SPEs.

this system, query processing consists of routing tuples through query modules. Groups
of query modules can be connected together with an Eddy. The Eddy intercepts tuples
as they flow between modules and makes routing decisions based on changing conditions.
This adaptivity enables better performance in the face of variable conditions during query
execution. However, it comes at the price of a greater overhead because tuples need to hold
lineage information and the Eddy must make routing decisions for each tuple. A second
interesting aspect of TelegraphCQ is that it views stream processing as a join operation
between a stream of data and a stream of queries. Queries and tuples are stored in separate
state modules. When a new query arrives, its predicate is used to probe the data and vice
versa [34]. This perspective enables TelegraphCQ to include old data in the result of a
newly inserted continuous query. TelegraphCQ thus has good support for queries over both
current and historical data [34, 35]. Finally, TelegraphCQ also addresses the problem of
fault-tolerance and load management in stream processing [146, 147], although their focus
is limited to parallel data flows. We discuss fault-tolerance further below.

The STREAM [9] project explores many aspects of stream processing: a new data model
and query language for streams [11, 151], efficient single-site processing [16], resource man-
agement [18, 152], approximation and statistics computation over streams [13], and some
distributed operation [19, 123]. STREAM also processes data as it arrives, without storing
it. An important property of STREAM is its support for continuous queries over both
streams and stored relations [11]. To achieve this, STREAM introduces three types of op-
erators: stream-to-relation, relation-to-relation, and relation-to-stream. Stream-to-relation
operators use window specifications to transform streams into relations that change with
time. Relation-to-relation operators perform the bulk of the computations on snapshots
of their input relations. Finally, relation-to-streams operators transform, when necessary,
results back into a stream. Users express queries in CQL, a language based on SQL (and
SQL-99 for the window specifications) with the addition of the three stream-to-relation op-
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erators. Mixing streams and relations enables interesting applications but it comes at the
price of a somewhat greater complexity. Even simple filter queries over streams translate
into a series of three operators: a stream-to-relation, relation-to-relation, and relation-
back-to-stream operator. The distributed processing capabilities explored in the STREAM
project [19, 123] are limited to the study of trade offs between resource utilization (band-
width in particular) and precision of output results, when a set of distributed data sources
contribute to a single aggregate computation.

The Aurora project [2, 14] also proposes a new data model for stream processing as well
as a new architecture for the processing engine. In Aurora, users express queries directly by
building boxes-and-arrows diagrams defining the way in which streams should be combined
and transformed. In this model, boxes represent operators and arrows stand for streams.
Boxes are based on relational operators. Diagrams are expressed using either a GUI or
a textual description and must be directed acyclic graphs. Aurora adopted a dataflow
interface instead of a SQL-style declarative query interface because a dataflow facilitates
interspersion of pre-defined query operators with user-defined operators [21]. A drawback
of the model is that clients can request any intermediate stream at any time, potentially
limiting possible query optimizations. In terms of architecture, similarly to TelegraphCQ
and STREAM, the Aurora engine processes data as it arrives, without storing it, so it
can potentially support higher input rates than traditional DBMSs. The Aurora project
also addresses the problem of efficient operator scheduling [30] and load shedding based on
quality-of-service specifications [160]. Data tuples in Aurora are annotated with timestamps,
used by the system to optimize the quality-of-service delivered on output streams.

The Medusa project [23, 37, 111] builds on Aurora and addresses distributed and feder-
ated operation. Medusa takes Aurora queries and distributes them across multiple process-
ing nodes. Medusa also enables autonomous participants to compose their stream processing
services into more complex end-to-end services and to perform processing on behalf of each
other to balance their load. The Medusa approach to load management in a federated
system is a contribution of this dissertation and we discuss it further in Chapter 6.

Borealis [1, 27] is a distributed SPE that builds on Aurora and Medusa. Borealis reuses
the core data model and stream processing functionality of Aurora and the distribution
capabilities of Medusa. Borealis explores advanced stream processing capabilities such as
revision tuples that correct the value of earlier tuples, time travel where a running query
diagram fragment can go back in time and reprocess some data, dynamic query modifications
where operator parameters can change with the values of tuples on streams, various types
of distributed query optimizations (operator placement and distributed load shedding), and
fault-tolerant distributed stream processing. This last capability is a contribution of this
dissertation and we discuss it further in Chapter 4.

Gigascope [43, 44] is an SPE designed specifically to support network monitoring
applications. Users express queries in GSQL, a language based on a subset of SQL, but
with support for user-defined operators. These operators enable Gigascope to leverage
highly tuned functions that already exist in the network monitoring domain. Gigascope
favors performance over flexibility. It is a compiled system. Queries are compiled into
C and C++ modules, which are in turn compiled and linked into a runtime system.
This choice can of course lead to better runtime performance but it makes it more
difficult to add or delete queries at runtime. Gigascope has a two-tier architecture.
Low-level queries, which run at the location of the data sources, perform aggressive
data reduction (e.g., aggregation, selection) before sending the data to high level query
nodes that perform more complex queries on the lower-rate streams. Gigascope can be
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seen as a distributed system since each query node is also a process. Work in Gigascope
focuses primarily on efficient stream processing [41, 89], and real-world deployments [43, 44].

2.2.2 Fault-Tolerance in SPEs

There has been only limited work on high availability in SPEs. Previous techniques focused
primarily on fail-stop failures of processing nodes [83, 146]. These techniques either do not
address network failures [83] or strictly favor consistency by requiring at least one fully
connected copy of the query diagram to exist to continue processing at any time [146].
In contrast to previous work, we propose an approach that handles many types of system
and network failures, giving applications the choice of trade-off between availability and
consistency. With our approach, applications can request to see only correct results, but
they can also choose to see early results quickly and correct results eventually.

Without focusing on fault-tolerance, some SPEs tolerate bounded disorder and delays
on streams by using punctuations [166, 167, 168], heartbeats [151], or statically defined
slacks [2]. An operator with a slack parameter accepts a pre-defined number of out-of-order
tuples following a window boundary, before closing that window of computation [2]. Later
out-of-order tuples are dropped. A punctuation is a “predicate on stream elements that
must evaluate to false for every element following the punctuation” [168]. Punctuations are
thus stream elements that unblock operators such as aggregate and join by allowing them to
process all tuples that match the punctuation. If punctuations are delayed, operators block.
STREAM’s Input Manager [151] uses periodic heartbeats with monotonically increasing
timestamp values to sort tuples as they enter the SPE. It assumes, however, that heartbeats
either always arrive within a bounded delay or can be assumed to occur within a pre-defined
time-period. If a failure causes longer delays, late arriving tuples will miss their window
of computation. These three approaches thus tolerate some disorder but they block or
drop tuples when disorder or delay exceed expected bounds. Blocking reduces availability.
Proceeding with missing tuples helps maintain availability but sacrifices consistency without
even informing downstream nodes or client applications that failures are occurring.

2.3 Workflow Systems

Workflow management systems (WFMS) [6, 80, 82] share similarities with stream processing
engines. In a workflow process, data travels through independent execution steps that
together accomplish a business goal. This dataflow form of processing is similar to the way
tuples flow through a query diagram. From the fault-tolerance perspective, a key difference
between a WFMS and an SPE is that each activity in a workflow starts, processes its inputs,
produces some outputs, and completes. In contrast, operators in an SPE process input
tuples, update their transient states, and produce output tuples continuously. Operators in
a query diagram are also significantly more fine-grained than tasks in a workflow. To achieve
high availability, many WFMSs use a centralized storage server and commit the results of
each execution step as it completes [90]. In case of failure, the committed information
is sufficient to perform forward recovery. The storage servers themselves use one of the
standard high-availability approaches: hot standby, cold standby, 1-safe, or 2-safe [90]. To
abort a process instance, previously executed operations are undone using compensating
operations [116]. For example, releasing one reserved seat on an airplane compensates
the operation of reserving one seat. This fault-tolerance model is not suitable for SPEs
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because there is no notion of transactions, no moments during the execution of a query
diagram fragment or even operator when inputs, outputs, and states should be updated
and committed. The state is transient and the processing continuous. Also, persistently
saving the state of each operator after it processes each tuple or even window of tuples
would be prohibitive.

Instead of using a central storage server, more scalable approaches offer fault-tolerance
in WFMSs by persistently logging messages and data exchanged by execution steps spread
across processing nodes [7, 8]. Because the data transferred between execution steps can be
large, some WFMSs use a separate data manager [8]. The data manager is a distributed
and replicated DBMS and has thus the same properties as the eager or lazy replication
schemes discussed above. Neither persistent queues nor a data manager are suitable for
an SPE because they would require persistently storing tuples before letting downstream
nodes process these tuples. The main goal of an SPE architecture is to process data as it
arrives before or even without storing it, in order to keep up with high data input rates.

Finally, some WFMSs support disconnected operation by locking activities prior to
disconnection [5]. This approach works well for planned disconnections, while our goal is to
handle disconnections caused by failures. Also, an SPE processes data at a high rate. Any
disconnected input causes the SPE to quickly run out of tuples to process on that input.

2.4 Publish/Subscribe Systems

Publish/subscribe [52] is a many-to-many communication paradigm that decouples the
sources and destinations of events. Clients register their interest in an event or a pattern of
events by specifying a topic (e.g., [149]), an event type, or the desired content or properties
of individual events (e.g., Gryphon [24], Siena [31], and Java Message Service [76]). When
a publisher generates an event that matches a client’s interest, the client receives a notifi-
cation of the event. The publish/subscribe middleware provides storage and management
of subscriptions, accepts events from publishers, and delivers event notifications to clients.
Publish/subscribe is thus a stateless message delivery system. An SPE can be used as a
publish/subscribe system by transforming subscriptions into continuous queries composed
solely of filters. More recent publish/subscribe systems, enable subscriptions to specify
event correlations [20] or to be stateful [88]. In that respect, publish/subscribe systems are
becoming increasingly similar to SPEs.

An approach developed for a stateful publish/subscribe systems tolerates failures and
disorder by restricting all processing to “incremental monotonic transforms” [156]. The
approach requires that each operator keep all windows of computation open at any time.
The operator can thus produce, at any time and for any window, the current range for the
final value. The range shrinks as new information arrives but bounds can remain arbitrarily
large if the domain of the attribute is large. This approach thus works only for short failures
because it causes the state of all operators to grow in proportion to the failure duration.

2.5 Sensor Networks

Work on SPEs addresses the problem of efficient and reliable processing of high-volume
data streams over a set of powerful servers. Most projects view data sources, exactly as
such: sources of data pre-configured to push tuples into the system either periodically or
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when events occur. Data sources are considered to be outside of the system. For many ap-
plications, such as network monitoring or financial services, this perspective is appropriate.

When data sources are sensors, however, performance can improve significantly if the
system monitors and adjusts the sensor data rates dynamically. Potential gains are es-
pecially considerable when sensors are organized into an ad-hoc network rather than be-
ing all connected directly to the wired infrastructure. For this reason, in the past few
years, significant efforts have been geared toward enabling stream processing in sensor net-
works [107, 106, 110, 180, 181].

The main similarity between efforts such as TinyDB [107, 106] or Cougar [180, 181],
which run queries in sensor networks, and SPEs running on server nodes is their focus on
processing streams of data. Both types of systems assume their inputs are unbounded and
constrain processing to non-blocking windowed operators.

Several properties of sensor networks make stream processing in this environment differ-
ent and particularly challenging. First, sensors usually run on batteries and, if used naively,
have a very short lifetime, possibly as short as a couple of days. Second, sensors have limited
resources: their processing speeds are low and their memories are small. Hence, they cannot
perform arbitrary computation. Third, the communication model in a sensor network is
different from that of a wired network. Sensors communicate over wireless and their radios
allow them to communicate only with nearby nodes. Usually only a few sensors are within
close proximity to a wired base-station and transmitting data from other sensors requires
multi-hop communication: i.e., sensors must forward data on behalf of other sensors. The
communication inside the sensor network is also unreliable and low bandwidth.

The above challenges shape the work on stream processing in sensor networks. For
example, query languages for sensor networks enable applications to adjust the trade-off
between result accuracy, latency, and resource-utilization [107, 181]: e.g., a query can specify
a desired sampling rate or system life-time. Overall, query processing and optimization are
forced to take into consideration all aspects of stream processing: when to collect readings
and which readings to collect, what data to transmit and how to transmit it best, how to
aggregate data as it travels through the network, what kind of topology to create for best
data transmission, how to handle failed transmissions, etc. This holistic approach contrasts
with SPEs running on powerful servers, which operate at a much higher level of abstraction
and ignore low level data collection and transmission issues. In this dissertation, we focus
only on stream processing in networks of powerful servers.

2.6 State Machine Replication

Because an SPE maintains state that it updates in response to the inputs it receives, repli-
cating SPEs can be viewed as an instance of state machine replication [142]. Similarly
to a state machine, our approach maintains consistency between replicas by ensuring that
they process incoming messages in the same order. In contrast to a typical state machine,
however, messages are aggregated rather than being processed atomically and in isolation
from one another, so we do not have a direct relationship between input messages and
output responses. More importantly, traditional techniques for fault-tolerance using state-
machine replication strictly favor consistency over availability. Only replicas that belong
to the majority partition continue processing at any time [32] and a voter (e.g., the output
client) combines the output of all replicas into a final result [142]. In contrast, our approach
favors availability, allowing all replicas to continue processing even when some of their in-
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put streams are missing. The state machine approach is particularly well-suited to handle
Byzantine failures, where a failed machine produces erroneous results rather than stopping.
Our approach handles only crash failures of processing nodes, network failures, and network
partitions.

2.7 Rollback Recovery

Approaches that reconcile state of a processing node using combinations of checkpoints,
undo, and redo are well known [50, 72, 104, 163]. We adapt and use these techniques in the
context of fault-tolerance and state reconciliation in an SPE and evaluate their overhead
and performance in these environments.

2.8 Load Management

We now present an overview of related work on load management in cooperative and more
importantly competitive environments. We also briefly discuss SLA management schemes.

2.8.1 Cooperative Load Management Algorithms

Most previous work on load management in an SPE addresses the problems of efficient
or resource-constrained operator scheduling [16, 30] and load-shedding [18, 46, 152, 160].
A few schemes for distributed stream processing have examined the problem of allocating
operators to processing nodes in a manner that minimizes resource utilization (network
bandwidth in particular) or processing latency [4, 132]. More recently, some efforts have
also started to address dynamic reallocations of operators between processing nodes in
response to load variations [179]. All these techniques assume a collaborative environment
and optimize either quality-of-service or a single system-wide utility.

In distributed systems in general, cooperative load and resource sharing has been widely
studied (see, e.g., [49, 64, 96, 109, 147]). Approaches most similar to the one that we
propose produce optimal or near-optimal allocations using gradient-descent, where nodes
exchange load or resources among themselves producing successively less costly allocations.
An interesting result comes from Eager et al., [49], who comparatively studied load balancing
algorithms of varying degrees of complexity. They found that a simple threshold-based
approach, where nodes with more than T queued tasks transfer newly arriving tasks to other
nodes with queues shorter than T , performs almost as well as more complex approaches
such as transferring tasks to least loaded nodes, although none of the approaches they
investigated performed optimally. The contract-based approach that we propose is a type
of threshold-based approach adapted for continuous tasks and heterogeneous environments
with selfish agents. Our approach allows some bounded threshold variations (i.e., bounded-
price contracts) and assumes that different nodes use different thresholds (i.e., nodes have
different contracts). Similarly to Eager et al., however, we find that, in many cases, even
the fixed-threshold scheme leads to good overall load distribution.

In contrast to work on cooperative load management, the main challenge of our approach
is its focus on competitive environments. In cooperative environments, unless they are faulty
or malicious, nodes follow a pre-defined algorithm and truthfully reveal their current load
conditions to other nodes in order to optimize system-wide performance. In a competitive
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environment, participants are directed by self-interest and adopt strategies that optimize
their own utility. Participants may even choose not to collaborate at all.

2.8.2 Distributed Algorithmic Mechanism Design

With the increasing popularity of federated systems, recent approaches to load balancing
and resource allocation have started to consider participant selfishness. The typical solution
is to use techniques from microeconomics and game theory to create the right incentives for
selfish participants to act in a way that benefits the whole system. These new schemes can
be grouped into two broad areas: mechanism design and computational economies.

The goal of mechanism design (MD) [86, 127] is to implement a system-wide solution
to a distributed optimization problem, where each selfish participant holds some private
information that is a parameter to the global optimization. For example, each participant’s
processing cost is a parameter to a global load distribution problem. Participants are con-
sidered to be selfish, yet rational: they seek to maximize their utility computed as the
difference between the payments they receive to perform some computation and the pro-
cessing cost they incur. Participants may lie about their private information if this improves
their utility. The mechanism defines the “rules of the game” that constrain the actions that
participants can take. Direct-revelation mechanisms, are most widely studied. In these
types of mechanisms, participants are asked to reveal their private information directly to a
central entity that computes the optimal allocation and a vector of compensating payments.
Algorithms that compute the load allocation and the payments to participants are designed
to optimize participant utility when the latter reveal their private information truthfully.

In contrast to pure mechanism design, algorithmic mechanism design (AMD) [119, 122]
additionally considers the computational complexity of mechanism implementations, usually
at the expense of finding an optimal solution. Distributed algorithmic mechanism design
(DAMD) [55, 57] focuses on distributed implementations of mechanisms, since in practice
a central optimizer may not be implementable. Previous work on DAMD schemes includes
BGP-based routing [55] and cost-sharing of multicast trees [56]. These schemes assume that
participants correctly execute payment computations. In contrast, our load management
mechanism is an example of a DAMD scheme that does not make any such assumption
because it is based on bilateral contracts.

2.8.3 Economic-Based Load Management

Researchers have also proposed the use of economic principles and market models for devel-
oping complex distributed systems [115]. Computational economies have been developed
in application areas such as distributed databases [154], concurrent applications [175], and
grid computing [3, 29].

Most computational economies use a price-based model [29, 39, 59, 141, 154, 175], where
consumers have different price to performance preferences, are allocated a budget, and
pay resource providers. Different techniques can be used to price resources [29]. Fre-
quently, resource providers hold auctions to determine the price and allocation of their
resources [39, 59, 175]. Alternatively, resource providers bid for tasks [141, 154], or adjust
their prices iteratively until demand matches supply [59]. These approaches to compu-
tational economies require participants to hold and participate in auctions for every load
movement, thus inducing a large overhead. Variable load may also make prices vary greatly
and lead to frequent reallocations [59]. If the cost of processing clusters of tasks is different
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from the cumulative cost of independent tasks, auctions become combinatorial [121, 128]1,
complicating the allocation problem. If auctions are held by overloaded agents, underloaded
agents have the choice to participate in one or many auctions simultaneously, leading to
complex market clearance and exchange mechanisms [119]. We avoid these complexities by
bounding the variability of runtime resource prices and serializing communications between
partners. In contrast to our approach, computational economies also make it significantly
more difficult for participants to offer different prices and service levels to different partners.

As an alternative to pricing, computational economies can also be based on bartering [29,
38, 59]. SHARP [62] is an infrastructure that enables peers to securely exchange tickets
that provide access to resources. SHARP does not address the policies that define how the
resources should be exchanged. Chun et al. [38] propose a computational economy based on
SHARP. In their system, peers discover required resources at runtime and trade resource
tickets. A ticket is a soft claim on resources and can be rejected resulting in zero value for
the holder. In contrast, our pairwise agreements do not specify any resource amounts and
peers pay each other only for the resources they actually use.

2.8.4 Resource Sharing in Peer-to-Peer Systems

In peer-to-peer systems, participants offer their resources to each other for free. Schemes to
promote collaboration use reputation [97], accounting [174], auditing [120], or strategyproof
computing [118] to eliminate “free-riders” who use resources without offering any in return.
The challenge in peer-to-peer systems is that most interactions involve strangers. It is rare
fore the same participants to interact with each other multiple times. Our work addresses
a different environment. We focus on participants who want to control who they interact
with and develop long-term relationships with each other.

2.8.5 Service Level Agreements

Service level agreements (SLAs) are widely used to enable interactions between autonomous
participants [42, 81, 94, 101, 138, 171, 178]. Significant recent work addresses the problem
of automatically monitoring and enforcing SLAs [94, 138]. These schemes enable SLAs to
include specifications of the measurements that should be taken for monitoring purposes,
the time and manner in which the measurements should be performed, and the party that
will perform the measurements. The contract model that we propose fits well with such
SLA infrastructures.

In this chapter, we presented background and related work. We discussed SPEs and
their motivation. We presented schemes that enable fault-tolerance in traditional DBMSs,
SPEs, and other related systems. We also presented an overview of techniques for load
management in federated environments. In the next chapter, we focus more specifically
on the design of the Borealis SPE, which we use as a basis for our implementation and
evaluation.

1In a combinatorial auction, multiple items are sold concurrently. For each bidder, each subset of these
items represents a different value.
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Chapter 3

Borealis Architecture

Borealis [27] is a second-generation distributed stream processing engine developed as part
of a collaboration between Brandeis University, Brown University, and MIT. In this chapter,
we present the high level architecture of the Borealis engine to set the context for the main
contributions of this dissertation. In Chapters 4 through 7 we discuss the detailed design
and implementation of our fault-tolerance and load management mechanisms.

Borealis inherits and builds on two earlier stream processing projects: Aurora [14] and
Medusa [111]. Aurora is a single-site SPE. Medusa is a distributed SPE built using Aurora as
the single-site processor. Medusa takes Aurora queries and distributes them across multiple
nodes. These nodes can all be under the control of one entity or can be organized as a
loosely coupled federation under the control of different autonomous participants. Borealis
inherits core stream processing functionality from Aurora and distribution capabilities from
Medusa. Borealis does, however, modify and extend both systems with various features and
mechanisms [1].

The rest of this chapter is organized as follows. In Section 3.1, we first present the
Borealis stream data model. In Section 3.2, we discuss Borealis operators and query dia-
grams. In Section 3.3, we present the main system components and the system interface.
We discuss the software architecture of each Borealis node in Section 3.4, and present the
data flow during stream processing in Section 3.5.

3.1 Stream Data Model

The Borealis stream data model is based on the model introduced in Aurora, which defines
a stream as an append-only sequence of data items. Data items are composed of attribute
values and are called tuples. All tuples on the same stream have the same set of attributes.
This set of attributes defines the type or schema of the stream. As an example, in an
application that monitors the environmental conditions inside a building, suppose that
sensors produce a stream of temperature measurements. A possible schema for the stream
is (t.time, t.location, t.temp), where t.time is a timestamp field indicating the time when
the measurement was taken, t.location is a string indicating the location of the sensor, and
t.temp is an integer indicating the temperature value.

More specifically, Aurora uses the following definition of a tuple:

Definition 1 (paraphrased from Abadi et al., [2]) A tuple is a data item on a stream. A
tuple takes the form: (timestamp, a1, . . . , am), where timestamp is a timestamp value and
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a1, . . . , am are attribute values. All tuples on the same stream have the same schema: i.e.,
they have the same set of attributes. The schema has the form (TS, A1, . . . , Am).

Aurora uses timestamps only for internal purposes such as quality-of-service (QoS) [2].
Timestamps can thus be considered as part of the header of the tuple, while the other
attributes form the data part of the tuple.

Borealis extends the Aurora data model by introducing additional fields into tuple head-
ers [1]. Our fault-tolerance scheme, DPC, uses only two of those fields: the tuple type
(tuple type), and the tuple identifier (tuple id). The tuple id uniquely identifies a tuple in a
stream. Timestamps cannot serve as identifiers because they are not unique. The tuple type
enables the system to distinguish between different types of tuples, and DPC introduces a
few new tuple types. DPC also extends the tuple headers with a separate timestamp called
tuple stime that serves to deterministically order tuples before processing them. We present
the details of the DPC enhanced data model in Chapter 4. This model is based on the
following definition:

Definition 1 (new)1 A tuple is a data item on a stream. A tuple takes the form:
(tuple type, tuple id, tuple stime, a1, . . . , am), where tuple type is the type of the tuple,
tuple id is the unique identifier of the tuple on the stream, and tuple stime is a timestamp
value used to determine the tuple processing order. a1, . . . , am are attribute values. All
tuples on the same stream have the same schema: i.e., they have the same set of attributes.
The schema has the form (TYPE, ID, STIME, A1, . . . , Am).

We also use the following definitions:

Definition 2 A data stream is a uniquely named append-only sequence of tuples that all
conform to the same pre-defined schema.

A data stream typically originates at a single data source, although Borealis does not
enforce this rule. A data source can produce multiple streams with the same schema, but
it must assign a different name to each stream.

Definition 3 A data source is any application, device, or operator that continuously pro-
duces tuples and pushes them to client applications or to other operators for additional
processing.

As we present DPC in the next chapter, we frequently need to refer to subsequences of
tuples on a stream. We use the following definitions:

Definition 4 Prefix of a sequence of tuples: Subsequence of tuples starting from the oldest
tuple in the sequence and extending until some tuple, t, within the sequence.

Definition 5 Suffix of a sequence of tuples: Subsequence of tuples starting at some tuple,
t, within the sequence and extending until the most recent tuple in the sequence.

We often consider the entire stream as the sequence of tuples and talk about the prefix
and suffix of the stream, referring to all tuples that either precede or succeed a given tuple
on the stream. We also talk about the prefix and suffix of a sequence of tentative tuples.
In this case, we consider the tentative tuples in isolation from the rest of the stream.

1This definition is a refinement of the Borealis data model definition originally presented by Abadi et
al., [1]. We ignored the header fields that DPC does not require (including the original Aurora timestamp
field), we added the tuple stime field, and we aligned the definition more closely with the original Aurora
definition.
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Figure 3-1: Sample outputs from stateless operators. Tuples shown on the right of
each operator are the output tuples produced after processing the tuples shown on the left.

3.2 Operators

The goal of a stream processing engine is to filter, correlate, aggregate, and otherwise trans-
form input streams to produce outputs of interest to applications, making the applications
themselves easier to write. For instance, a stream processing engine could produce an alert
when the combination of temperature and humidity inside a room goes outside a range of
comfort. The application might then simply transform the alert into an email and send it
to the appropriate party.

Inside an SPE, input streams are transformed into output streams by traversing a series
of operators (a.k.a., boxes). We now describe the core Borealis operators. A detailed
description of these operators appears in Abadi et al. [2].

3.2.1 Stateless Operators

Stateless operators perform their computation on one tuple at a time without holding any
state between tuples. There are three stateless operators in Borealis: Filter, Map, and
Union.

Filter is the equivalent of a relational selection operator. Filter applies a predicate to
every input tuple, and forwards tuples that satisfy the predicate on its output stream. For
example, a Filter applied to a stream of temperature measurements may forward only tu-
ples with a temperature value greater than some threshold (e.g., “temperature > 101◦F”).
Tuples that do not satisfy the predicate are either dropped or forwarded on a second output
stream. A Filter can have multiple predicates. In that case, the Filter acts as a case state-
ment and propagates each tuple on the output stream corresponding to the first matched
predicate.

A Map operator extends the Projection operator. Map transforms input tuples into
output tuples by applying a set of functions on the tuple attributes. For example, Map
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could transform a stream of temperature readings expressed in Fahrenheit into a stream of
Celsius temperature readings. As a more complex example, given an input tuple with two
attributes, d and t, indicating a distance and a time period, Map could produce an output
tuple with a single attribute indicating a speed, v = d

t .
A Union operator simply merges a set of input streams (all with the same schema) into

a single output stream. Union merges tuples in arrival order without enforcing any order
on output tuples. Output tuples can later be approximately sorted with a BSort operator.
The latter operator maintains a buffer of a parameterizable size n + 1. Every time a new
tuple arrives, BSort outputs the lowest-valued tuple from the buffer.

Figure 3-1 shows examples of executing Filter, Map, and Union on a set of input tuples.
In the example, all input tuples have two attributes, a room number indicated with a letter
and an integer temperature reading. The Filter has two predicates and a third output
stream for tuples that match neither predicate. The Map converts Fahrenheit temperatures
into Celsius. Union merges tuples in arrival order.

3.2.2 Stateful Operators

Rather than processing tuples in isolation, stateful operators perform computations over
groups of input tuples. Borealis has a few stateful operators but we present only Join and
Aggregate, the most fundamental and most frequently used stateful operators.

An aggregate operator computes an aggregate function such as average, maximum,
or count. The function is computed over the values of one attribute of the input tuples
(e.g., produce the average temperature from a stream of temperature readings). Before
applying the function, the aggregate operator can optionally partition the input stream
using the values of one or more other attributes (e.g., produce the average temperature
for each room). The relational version of aggregate is typically blocking: the operator
may have to wait to read all its input data before producing a result. This approach is
not suitable for unbounded input streams. Instead, stream processing aggregates perform
their computations over windows of data that move with time (e.g., produce the average
temperature every minute). These windows are defined over the values of one attribute of
the input tuples, such as the time when the temperature measurement was taken. Both
the window size and the amount by which the window slides are parameterizable. The
operator does not keep any history from one window to the next, but windows can overlap.
As an example, suppose an aggregate operator computes the average temperature in a
room, and receives the following input. Each tuple has two attributes, the time of the
measurement and the measured temperature.

Input: (1:16, 68), (1:21, 69), (1:25, 70), (1:29, 68), (1:35, 67), (1:41, 67), ...

The aggregate could perform this computation using many different window specifi-
cations. As a first example, the aggregate could use a landmark window [33], keeping a
running average of the temperature starting from the landmark value, and producing an
updated average for every input tuple. The following is a possible sequence of outputs,
assuming 1:00 is the landmark.

Output 1: (1:16, 68), (1:21, 68.5), (1:25, 69), (1:29, 68.75), (1:35, 68.4), (1:41, 68.17), ...

Alternatively, the aggregate could use a sliding window [2]. Assuming a 10-minute-long
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Figure 3-2: Sample output from an aggregate operator.

window advancing by 10 minutes, the aggregate could compute averages for windows
[1:16,1:26), [1:26,1:36), etc. producing the following output:

Output 2: (1:16, 69), (1:26, 67.5), ...

In this example, the aggregate used the value of the first input tuple (1:16) to set the
window boundaries. If the operator started from tuple (1:29, 68), the windows would have
been [1:29,1:39), [1:39,1:49), etc. The operator could also round down the initial window
boundary to the closest multiple of 10 minutes (the value of the advance), to make these
boundaries independent of the tuple values. With this approach, the aggregate would have
computed averages for windows [1:10,1:20), [1:20,1:30), [1:30,1:40), etc., producing the
following output:

Output 3: (1:10, 68), (1:20, 69), (1:30, 67), ...

Borealis supports only sliding windows. In Borealis, windows can also be defined directly
on a static number of input tuples (e.g., produce an average temperature for every 60
measurements).

In general, window specifications render a stateful operator sensitive to the order of
its input tuples. Each operator assumes that tuples arrive ordered on the attribute used
in its window specification. The order then affects the state and output of the operator.
For example, when an operator with a 10-minute sliding window computes the average
temperature for 1:10 pm and receives a tuple with a measurement time of 1:21 pm, the
operator closes the window, computes the average temperature for 1:10 pm, produces an
output tuple, and advances the window to the next ten-minute interval. If a tuple with
a measurement time of 1:09 pm arrives after the window closed, the tuple is dropped.
Hence, applying an aggregate operator to the output of a Union produces approximate
results, since the Union does not sort tuples while merging its input streams. Figure 3-2
illustrates a simple aggregate computation. In the example, tuples have three attributes:
a measurement time, a location (room identified with a letter), and a temperature value.
The aggregate produces separately for each room, the average temperature every hour.

Join is another stateful operator. Join has two input streams and, for every pair of
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Figure 3-3: Sample output from a join operator.

input tuples (each tuple from a different stream), Join applies a predicate over the tuple
attributes. When the predicate is satisfied, Join concatenates the two tuples and forwards
the resulting tuple on its output stream. For example, a Join operator could concatenate
a tuple carrying a temperature reading with a tuple carrying a humidity reading, every
time the location of the two readings is the same. The relational Join operator accumulates
state that grows linearly with the size of its inputs, matching every input tuple from one
relation with every input tuple from the other relation. With unbounded streams, it is not
possible to accumulate state continuously and match all tuples. Instead, the stream-based
Join operator matches only tuples that fall within the same window. For two input streams,
R and S, both with a time attribute, and a window size, w, Join matches tuples that satisfy
|r.time− s.time| ≤ w, although other window specifications are possible. Figure 3-3 illus-
trates a simple Join operation. In the example, tuples on stream S have three attributes:
a measurement time, a measurement location (room identified with a letter), and a tem-
perature value. Tuples on stream R have a humidity attribute instead of a temperature
attribute. The Join matches temperature measurements with humidity measurements taken
within one hour of each other in the same room.

In summary, stateful operators, in Borealis, perform their computations over windows
of data. Because operators do not keep any history between windows, at any point in time,
the state of an operator consists of the current window boundaries and the set of tuples in
the current window. Operators can keep their state in aggregate form. For instance, the
state of an average operator can be summarized with a sum and a number of tuples.

Stateful operators can have a slack parameter forcing them to wait for a few extra tuples
before closing a window. Slack enables operators to support bounded disorder on their
input streams. Operators can also have a timeout parameter. When set, a timeout forces
an operator to produce a value and advance its window even when no new tuples arrived.
Timeouts use the local time at the processing node. When a window of computation first
opens, the operator starts a local timer. If the local timer expires before the window closes,
the operator produces a value.

3.2.3 Persistent Operators

Most Borealis operators perform their computations only on transient state. Borealis has,
however, two operators that enable access to persistent storage: a Read operator and an
Update operator. Input tuples to these operators are SQL queries that either read or update
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Figure 3-4: Example of a query diagram from the network monitoring applica-
tion domain.

the state of a DBMS. The results of the SQL operations are output as a stream.

3.2.4 Query Diagrams

In Borealis, the application logic takes the form of a dataflow. To express queries over
streams, users or applications compose operators together into a “boxes and arrows” dia-
gram, called a query diagram. Most other stream-processing engines use SQL-style declar-
ative query interfaces [10, 33, 43, 100] and the system converts the declarative query into
a boxes-and-arrows query plan. Letting applications directly compose the dataflow facili-
tates intertwining query activity with used-defined stream processing operations. Figure 3-4
reproduces the query diagram example from Chapter 1.

3.3 System Architecture

Borealis is a distributed SPE composed of multiple physical machines, called processing
nodes (or simply nodes), and a global catalog:

• The global catalog holds information about all components in the system. The infor-
mation stored in the global catalog includes the set of processing nodes, the complete
query diagram, the current assignment of operators to nodes (i.e., the current dia-
gram deployment), and other configuration information for processing nodes and other
components. The global catalog is a single logical entity currently implemented as a
central process. The catalog implementation, however, could also be distributed.

The global catalog starts empty. Client applications communicate directly with the
global catalog to change the system configuration, create the query diagram, define
the initial deployment for that diagram, modify the diagram or deployment, and
subscribe to streams. Subscribing to a stream enables a client to receive the tuples
produced on that stream. The catalog methods expect arguments in XML. The choice
of XML itself is not important, but allowing clients to specify textual descriptions of
their requests makes it easy to develop applications. Most applications only require
a developer to write two XML files: one file describing the query diagram and one
specifying its deployment (i.e., which groups of operators should run at each node).
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• Nodes perform the actual stream processing. Each node runs a fragment of the query
diagram and stores information about that fragment in a local catalog. The local
catalog also holds information about other nodes that either send input streams into
the node or receive locally produced outputs streams. Nodes collect statistics about
their load conditions and processing performance (e.g., processing latency). Each node
also performs the tasks necessary to manage its load and ensure fault-tolerant stream
processing. We present the software architecture of a Borealis node in Section 3.4.

• Client applications: Application developers can write and deploy applications that
provide various services within a Borealis system. A client application can create and
modify pieces of the query diagram, assign operators to processing nodes, and later
request that operators move between nodes. A client application can also act as a
data source or a data sink, producing or consuming data streams. A Borealis system
comes by default with two client applications. One client provides a graphical user
interface (GUI) for an administrator to modify the running query diagram graphically.
The GUI generates the corresponding XML descriptions and transmits them to the
global catalog. A second client, Monitor, is a monitoring tool that displays the current
deployment and load conditions.

• Data sources: These are client applications that produce streams of data and send
them to processing nodes.

3.4 Borealis Node Software Architecture

Each processing node runs a Borealis server whose major software components are shown
in Figure 3-5. We now briefly present each one of these components.

The Query Processor (QP) forms the core piece where actual stream processing takes
place. The QP is a single-site processor, composed of:

• An Admin interface for handling all incoming requests. These requests can modify
the locally running query diagram fragment or ask the QP to move some operators
to remote QPs. The Admin handles the detailed steps of these movements. Requests
can also set-up or tear down subscriptions to locally produced streams.

• A Local Catalog that holds the current information about the local query diagram
fragment. The local catalog includes information about local operators, streams, and
subscriptions.

• The input streams are fed into the QP and results are pulled through the DataPath
component that routes tuples to and from remote Borealis nodes and clients.

• AuroraNode is the actual local stream processing engine. AuroraNode receives input
streams through the DataPath, processes these streams, and produces output streams
that go back to the DataPath. To perform the processing, AuroraNode instantiates
operators and schedules their execution. Each operator receives input tuples through
its input queues (one per input stream) and produces output results on its output
queues. AuroraNode also collects statistics about runtime performance, data rates on
streams, CPU utilization of various operators, etc. These statistics are made available
to other modules through the Admin interface.
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Figure 3-5: Software architecture of a Borealis node.

• The QP has a few additional components (such as a Consistency Manager) that enable
fault-tolerant stream processing. We discuss their implementation in Chapters 4 and 5.

Other than the QP, a Borealis node has modules that communicate with their peers on
other Borealis nodes to take collaborative actions:

• The Availability Monitor monitors the state of other Borealis nodes and notifies the
query processor when any of these states change. The Availability Monitor is a generic
monitoring component that we use as part of the fault-tolerance protocols.

• The Load Manager uses local load information as well as information from other Load
Managers to improve load balance between nodes. We discuss the load management
algorithms in Chapters 6 and 7.

Control messages between components and between nodes go through a transport inde-
pendent Remote Procedure Call (RPC) layer that enables components to communicate in
the same manner whether they are local or remote. Calls are automatically translated into
local or remote messages. Communication is asynchronous. The RPC layer also seamlessly
supports remote clients that use different RPC protocols to communicate with Borealis.

3.5 Data Flow

In Borealis, applications can modify the query diagram at runtime and can request operators
to move between nodes. In this dissertation, however, we assume a static query diagram
deployed over a set of processing nodes. We ignore the steps involved in deploying or
modifying the query diagram and describe only the interactions between components during
stream processing.

The data flow is the continuous flow of tuples from data sources to client applications
going through the query diagram operators. The components involved in the data flow
are thus the data sources, the processing nodes, and the client applications that subscribe
to output streams. Figure 3-6 illustrates the data flow. (1) The data sources produce
streams and push them to processing nodes. (2) The nodes process their input streams
and produce streams of results that they push to other nodes for more processing, or (3)
to client applications. When a stream goes from one node to another, the nodes are called
upstream and downstream neighbors. More specifically, we use the following definition:
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Figure 3-6: Data flow (stream flow) in a Borealis system.

Definition 6 Upstream/Downstream neighbors: If a stream from a processing node, Nu,
is pushed to node, Nd, where it may undergo further processing, then Nu is said to be an
upstream neighbor of Nd, and Nd is a downstream neighbor of Nu.

Applications that produce an input stream must open a TCP connection directly to
one of the Borealis processing nodes and must send data in the appropriate binary format.
Applications that receive an output stream must listen for incoming TCP connections and
parse the incoming data. Borealis provides a library that facilitates these tasks.

When a query diagram is set up, each node that runs a query diagram fragment receives,
from the global catalog, information about the location of its input streams. For each
stream, this information includes the identifier (address and port) of the processing node
that produces the data stream or receives it from a data source. Given this information, the
node sends a subscription request to each node that produces one of the input streams. Upon
receiving a subscription, an upstream node opens a TCP connection to the new downstream
neighbor and pushes tuples as they become available. In Borealis, the data flow is thus push-
based, which avoids having downstream nodes continuously poll for available data. Each
node also buffers the most recent output tuples it produces. These buffers are necessary to
achieve fault-tolerance, as we discuss in Chapter 4.

3.5.1 Summary

In this chapter, we presented the high-level architecture of the Borealis engine to set the
context for our work. We presented the Borealis stream data model, the operators, the
main system and software components, and the data flow during stream processing. In
the next four chapters, we present our fault-tolerance and load-management schemes, their
implementation in Borealis, and their evaluation.
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Chapter 4

Fault-Tolerance

In this chapter, we present Delay, Process, and Correct (DPC), an approach to fault-tolerant
stream processing that enables a distributed SPE to cope with a variety of network and
node failures in a manner that accommodates applications with different required trade-offs
between availability and consistency. DPC addresses the problem of minimizing the number
of tentative tuples while guaranteeing that the results corresponding to any new tuple are
sent downstream within a specified time threshold, and that applications eventually receive
the complete and correct output streams.

Figure 4-1 illustrates the output produced by a system using DPC. As shown in Figure 4-
1(a), in DPC, all replicas continuously process data, and a node can use any replica of its
upstream neighbor to get its input streams. In the absence of failures, the client receives
a stable output. In the example, if Node 1 fails, then Node 3 (and its replica Node 3′)
can re-connect with Node 1′, ensuring that the client application continues to receive the
current and correct information. Output tuples continue to be labeled as “stable”. The
failure is masked by the system. If, however, Node 1′ becomes disconnected while Node 1 is
still down, the system will be unable to mask the failure. For a pre-defined time period, the
system may suspend processing. The client will not receive any data. If the failure persists,
however, processing of the inputs that remain available (streams produced by Node 2) must
continue in order to ensure their availability. Processing thus restarts, but because some
input streams are missing, output tuples are labeled as “tentative”. Once the failure heals,
the client application continues to receive results based on the most recent input data, still
labeled as “tentative”, while receiving corrections to earlier tentative results. This process
continues until corrections catch up with most recent output results. At this point, the
client application receives only the most recent and stable information.

The rest of this chapter is organized as follows. In Section 4.1, we present the details of
our problem and design goals. We present an overview of the DPC protocol in Section 4.2.
In Section 4.3, we discuss the high-level software architectural changes to an SPE required
by DPC. In Section 4.4, we present the enhanced data model. The remaining sections
present details of various aspects of DPC. Sections 4.5 through 4.7 present the algorithms
and protocols that nodes follow in the absence of failures, when some of their inputs fail, and
after failures heal, respectively. We address recovery of failed nodes separately in Section 4.8.
Because DPC requires buffering tuples at various locations in the query diagram, we discuss
algorithms to manage these buffers in Section 4.9. Finally, we discuss the impact of DPC on
data sources and clients in Section 4.10. We present a few properties of DPC in Section 4.11.
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(a) Distributed and replicated query diagram. (b) Failures causing tentative results.

Figure 4-1: Sample deployment with replication and failures.

4.1 Problem Definition

To define the problem, we first identify the fault-tolerance requirements of stream pro-
cessing applications, emphasizing the similarities and differences in their availability and
consistency goals. Second, we outline our detailed design goals: desired system properties
and performance metrics. We then present the assumptions that we make about the sys-
tem and the types of failures that we intend the system to tolerate. Finally, because some
operator characteristics affect the properties and overhead of DPC, we present an operator
classification. We start by considering application requirements.

Many stream processing applications monitor some ongoing phenomenon and require
results to be produced with low latency. These applications often even value low latency
processing more than result accuracy, although the maximum processing delay they can
tolerate differs from one application to the next. There are several examples of such appli-
cations:

• Network monitoring: An administrator relies on network monitors to continuously
observe the state of its network and detect anomalies such as possible intrusion at-
tempts, worm propagation events, or simply overload situations. Administrators from
different domains may even share some of their information streams to improve their
detection capabilities [92]. In this application, even if data from only a subset of
monitors is available, processing that data might suffice to identify at least some of
the anomalies. Furthermore, low latency processing is critical to handle anomalous
conditions in a timely manner: mitigate attacks, stop worm propagations as they
occur, or react to overload situations quickly.

• Sensor-based environment monitoring. As they get cheaper and smaller, sensors are
increasingly being deployed inside structures such as gas pipelines, air or water sup-
plies, rooms in a building, etc. These sensors monitor the health of the infrastructures
continuously. If a failure occurs and prevents data from a subset of sensors from being
processed, continuing with the remaining information may help detect problems at
least tentatively. For instance, the air temperature might be a little high in one part
of a building. This may signify either a failure of the air conditioning system or simply
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that the sun is currently heating that side of the building. If there is no information
for adjacent rooms, the system may tentatively declare that a failure occurred. A
technician may be dispatched to make the final assessment. In contrast to network
monitoring, this application may tolerate processing to be suspended for a few min-
utes, if this helps reduce the number of potential problems that later turn out to be
benign.

• RFID-based equipment tracking: In this application, an RFID tag is attached to each
piece of equipment and antennas are deployed through the facility. Antennas detect
tags that appear in their vicinity and transmit the readings in the form of a stream,
enabling the system to track the equipment as it moves. Failures may cause the system
to miss some readings because information produced by a subset of antennas might be
temporarily unavailable. Continuing with the remaining data, however, might suffice
to satisfy a subset of queries about equipment locations. For instance, a user may be
able to locate a needed piece of equipment quickly, even if no readings are currently
available for one floor of the building. In this application, individual queries may have
different levels of tolerance to processing delays.

While the above applications need to receive results quickly, they also need to receive
the correct results eventually:

• Network monitoring: When processing data from only a subset of network monitors,
some events might go undetected, and some aggregate results may be incorrect. Pre-
viously missed events are important, however, because they may still require some
action, such are cleaning an infected machine. Corrected final values of aggregate
results, such as per costumer bandwidth utilization, may also be needed for future
analysis. The network administrator thus eventually needs to see the complete and
correct output.

• Sensor-based environment monitoring: When a failure heals, some of the tentative
alarms may be determined to have been false positives while other alarms were actual
problems. Final correct values, especially if provided soon after a failure healed, may
help re-assign technicians more efficiently.

• RFID-based equipment tracking. Eventually re-processing the complete and correct
input data may help determine the accurate utilization information for each piece of
equipment. Such information may, for instance, be required later for maintenance
purposes.

Many other stream processing applications share similar requirements: e.g., financial
services, military applications, GPS-based traffic monitoring, etc. These applications need
new results within a bounded maximum delay, and they eventually need the correct data.
Of course, some stream processing applications require absolute consistency. Sensor-based
patient monitoring is one example. DPC supports these applications as well since it allows
applications to adjust the trade-off between availability and consistency. An application may
thus set an infinite threshold indicating that inconsistent results should never be produced.
An application may also drop all tentative results and wait for the stable ones.
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4.1.1 Design Goals

Given the above application requirements, we now present the fault-tolerance goals, metrics,
and desired properties of DPC.

Consistency Goal

In a replicated system, the strongest notion of consistency is atomic consistency [68, 105],
also called single-copy consistency [140], linearizable consistency [68, 140] or serializabil-
ity [71]. To provide atomic consistency, all accesses to a replicated object must appear as if
they were executed at a single location following some serial execution. In an SPE, atomic
consistency would ensure that clients receive only correct output tuples. As we discussed in
Chapter 1, maintaining atomic consistency requires that the system sacrifices availability
when certain types of failures, such as network partitions, occur [68].

To maintain availability, optimistic replication schemes often guarantee a weaker no-
tion of consistency, called eventual consistency [140]. With eventual consistency, in order
to provide availability, replicas can process client requests even if they do not know their
final order yet, letting their states diverge. However, if all update operations stop, replicas
must eventually converge to the same state. To achieve eventual consistency, all replicas
of the same object must thus eventually process all operations in an equivalent order [140].
If operations are submitted continuously, eventual consistency requires that the prefix of
operations in the final order grows monotonically over time at all replicas [140]. A data
service that offers eventual consistency can be modeled as eventually-serializable (i.e., main-
taining requested operations “in a partial order that gravitates over time towards a total
order” [58]).

Because many stream processing applications favor availability over consistency but need
to receive the correct results eventually, our goal is for DPC to provide eventual consistency.
In an SPE, the state of processing nodes is transient and the output stream continuous. We
thus translate eventual consistency as requiring that all replicas of the same query diagram
fragment eventually process the same input tuples in the same order, and that order should
be one that could have been produced by a single processing node without failure.

Eventual consistency is a property of a replicated object. Responses to operations
performed on the object do not have to be corrected after operations are reprocessed in
their final order [58]. In an SPE, because the output of processing nodes serves as input
to their downstream neighbors, we extend the notion of eventual consistency to include
output streams. We require that each replica eventually processes the same input tuples in
the same order and produces the same output tuples in the same order.

In summary, the first goal of DPC is:

Property 1 Assuming sufficiently large buffers,1 ensure eventual consistency.

where eventual consistency is defined as:

Definition 7 A replicated SPE maintains eventual consistency if all replicas of the same
query diagram fragment eventually process the same input tuples in the same order and
produce the same output tuples in the same order, and that order could have been produced
by a single processing node without failure.

1We discuss buffer management and long-duration failures in Section 4.9.
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Once the final processing order of some operations is known, the operations are said
to be stable [58]. We use the same definition for tuples. An input tuple is stable once its
final processing order is known. When a replica processes stable input tuples, it produces
stable output tuples because these output tuples have final values and appear in final order.
Eventual consistency ensures that clients eventually receive stable versions of all results.

All intermediate results that are produced in order to provide availability, and are not
stable, are called tentative. At any point in time, as a measure of inconsistency, we use,
Ntentative, the number of tentative tuples produced on all output streams of a query diagram.
Ntentative may also be thought of as a (crude) substitute for the degree of divergence between
replicas of the same query diagram when the set of input streams is not the same at the
replicas. More specifically, we use the following definition:

Definition 8 The inconsistency of a stream s, Ntentative(s), is the number of tentative
tuples produced on s since the last stable tuple. The inconsistency, Ntentative, of a query
diagram is the sum of tentative tuples produced on all output streams of the query diagram
since the last stable tuples produced.

Availability Goal

The traditional definition of availability requires only that the system eventually produces
a response for each request [68]. Availability may also measure the fraction of time that
the system is operational and servicing requests (i.e., the time between failures divided by
the sum of the failure duration, recovery duration, and the time between failures) [72]. In
an SPE, however, because client applications passively wait to receive output results, we
define availability in terms of processing latency, where a low processing latency indicates
a high level of availability.

To simplify our problem, we measure availability in terms of incremental processing
latency. When an application submits a query to the system, DPC allows the application
to specify a desired availability, X, as a maximum incremental processing latency that the
application can tolerate on its output streams (the same threshold applies to all output
streams within the query). For example, in a query diagram that takes 60 seconds to
transform a set of input tuples into an output result, a client can request “no more than
30 seconds of added delay”, and DPC should ensure that output results are produced within
90 seconds.

With the above definition, to determine if the system meets a given availability require-
ment, we only need to measure the extra buffering and delaying imposed on top of normal
processing. We define Delaynew as the maximum incremental processing latency for any
output tuple and express the availability goal as Delaynew < X. With this definition, we
express the second goal of DPC as:

Property 2 DPC ensures that as long as some path of non-blocking operators2 is available
between one or more data sources and a client application, the client receives results within
the desired availability requirement: the system ensures that Delaynew < X.

As we discuss later, DPC divides X between processing nodes. To ensure Property 2,
a node that experiences a failure on an input stream must switch to another replicas of
its upstream neighbor, if such replica exists, within D time-units of arrival of the oldest

2We discuss blocking and non-blocking operators in Section 4.1.3.
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unprocessed input tuples. If no replica exists, the node must process all tuples that are
still available, within D time-units of their arrival, where D is the maximum incremental
processing latency assigned to the node.

Delaynew only measures the availability of result tuples that carry new information. We
denote this set of tuples with NewOutput. These tuples exclude any stable result that correct
a previously tentative one.

Even though we only measure incremental latencies, we can show how Delaynew relates
to normal processing latency. We define proc(t) as the normal processing latency of an
output tuple, t, in the absence of failure. proc(t) is the difference between the time when
the SPE produces t and the time when the oldest input tuple that contributed to the value
of t entered the SPE. Given proc(t) and the actual processing latency of a tuple, delay(t),
Delaynew = max

t∈NewOutput
(delay(t)− proc(t)).

Minimizing Inconsistency Goal

The main goal of DPC is to ensure that the system meets, if possible, a pre-defined avail-
ability level while ensuring eventual consistency. To maintain availability, the system may
produce tentative tuples. To ensure eventual consistency, tentative tuples are later cor-
rected with stable ones. Because it is expensive to correct earlier results in an SPE, we
seek to minimize the number of tentative tuples. In the absence of failures, we would like
replicas to remain mutually consistent, maintaining linearizable consistency, and ensuring
that all results are stable. If a failure occurs, we would like the system to mask the failure,
if possible, without introducing inconsistency. Finally, if a failure cannot be masked, we
would like the system to minimize the number of tentative results. We summarize these
requirements with the following two properties that we would like DPC to provide:

Property 3 DPC favors stable results over tentative results when both are available.

Property 4 Among possible ways to achieve Properties 1 and 2, we seek methods that
minimize Ntentative.

4.1.2 Failure Model and Assumptions

Before presenting DPC, we identify the types of failures that we would like the system to
support, and the fundamental and simplifying assumptions that we make about the system.

Fundamental Assumptions

We assume that the query diagram and its deployment (i.e., the assignment of operators
to processing nodes) are static. We also assume that the set of replicas for each processing
node is static. We consider dynamic changes to the diagram or the deployment outside of
the scope of this dissertation.

We assume that data sources (or proxies acting on their behalf) have loosely synchro-
nized clocks and can timestamp the tuples they push into the system. Every time two or
more streams are joined, unioned, or otherwise combined by an operator, DPC will delay
tuples until timestamps match on all streams. The clocks at data sources must therefore
be sufficiently synchronized to ensure these buffering delays are smaller than the maximum
incremental processing latency, X. Similarly, when operators process tuples they assign
timestamps to output tuples. Different algorithms are possible, but we assume that the
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timestamp assignment algorithm combined with the structure of the query diagram ensure
tuple timestamps approximately match every time multiple streams are processed by the
same operator. Once again, delaying tuples until their timestamp match should cause delays
within X. These requirements are similar to those one would expect from an application-
defined attribute serving in window specifications. Borealis applications already use such
attributes.

We further assume that each processing node has sufficient resources (CPU, memory,
and network bandwidth) to keep up with tuple input rates ensuring that queues do not
form in the absence of failures. We assume that the network latency between any pair of
nodes is small compared with the maximum incremental processing latency, X.

DPC handles crash failures [143] of processing nodes: when a processing node fails it
halts without producing erroneous results, but the fact that the SPE crashed may not be
detectable by other SPEs. In particular, a crash may not be distinguishable from a network
failure that causes message losses or delays. DPC also handles network failures and network
partitions. A network failure can cause message losses and delays, preventing any subset of
nodes from communicating with one another. DPC treats long delays as failures. Because
our system currently handles only static query diagram deployments, it also handles only
transient failures. We assume that if a processing node fails it is not permanently removed
from the system, but eventually restarts and rejoins the system with an empty state.3

At the beginning of this chapter, we assume that all tuples ever produced by a processing
node are buffered. We revisit this assumption in Section 4.9, where we discuss buffer
management and failures that last a long time. Except for data sources, we assume that
buffers can be lost when a processing node fails. We assume that data sources and clients
implement DPC, and that data sources can persistently log (or otherwise backup) the data
they produce before pushing it into the system. With this assumption, even after failing
and recovering, data sources can ensure that all replicas of the first processing node receive
the same sequence of inputs. We discuss how this can be achieved in Section 4.10.

If tuples are logged forever, DPC can cope with the failure of all processing nodes. While
all replicas of a processing node are unavailable, clients do not receive any data. After failed
nodes recover with an empty state, they can reprocess all tuples logged upstream ensuring
eventual consistency. If buffers are truncated, however, at any time, at least one replica of
each processing node must hold the current consistent state. This state comprises the set
of stable input tuples no longer buffered upstream and the set of stable output tuples not
yet received by all replica of all downstream neighbors. Hence with buffer truncation, DPC
handles the simultaneous crash failure of at most R− 1 of the R replicas of each processing
node, but we show that it handles both single failures and multiple overlapping (in time)
failures.

DPC currently handles data source failures as follows. To maintain availability, when
a data source fails, the system processes the remaining input streams as tentative. Once
the data source recovers, the SPE reprocesses, as stable, all inputs including the previously
missing ones if the data source produced any data during the failure and is able to replay
that data. As in the case of node failures, DPC tolerates only transient failures of data
sources. A permanent failure would be equivalent to a change in the query diagram.

3We discuss recovery of failed nodes in Section 4.8.
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Figure 4-2: Query diagram composed of blocking (Join) and non-blocking
(Union) operators.

Simplifying Assumptions

We assume that replicas communicate using a reliable, in-order protocol like TCP. With
this assumption, nodes can rely on the fact that tuples transmitted from upstream arrive
in the order in which they were produced. A downstream node can, for example, indicate
with a single tuple identifier the exact data it has received so far.

In general, DPC is designed for a low level of replication and a low failure frequency.

4.1.3 Operator Classification

Several operator properties constrain the guarantees that DPC can provide and affect its
overhead. In this section, we categorize operators along two axes: whether they block or
not when some of their input streams are missing and how they update their state while
processing input tuples.

Blocking and NonBlocking Operators

Stream processing operators perform their computations over windows of data that slide as
new tuples arrive. However, some operators, such as Join, still block when some of their
inputs are missing. Indeed, if no tuples arrive on one input stream, there are eventually
no tuples to join with the most recent tuples on the other stream. In contrast, a Union is
an example of a non-blocking operator because it can perform meaningful processing even
when some of its input streams are missing. Of course, all operators block if all their inputs
are missing.

Figure 4-2 illustrates the impact of blocking and non-blocking operators on fault-
tolerance. The figure shows a query diagram deployed on four nodes. In this example,
the failure of a data source does not prevent the system from processing the remaining
streams. The failure of Nodes 1 or 2 does not block Node 3, but blocks Node 4. Only
non-blocking operators maintain availability when some of their inputs are missing.

Determinism and Convergence

The manner in which operators update their state and produce output tuples in response
to input tuples affects fault-tolerance algorithms. In this section, we present an operator
taxonomy based on this property. This taxonomy is the same as that presented by Hwang
et al. [83] except for our definition of determinism.
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Figure 4-3: Taxonomy of stream processing operators, with examples of opera-
tors in each category.

We distinguish four types of operators: arbitrary (including non-deterministic), deter-
ministic, convergent-capable, and repeatable. Figure 4-3 depicts the containment relationship
among these operator types and example operators in each category.

An operator is deterministic if it produces the same output stream every time it starts
from the same initial state and processes the same sequence of input tuples. The sequence
must not only define the order of tuples on each input stream separately, but also the
absolute processing order of all input tuples. With this definition, there are only two
possible causes of non-determinism in operators: dependence on execution time or input
tuple arrival times (e.g., operators with a timeout parameter produce an output tuple when
no inputs arrive for a pre-defined time period) and use of randomization (e.g., an operator
that randomly drops tuples to shed load [160]). Currently, DPC supports only deterministic
operators.

It is important to note that a query diagram composed of deterministic operators is
not itself automatically deterministic. For the digram to be deterministic, we must ensure
that all operators process input tuples in a deterministic order. In Section 4.5, we present
a technique to achieve query determinism in general.

A deterministic operator is called convergent-capable if it can start processing input
tuples from any point in time, yet it always converges to the same consistent state after
processing sufficiently many input tuples (assuming, of course, that in all executions input
tuples have the same values and arrive in the same order). Convergence enables a greater
choice of techniques for a failed operator or node to rebuild a consistent state. We distinguish
between convergent-capable and other deterministic operators as we present DPC.

Because the state of an operator is defined by the window of input tuples that it pro-
cesses, the manner in which these windows move determine if the operator is convergent-
capable or not. To ensure convergence, any input tuple must affect the state of the operator
for a limited amount of time, and the operator must always converge to processing the same
groups of input tuples. In Section 3.2.2, we discussed different types of window specifica-
tions. Typically, an operator with a sliding window is convergent-capable. For example, for
a window size of 100, an advance of 10, and a first tuple 217, an aggregate may always con-
verge to computing windows with boundaries that are multiples of 10: [210,310), [220,320),
etc. The operator is not convergent capable, however, if all window boundaries are com-
pletely defined by the value of the first input tuple, e.g., [217,317), [227,327), etc. Landmark
windows may also prevent convergence because one end of the window may never move.
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Finally, we classify Joins as convergent-capable because they typically align their window
with respect to each input tuple.

A convergent-capable operator is also repeatable if it can re-start processing input tuples
from an empty state and an earlier point in time, yet produces only tuples with the same
values (identical duplicates) and in the same order. A necessary condition for an operator
to be repeatable is for the operator to use at most one tuple from each input stream to
produce an output tuple. If a sequence of multiple tuples contributes to an output tuple,
then restarting the operator from the middle of that sequence may yield at least one different
output tuple. Aggregates are thus not repeatable in general, whereas Filter (which simply
drops tuples that do not match a given predicate) and Map (which transforms tuples by
applying functions to their attributes) are repeatable as they have one input stream and
process each tuple independently of others. Join (without timeout) is also repeatable if it
aligns windows relative to the latest input tuple being processed. Repeatability affects the
ease with which duplicate tuples can be eliminated if an operator restarts processing from
an empty state and an earlier point in the stream. As such, this property affects fault-
tolerance in general but our schemes do not need to distinguish between convergent-capable
and repeatable operators.

In summary, two operator characteristics affect DPC the most. The blocking nature of
some operators affects availability during failures. The convergent-capable nature of some
operators enables greater flexibility in recovering failed nodes and may help reduce overhead
as we discuss in Section 4.9.

4.2 DPC Overview

In this section, we present an overview of DPC by describing the expected high-level be-
havior of a processing node. The key idea behind DPC is to favor replica autonomy. Each
replica is considered to be an independent processing node. Each node processes data.
Each node also monitors the state of its input streams, monitors its availability, and man-
ages its consistency, by implementing the DPC protocol that follows the state machine
shown in Figure 4-4 with three states: STABLE, UPSTREAM FAILURE (UP FAILURE), and
STABILIZATION.

As long as all upstream neighbors of a node are producing stable tuples, the node is
in the STABLE state. In this state, the node processes tuples as they arrive and passes
stable results to downstream neighbors. To maintain consistency between replicas that
may receive inputs in different orders, we define a simple data-serializing operator that we
call SUnion. Section 4.5 discusses the STABLE state and the SUnion operator.

If one input stream becomes unavailable or starts carrying tentative tuples, a node goes
into the UP FAILURE state, where it tries to find another stable source for the input stream.
If no such source is available, the node has three choices to process the remaining available
input tuples:

1. Suspend processing until the failure heals and one of the failed upstream neighbors
starts producing stable data again.

2. Delay each new tuple for a short period of time before processing it.
3. Process each new available tuple without any delay.
The first option favors consistency. It does not produce any tentative tuples and may be

used only for short failures given our goal to process new tuples with bounded delay. The
latter two options both produce result tuples that are marked “tentative”; the difference
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Figure 4-4: DPC’s state-machine.

between the options is in the latency of results and the number of tentative tuples produced.
Section 4.6 discusses the UP FAILURE state.

A failure heals when a previously unavailable upstream neighbor starts producing stable
tuples again or when a node finds another replica of the upstream neighbor that can provide
the stable version of the stream. Once a node receives the stable versions of all previously
missing or tentative input tuples, it transitions into the STABILIZATION state. In this
state, if the node processed any tentative tuples during UP FAILURE it must now reconcile
its state and stabilize its outputs (i.e., correct the output tuples it produced during the
failure). We explore two approaches for state reconciliation: a checkpoint/redo scheme
and an undo/redo scheme. While reconciling, new input tuples are likely to continue to
arrive. The node has the same three options mentioned above for processing these tuples:
suspend, delay, or process without delay. DPC enables a node to reconcile its state and
correct its outputs while ensuring that new tuples continue to be processed. We discuss the
STABILIZATION state in Section 4.7. Once stabilization completes, the node transitions to
the STABLE state if there are no other current failures, or back to the UP FAILURE state
otherwise.

At any time, a node can also fail and stop. When it recovers, the node restarts with an
empty state and must rebuild a consistent state. We discuss node failures and recovery in
Section 4.8.

DPC requires nodes to buffer some tuples. Because buffers cannot grow without bounds,
nodes must communicate with one another to truncate these buffers periodically. We discuss
buffer management in Section 4.9.

Hence, overall, DPC modifies the function of an SPE at three levels. DPC affects
interactions between processing nodes (e.g., switching between replicas of an upstream
neighbor). DPC requires more extensive management of input and output tuples (e.g.,
buffering and replaying tuples). Finally, DPC affects stream processing itself by requiring
delaying and correcting tentative tuples as necessary. We present this functionality break
down next, before presenting the enhanced data model and the details of DPC in the
subsequent sections.
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Figure 4-5: SPE software architecture extensions to support DPC. Arrows indi-
cate communication between components (either control or data messages).

4.3 Extended Software Architecture

To run DPC, the software architecture of an SPE must be extended as illustrated in Fig-
ure 4-5. A new component, the Consistency Manager, is added to control all communication
between processing nodes. The Data Path, which keeps track of and manages the data en-
tering and exiting the node, is extended with extra monitoring and buffering capabilities.
Finally, two new operators, SUnion and SOutput, are added to the query diagram to mod-
ifying the processing itself. We now present the main role of each component. We discuss
these components further as we present the details of DPC in the next sections.

The Consistency Manager keeps a global perspective on the situation of the processing
node within the system. It knows about the node’s replicas, the upstream neighbors and
their replicas, as well as the downstream neighbors and their replicas. The Consistency
Manager therefore handles all interactions between processing nodes. It periodically re-
quests state information from upstream neighbors and their replicas, and decides when to
switch from one replica to another. Because of its global role, the Consistency Manager also
makes decisions that affect the processing node as a whole. For example, it decides when to
perform or suspend periodic checkpoints and when to enter the STABILIZATION state. As
we discuss in the next chapter, in our prototype implementation, the Consistency Manager
delegates some of the above functions to other modules in Borealis. In this chapter, we view
the Consistency Manager as the logical entity that performs all the above tasks.

The Data Path establishes and monitors the input and output data streams. The
Data Path knows only about the current upstream and downstream neighbors. For input
streams, the Data Path keeps track of the input received and its origin, ensuring that no
unwanted input tuples enter the SPE. For output streams, the Data Path ensures that each
downstream client receives the information it needs, possibly replaying buffered data.

Finally, to enable fine grained control of stream processing, we introduce two new op-
erators: SUnion and SOutput. SUnion ensures that replicas remain mutually consistent
in the absence of failures, and manages trade-offs between availability and consistency. It
buffers tuples when necessary, and delays or suspends their processing as needed. SUnion
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Figure 4-6: Example of using TENTATIVE and UNDO tuples. U2 indicates that all
tuples following tuple with tuple id 2 (S2 in this case) should be undone.

also participates in STABILIZATION. SOutput only monitors output streams, dropping pos-
sible duplicates during state reconciliation. Both SUnion and SOutput send signals to the
Consistency Manager when interesting events occur (e.g., the first tentative tuple is pro-
cessed, the last correction tuple is sent downstream). DPC also requires small changes to
all operators in the SPE. We discuss these changes in Chapter 5.

4.4 Enhanced Data Model

With DPC, nodes and applications must distinguish between stable and tentative results.
Stable tuples produced after stabilization may override previous tentative ones, requiring a
node to correctly process these amendments. To support tentative tuples and corrections,
we extend the traditional stream data model by introducing new types of tuples.

As discussed in Chapter 3, traditionally, a stream is an append-only sequence of tuples
of the form: (t, a1, . . . , am), where t is a timestamp value and a1, . . . , am are attribute
values [2]. To accommodate our new tuple semantics, we adopt and extend the Borealis
data model [1]. In Borealis, tuples take the following form (we ignore header fields that
DPC does not use):

(tuple type, tuple id, tuple stime, a1, . . . , am).

1. tuple type indicates the type of the tuple.
2. tuple id uniquely identifies the tuple in the stream.
3. tuple stime is a new tuple timestamp. 4

Traditionally, all tuples are immutable stable insertions. We introduce two new types
of tuples: TENTATIVE and UNDO. A tentative tuple is one that results from processing
a subset of inputs and may subsequently be amended with a stable version. An UNDO
tuple indicates that a suffix of tuples on a stream should be deleted and the associated
state of any operators rolled back. As illustrated in Figure 4-6, the UNDO tuple indicates
the suffix to delete with the tuple id of the last tuple that should not be undone. Stable
tuples that follow an UNDO replace the undone tentative tuples. Applications that do not
tolerate inconsistency may thus simply drop TENTATIVE and UNDO tuples. We use a
few additional tuple types in DPC but they do not fundamentally change the data model.
Table 4.1 summarizes the new tuple types.

DPC also requires tuples to have a new timestamp field, tuple stime for establishing a
deterministic serial order for tuple processing as we discuss next.

4In Borealis, tuples also have a separate timestamp field used for quality of service purposes.
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Tuple type Description
Data streams
INSERTION Regular stable tuple.
TENTATIVE Tuple that results from processing a subset of inputs and may later

be corrected.
BOUNDARY All following tuples will have a timestamp equal or greater to the

one indicated. Only the tuple type and tuple stime need to be set on
this tuple.

UNDO Suffix of tuples should be deleted and the associated state should be
rolled back. Except for its tuple type, an UNDO tuple is a copy of
the last tuple that should not be undone.

REC DONE Tuple that indicates the end of state reconciliation. Only the tu-
ple type needs to be set.

Control streams Signals from SUnion or SOutput.
UP FAILURE Detected an upstream failure. Only the tuple type needs to be set,

although we also set the tuple stime to the beginning of the failure.
REC REQUEST Received corrected input stream, ready to reconcile state. Only the

tuple type needs to be set.
REC DONE Same as above.

Table 4.1: New tuple types.

4.5 Stable State

The STABLE state defines a node’s operations in the absence of failures. To minimize
inconsistency and facilitate failure handling, DPC ensures that all replicas remain mutually
consistent in the absence of failures: that they process the same input in the same order, go
through the same internal computational states, and produce the same output in the same
order. We now present the DPC mechanism to maintain such consistency. In the STABLE
state, nodes must also detect failures of their input streams in order to transition to the
UP FAILURE state. We discuss failure detection second.

4.5.1 Serializing Input Tuples

We restrict DPC to deterministic operators. These are the operators that update their
state and produce outputs only based on the values and the order of their input tuples
(no timeouts, no randomization). If all operators are deterministic, to maintain replica
consistency, DPC needs to ensure that replicas of the same operator process data in the
same order; otherwise, the replicas will diverge even without failures.

Since we assume that nodes communicate using a reliable, in-order protocol like TCP,
tuples never get re-ordered within a stream. Because each stream is also produced by a
single data source, all replicas of an operator with a single input stream process their inputs
in the same order without additional machinery. To ensure consistency, we thus only need
a way to order tuples deterministically across multiple input streams that feed the same
operator (e.g., Union and Join).

If tuples on streams were always ordered on one of their attribute values and arrived
at a constant rate, the problem of deterministically ordering them would be easy. Each
operator could buffer tuples and process them in increasing attribute value, breaking ties in
a deterministic fashion. The challenge is that tuples on streams are not necessarily sorted
on any attribute and they may arrive at significantly different rates.
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Figure 4-7: Boundaries enable sorting tuples deterministically across streams.

To compute an order without the overhead of inter-replica communication, we introduce
additional boundary tuples on streams. Boundary tuples have tuple type = BOUNDARY and
serve the role of both punctuation tuples [166] and heartbeats [151]. The punctuation prop-
erty of boundary tuples requires that no tuples with tuple stime smaller than the boundary’s
tuple stime appear after the boundary on the stream.5 Boundary tuples enable an operator
to deterministically order all (previously received) tuples with a lower tuple stime because
they ensure that the operator has received all such tuples. More specifically, an operator
with i input streams can order deterministically all tuples that satisfy:

tuple stime < min
∀i

(bi), (4.1)

where bi is the tuple stime value of the latest boundary tuple received on stream i. Figure 4-7
illustrates the approach for three streams. In the example, at time t0, min(bi) = 20, and all
tuples with tuple stime values strictly below 20 can be sorted. Similarly, at time t1, tuples
below 25 can be sorted. At t2 and t3 only tuples below 27 can be sorted, since the last
boundary seen on streams s2 had value 27.

Requiring that clients make periodic, possibly null requests, in order for replicas to order
requests deterministically is a standard approach used with state-machine replication [142].
Boundary tuples play the role of null requests in an SPE. Because boundary tuples are
periodic, they ensure continuous and steady progress even in the absence of actual data on
one or more input streams.

Rather than modifying operators to sort tuples before processing them, we introduce
SUnion, a simple data-serializing operator that takes multiple streams as inputs and orders
all tuples deterministically into a single sequence. Using a separate operator enables the
sorting logic to be contained within a single operator. SUnion also manages trade-offs
between availability and consistency by deciding when tuples should be processed, as we
discuss in later sections. To enable greater flexibility in selecting the sort function and to
manage availability-consistency trade-offs at a courser granularity, SUnion processes tuples
at the granularity of fixed-size buckets. SUnion uses tuple stime values to place tuples in
buckets of statically defined sizes. It then uses boundary tuples to determine when a bucket
is stable (no more tuples will ever arrive for that bucket), at which time it is safe to order
tuples in this bucket and output them. SUnion’s sort function typically orders tuples by

5If a data source cannot produce boundary tuples or set tuple stime values, the first processing node to
see the data can act as a proxy for the data source, setting tuple headers and producing boundary tuples
(see Section 4.10).
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Figure 4-8: Example of organizing tuples into buckets with boundary interval
d = 5. Only tuples in bucket i can be sorted and forwarded as stable.

increasing tuple stime values, but other functions are possible. Figure 4-8 illustrates how
buckets are used to determine what tuples can be processed. In this example, only tuples in
bucket i can be sorted and forwarded as stable because boundary tuples with timestamps
greater than the bucket boundary have arrived (they are in bucket i + 1). These boundary
tuples make bucket i stable as they guarantee that no tuples are missing from the bucket.
Neither bucket i + 1 nor i + 2 can be processed, since both buckets are missing boundary
tuples, making it still possible that tuples will arrive for these buckets.

To maintain replica consistency, an SUnion operator must appear in front of every
operator with more than one input stream. Figures 4-9(a) and (b) show a query diagram
and its modified version, where all Union operators are replaced with SUnions and an
SUnion is placed in front of every Join. Union and Join are the only operators that have
more than one input stream.

As illustrated in Figure 4-9(b), SUnion operators may appear at any location in a
query diagram. Therefore, all operators must deterministically set tuple stime values on
their output tuples and produce periodic boundary tuples with monotonically increasing
tuple stime values. Operators can ensure tuple stime determinism by using, for example,
tuple stime values of input tuples to compute the tuple stime value of the output tuples. To
enable downstream operators to produce correct boundary tuples even in the absence of
input data or even when tuples are not strictly ordered on their tuple stime values, boundary
tuples must propagate through the query diagram.

SUnion is similar to the Input Manager in STREAM [151], which sorts tuples by in-
creasing timestamp order. SUnion, in contrast, ensures that replicas process tuples in the
same order. SUnions need to appear in front of every operator with more than one input
and not just on the inputs to the system. SUnion is also more general than the Input
Manager. It can support different serialization functions but must break ties deterministi-
cally. More importantly, the Input Manager is not fault-tolerant. It assumes that delays are
bounded and it uses that assumption to compute heartbeats if applications do not provide
them. As we discuss below, we use the SUnion operator to provide the parameterizable
availability/consistency trade-off.

4.5.2 Impact of tuple stime Values Selection

A natural choice for tuple stime is to use the local time at data sources. By synchronizing
data source clocks, tuples will get processed approximately in the order in which they are
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(a) Initial query diagram.

 

 


 

 




 

 

(b) Diagram modified to maintain consistency between replicas in the absence of failures
and enable control over availability and consistency as failures occur.

Figure 4-9: SUnion placements in a query diagram.

produced. The Network Time Protocol (NTP) [165] is standard today and implemented on
most computers and essentially all servers, synchronizing clocks to within 10 ms. Wall-clock
time is not the only possible choice, though. In Borealis, any integer attribute can define the
windows that delimit operator computations. When this is the case, operators also assume
that input tuples are sorted on that attribute [2]. Using the same attribute for tuple stime
as for windows helps enforce the ordering requirement.

SUnion delays tuples because it buffers and sorts them. This delay depends on three
properties of boundary tuples. First, the interval between boundary tuples with increasing
tuple stime values and the bucket size determine the basic buffering delay. Second, the basic
delay further increases with disorder. The increase is bounded above by the maximum delay
between a tuple with a tuple stime, t, and a boundary tuple with a tuple stime > t. Third, a
bucket is stable only when boundary tuples with sufficiently high tuple stime values appear
on all streams input to the same SUnion. The maximum differences in tuple stime values
across these streams bounds the added delay. Because the query diagram typically assumes
tuples are ordered on the attribute selected for tuple stime, we can expect serialization delays
to be small in practice. In particular, these delays should be significantly smaller than the
maximum added processing delay, X.

In summary, the combination of SUnion operators and boundary tuples enables replicas
of the same processing node to process tuples in the same order and remain mutually
consistent. SUnions may increase processing latency because they buffer tuples before
sorting and processing them, but this extra delay is small.
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4.5.3 Detecting Failures

The heartbeat property of boundary tuples enables an SUnion to distinguish between the
lack of data on a stream and a failure. When a failure occurs, an SUnion stops receiving
boundary tuples on one or more input streams. SUnion may also start to receive tentative
tuples. Because we do not want to propagate tentative tuples through the query diagram
as soon as they arrive but rather delay them based on the current availability requirement,
we need to place SUnion operators on each input stream, even when the stream is the only
input to an operator. Figure 4-9(b) also illustrates the modification to the query diagram
necessary to control availability and consistency when failures occur. In the diagram, an
SUnion operator is added to each input stream.

In STABLE state, SUnion does most of the work. Other components, however, are also
active. The Data Path buffers the most recent output tuples and the Consistency Manager
monitors upstream neighbors and their replicas. Indeed, in addition to relying on boundary
tuples to detect failures, the Consistency Manager periodically requests heartbeat responses
from each replica of each upstream neighbor. By doing so, if an upstream neighbor fails,
the Consistency Manager knows the states of all replicas of that neighbor and can switch to
using another replica. Heartbeat responses not only indicate if a replica is reachable, but
also include the states (STABLE, UP FAILURE, FAILURE, or STABILIZATION) of its output
streams. The Consistency Manager uses this detailed information when selecting a new
upstream neighbor. Figure 4-10 shows the exact algorithm for monitoring input streams.
The Consistency Manager periodically (every P2 time units) sends a message to each replica
of each upstream neighbor. Upon receiving a response from a replica, r, the Consistency
Manager updates the last known state for each stream produced by r. If more than P1

requests go unanswered, the Consistency Manager considers a replica as failed. The values
of parameters, P1 and P2, trade off between the failure detection delay and the sensitivity
of the monitoring algorithm to transient failures that may cause a node to drop one or more
consecutive requests. In our implementation, we use P1 = 3 and P2 = 100 ms.

In addition to monitoring input streams, the Consistency Manager must also advertise
the correct state of all output streams. To determine the state of an output stream, the
SOutput operator of even the Data Path could simply send a message to the Consistency
Manager every time they detect a state change on the stream. There are two drawbacks
to this approach, though. First, from the moment a failure occurs on an input, it may
take time for tentative tuples to propagate to the output. Second, by observing a stream,
SOutput would not be able to distinguish between a partial failure that results in tentative
tuples and a total failure that blocks the output. Instead, the Consistency Manager can
compute the state of output streams directly from the state of input streams. We present
two possible algorithms

Algorithm 1: The simplest algorithm is to equate the state of all output streams with
the state of the processing node. We define the state of the processing node as follows. If one
or more input streams are in the UP FAILURE state, the node is in the UP FAILURE state.
The node remains in that state until it finds alternate replicas for the failed input streams
or the failures heal and the node starts reconciling its state. During state reconciliation, the
node is in the STABILIZATION state. After reconciling its state, if no new failures occurred,
the node goes back to the STABLE state. Otherwise, it goes back to the UP FAILURE state.
In the rest of this document, for simplicity of presentation, we use this algorithm and always
equate the state of output streams with the state of the node.

Algorithm 2: The above algorithm is simple but it only provides approximate in-
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// Send heartbeat requests
PROCEDURE REQUEST STATE:
Input:

InputStreams: set of all input streams to the node.
Replicas: upstream neighbors and their replicas.
∀s ∈ InputStreams, Replicas[s] = {r1, r2, ...rn} | ∀i ∈ [1, n], ri ∈ Nodes produces s.

Both Input and Output:
Pending: number of unanswered requests sent to different nodes.
∀r ∈ Nodes, Pending[r] = i | i is the number of unanswered requests sent to r by this node.

InState: states of streams produced by different nodes.
∀s ∈ InputStreams,∀r ∈ Replicas[s],
InState[r][s] = x | x ∈ States is the state of stream s produced by r.

01. foreach r in Replicas
// If more than P1 pending messages, consider all streams as failed.

02. if Pending[r] > P1

03. foreach s in InputStreams | r ∈ Replicas[s]
04. InState[r][s]← FAILURE
05. else
06. send heartbeat request to r
07. Pending[r]← Pending[r] + 1
08. sleep for P2

// Receive a response, Response[r], from r
PROCEDURE RECEIVE RESPONSE:
Input:

Response[r]: response to heartbeat request from replica r
∀s ∈ InputStreams | r ∈ Replicas[s]
Response[r][s] = x | x ∈ States is the state of stream s produced by r

Both Input and Output:
Pending: number of unanswered requests sent to a replica
InState: states of input streams produced by upstream neighbors and their replicas

01.Pending[r]← 0
02. foreach s in Response[r]
03. InState[r][s]← Response[r][s]

Figure 4-10: Algorithm for monitoring the availability and consistency of input
streams by monitoring all replicas of all upstream neighbors. Nodes denotes the
set of all processing nodes in the system. States = {STABLE, UP FAILURE, FAILURE,
STABILIZATION}. The algorithm continuously updates InState, the state of input streams
produced by each replica of each upstream neighbor. All data structures are local to each
node.
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formation about the state of output streams. In many cases, even though a node is in
UP FAILURE (as per the algorithm above), a subset of its outputs may be unaffected by the
failure and may remain in STABLE state. We can also distinguish between the UP FAILURE
state, where the output stream may produce tentative tuples and the FAILURE state where
the output stream is blocked or unreachable. This distinction improves the replica choices
of downstream neighbors. Appendix A presents the algorithm for computing the detailed
states of output streams.

4.6 Upstream Failure

In this section, we present the algorithms that each node uses to handle failures of its
upstream neighbors in a manner that meets the application-required availability and ensured
eventual consistency. There are two components to these algorithms: switching between
replicas when failures occur, and suspending or delaying processing new tuples to reduce
inconsistency.

4.6.1 Switching Upstream Neighbors

Because the Consistency Manager continuously monitors input streams, as soon as an up-
stream neighbor is no longer in the STABLE state (i.e., it is either unreachable or expe-
riencing a failure), the node can switch to another STABLE replica of that neighbor. By
performing such a switch, the node can maintain both availability and consistency in spite
of the failure. To enable the new upstream neighbor to continue sending data from the
correct point in the stream, when a node switches replicas of an upstream neighbor, it
indicates the last stable tuple it received and whether it received tentative tuples after stable
ones. This information is provided by the Data Path to the Consistency Manager, which
sends it to the new upstream neighbor in a subscribe message. The new upstream neighbor
can then replay previously missing tuples or even correct previously tentative tuples. Data
Paths at upstream neighbors must, of course, buffer their output tuples to perform such
replays and corrections. We discuss buffer management in Section 4.9.

If the Consistency Manager is unable to find a STABLE replica to replace an upstream
neighbor, it should at least try to connect to a replica in the UP FAILURE state because pro-
cessing tuples from such a replica helps the node maintain availability. If the Consistency
Manager cannot find a replica in either STABLE or UP FAILURE states, the node cannot
maintain the availability of the missing stream. Connecting to a replica in the STABILIZA-
TION state allows the node to at least start correcting data on the failed stream. Table 4.2
presents the algorithm that nodes use to switch upstream replicas. In this algorithm, a
node simply prefers upstream neighbors in STABLE state over those in UP FAILURE, which
it prefers over all others. As illustrated in Figure 4-11, the result of these switches is that
any replica can forward data streams to any downstream replica or client and the outputs of
some replicas may not be used. We refine the switching algorithm further after presenting
the STABILIZATION state in Section 4.7.3.

4.6.2 Managing Availability and Consistency during Failures

If a node fails to find an upstream replica that can provide the most recent stable tuples
on a stream, the node can either suspend processing new tuples for the duration of the
failure or it can continue processing the (possibly tentative) inputs that remain available.
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State Condition Action
InState(Curr(s), s) R = Replicas(s)− Curr(s)

1 STABLE — Remain in State 1
2 ! STABLE ∃r ∈ R , InState(r, s) =

STABLE
Unsubscribe from Curr(s)
Curr(s)← r
Subscribe to Curr(s)
Go to state 1

3 UP FAILURE @r ∈ R , InState(r, s) =
STABLE

Remain in State 3

4 ∈ {FAILURE,
STABILIZATION}

@r ∈ R , InState(r, s) =
STABLE and
∃r′ ∈ R , InState(r′, s) =
UP FAILURE

Unsubscribe from Curr(s)
Curr(s)← r′

Subscribe to Curr(s)
Go to state 3

5 ∈ {FAILURE,
STABILIZATION}

@r ∈ R , InState(r, s) =
STABLE and
@r′ ∈ R , InState(r′, s) =
UP FAILURE

Reamin in state 5

Table 4.2: Algorithm for switching replicas of an upstream neighbor in order
to maintain availability. Replicas(s) is the set of all replicas producing stream s. Curr(s)
is the current upstream neighbor for s. The state of Curr(s) and the states of nodes in
Replicas(s) define the conditions that can trigger an upstream neighbor switch. These
switches in turn cause the state of Curr(s) to change. States also change as failures occur
or heal.

Because suspending avoids inconsistency, it is the best approach for short-duration failures.
For long-duration failures, the node must eventually process the most recent input tuples
to ensure the required availability. If a node processes tentative tuples during a failure,
either by receiving tentative tuples or proceeding with missing inputs, its state may start
to diverge from the other replicas.

To minimize inconsistency while maintaining the required availability, a node can try
to continuously delay new tuples up to its maximum pre-defined incremental processing
latency. Delaying new tuples reduces the number of tentative tuples produced during the
failure, but processing them as they arrive enables the node to delay or suspend processing
new tuples later during STABILIZATION. We discuss trade-offs between processing tentative
tuples with or without delay in Chapter 5. We now only present the mechanics of controlling
availability and consistency.

SUnion operators manage the trade-off between availability and consistency by sus-
pending or continuously delaying tuples when failures occur. More specifically, the client
application specifies a total incremental processing latency, X, which we divide among
SUnion operators.6 We assign a maximum latency, D, to each input stream of each SUnion
operator. At runtime, when it receives the first tuple for a given bucket and stream com-
bination, SUnion starts a timer. If the timer expires before boundary tuples ensure that
the complete bucket is stable, SUnion serializes the available tuples, labeling them as TEN-
TATIVE, and buffering them in preparation for future reconciliation. In the example from
Figure 4-7, if the boundary for stream s2 does not arrive within D time-units of the moment
when the first tuple entered bucket i + 1, then SUnion will forward the remaining tuples

6We analyze how to divide X between SUnion operators in Chapter 5.
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Figure 4-11: Example of a distributed and replicated SPE. Rij is the j’th replica
of processing node i.

from that bucket as tentative. It will also buffer these tuples in preparation for future rec-
onciliation. In the UP FAILURE state, SUnions and operators should continue processing
and producing boundary tuples, but these tuples should also be labeled as TENTATIVE.
Tentative boundaries can help a downstream SUnion determine how soon it can process a
tentative bucket.

To ensure that a node has time to detect and react to an upstream failure before SUnion
starts processing inputs as tentative, the parameters of the monitoring algorithm in Fig-
ure 4-10 must satisfy: P2 ∗ P1 << D, where P2 is the interval between requests for state
information and P1 is the number of consecutive requests that must go unanswered before
the downstream node declares the upstream neighbor as failed.

In summary, when an input stream fails, a node transitions to the UP FAILURE state
and uses previously collected information to find and continue processing from the best
available replica of the failed stream. If no replica in the STABLE state exists, the node
must continue processing the (possibly tentative) inputs that remain available in order
to maintain their low processing latency. SUnions can, however, suspend or delay most
recent tuples to minimize inconsistency. After the failure heals, the node transition into the
STABILIZATION state, which we discuss next.

4.7 Stabilization

In this section, we present the algorithms that each node follows after a failure heals. For
simplicity, we focus on recovery from a single failure; DPC handles multiple simultaneous
failures as well as failures during recovery. We discuss these more complex failure scenarios
in Section 4.11.

An SUnion determines that a failure has healed when it receives corrections to previously
tentative tuples or a replay of previously missing inputs. Corrections arrive in the form of
a single UNDO tuple followed by stable tuples. When it receives an UNDO tuple, SUnion
stabilizes the corresponding input stream by replacing, in its buffer, undone tuples with their
stable counterparts. Once at least one bucket worth of input tuples is corrected and stable,
SUnion notifies the Consistency Manager that it is ready for state reconciliation. To avoid
possibly correcting tentative tuples with other tentative tuples when only one of several
streams has healed, the Consistency Manager wait for notifications from all previously
failed input SUnions before entering the STABILIZATION state.
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In the STABILIZATION state, to ensure eventual consistency, a node that processed
tentative tuples must reconcile its state and stabilize its outputs, by replacing previously
tentative output tuples with stable tuples. Stabilizing output streams allows downstream
neighbors to reconcile their states in turn. We present state reconciliation and output sta-
bilization techniques in this section. We also describe how each node maintains availability
while reconciling its state.

4.7.1 Reconciling the Node’s State

Because no replica may have the correct state after a failure and because the state of
a node depends on the exact sequence of tuples it processed, we propose that a node
reconcile its state by reverting to a pre-failure state and reprocessing all input tuples that
arrived since then. To revert to an earlier state, we explore two approaches: reverting to
a checkpointed state, or undoing the effects of tentative tuples. Both approaches require
that the node suspend processing new input tuples while reconciling its state. For clarity,
we only present the checkpoint/redo scheme in this chapter. We present the undo-based
technique in Appendix B.

With checkpoint/redo reconciliation, a node periodically checkpoints the state of its
query diagram when it is in STABLE state. The Consistency Manager determines when the
node should checkpoint its state. To perform a checkpoint, a node suspends processing any
tuples and iterates through all operators and intermediate queues making copies of their
states. To enable this approach, operators must thus be extended with a method that takes
a snapshot of their state. Checkpoints could be optimized to copy only differences in states
since the last checkpoint.

The Consistency Manager determines when the node should reconcile its state. To
reconcile its state, a node restarts from the last checkpoint before the failure and repro-
cesses all tuples received since then. To re-initialize its state from the checkpoint, a node
suspends processing all tuples and iterates through all operators and intermediate queues
re-initializing their states from the checkpointed state. Operators must thus be modified to
include a method to re-initialize their state from a checkpoint. After re-initializing its state,
the node reprocesses all input tuples received since the checkpoint. To enable these replays,
SUnions on input streams must thus buffer input tuples between checkpoints. They must
buffer all tuples that arrive before, during, and after the failure. When a checkpoint occurs,
however, SUnion operators truncate all buckets that were processed before the checkpoint.

4.7.2 Stabilizing Output Streams

Independent of the approach chosen to reconcile the state, a node stabilizes each output
stream by deleting a suffix of the stream with a single UNDO tuple and forwarding cor-
rections in the form of stable tuples. A node must typically undo and correct all tentative
tuples produced during a failure. As a possible optimization, a node could first determine
if a prefix of tentative tuples was unaffected by the failure and need not be corrected. How-
ever, as we discuss in Section 4.9, planning to always correct all tentative tuples enables
significant savings in buffer space.

With undo/redo state reconciliation, operators process and produce UNDO tuples, which
simply propagate to output streams. To generate an UNDO tuple with checkpoint/redo,
we introduce a new “serializing output” operator, SOutput, that we place on each output
stream that crosses a node boundary. At runtime, SOutput acts as a pass-through filter
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that also remembers the last stable tuple it produced. After restarting from a checkpoint,
SOutput drops duplicate stable tuples and produces the UNDO tuple. The Data Path could
monitor the output stream and produce the appropriate UNDO tuple instead of SOutput.
SOutput, however, nicely encapsulates the small state machine needed to properly delete
duplicates under various, possibly complex, failure and recovery scenarios.

Before forwarding the UNDO downstream, the Data Path must look up, for each down-
stream neighbor, the identifier of the last stable tuple the neighbor received. Indeed, a
node can switch upstream neighbors any time before or during a failure. An upstream
neighbor must therefore adjust which tuples it is correcting for each downstream neighbor.
Stabilizing an output stream thus occurs in two steps. First, the Data Path corrects tuples
in the output buffers such that these buffers contain only stable tuples. Second, the Data
Path looks up the last stable tuple received by each downstream neighbor and sends the
appropriate UNDO and corrections.

Stabilization completes when either the node reprocesses all previously tentative input
tuples and catches up with normal execution (i.e., it clears its queues) or when another
failure occurs and the node goes back into UP FAILURE. Once stabilization completes, a
node transmits a REC DONE tuple to its downstream neighbors. SUnions placed on input
streams produce REC DONE tuples once they clear their input buffers. REC DONE tuples
propagate through the query diagram to SOutput operators, which forward these tuples
downstream. To avoid duplicate REC DONE tuples, each SUnion operator placed in the
middle of the diagram waits for a REC DONE on all its inputs before forwarding a single
such tuple downstream.

The above algorithms for state reconciliation and output stream stabilization enable a
node to ensure eventual consistency: the node’s state becomes once again consistent and
downstream neighbors receive the complete and correct output streams. The problem,
however, is that stabilization takes time and while reconciling its state and correcting its
output, the node is not processing new input tuples. A long stabilization may cause the
system to break the availability requirement. We discuss how to address this problem next.

4.7.3 Processing New Tuples During Reconciliation

During stabilization, we have, once again, a trade-off between availability and consistency.
Suspending new tuples during state reconciliation reduces the number of tentative tuples but
may eventually violate the availability requirement if state reconciliation takes a long time.
To maintain availability when reconciling after a long-duration failure, a node must produce
both corrected stable tuples and new tentative tuples. Hence, DPC uses two replicas of a
query diagram: one replica remains in UP FAILURE state and continues processing new
input tuples, while the other replica performs the reconciliation. A node could run both
versions locally, but DPC already uses replication and downstream clients must know about
all existing replicas to properly manage their availability and consistency. Therefore, to
avoid duplicating the number of replicas, we propose that existing replicas use each other
as the two versions, when ever possible.

To enable a pair of replicas to decide which one should reconcile its state while the
other remains available, we propose that Consistency Managers run the following simple
inter-replica communication protocol. Before entering STABILIZATION, the Consistency
Manager sends a message to one of its randomly selected replicas. The message requests
authorization to enter the STABILIZATION state. If the partner grants the authorization,
it promises that it will not enter STABILIZATION itself. Upon receiving authorization to
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Figure 4-12: Inter-replica communication protocol to stagger replica stabiliza-
tions.

reconcile, the Consistency Manager triggers state reconciliation. However, if the replica
rejects the authorization, the node cannot enter the STABILIZATION state. Instead, the
Consistency Manager waits for a short time-period and tries to request authorization again,
possibly communicating with a different replica. A Consistency Manager always accepts
reconciliation requests from its replicas except if it is already in the STABILIZATION state
or it needs to reconcile its own state and its identifier is lower than that of the requesting
node. The latter condition is a simple tie breaker when multiple nodes need to reconcile their
states at the same time. Figure 4-12 illustrates the communication taking place between
two replicas that both need to reconcile their states.

Processing new tuples during STABILIZATION increases the number of tentative tuples
compared to suspending their processing. A node may still attempt to reduce inconsistency
by delaying new tuples as much as possible. In Chapter 5, we compare the alternatives of
suspending, delaying, or processing new tuples without delay during STABILIZATION.

It is up to each downstream node to detect when any one of its upstream neighbors
goes into the STABILIZATION state and stops producing recent tuples in order to produce
corrections. Downstream nodes detect this condition through the explicit heartbeat requests
and also because they start receiving corrections. In the replica switching algorithm of
Table 4.2, if one of its upstream neighbors goes into the STABILIZATION state, a node
switches to a replica that is still producing tentative tuples until a replica finally enters the
STABLE state. At that time, the node switches back to the STABLE replica.

4.7.4 Background Corrections of Input Tuples

After a failure heals, when a node finally switches over to a STABLE replica of an upstream
neighbor, it indicates the identifier of the last stable tuple that it received and a flag indi-
cating whether it has processed tentative tuples after that last stable one. This information
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enables the new STABLE upstream neighbor to send corrections to previously tentative tu-
ples before sending the most recent stable tuples. If the failure lasted a long time, simply
sending corrections can take a significant amount of time and may cause the downstream
node to break its availability requirement.

One solution to this problem would be for a node to enter the STABILIZATION state
before switching over to a STABLE replica and requesting corrections to previously tentative
inputs. The problem with this approach is that it would require the node to be able to
communicate simultaneously with STABLE replicas of all its upstream neighbors in order
to enter the STABILIZATION state. To avoid this requirement and also to speed-up recon-
ciliation through a chain of nodes, we choose to enable downstream nodes to correct their
inputs in the background, while they continue processing the most recent tentative tuples.

A node performs background corrections on an input stream by connecting to a sec-
ond replica in the STABILIZATION state, while remaining connected to a replica in the
UP FAILURE state. With these two input streams, SUnions receive tentative and stable tu-
ples in parallel. SUnions support background corrections by considering that the tentative
tuples they receive between an UNDO and a REC DONE are part of the ongoing failure and
stable tuples are corrections to earlier tentative ones. Tentative tuples that appear after a
REC DONE belong to a new failure. The Data Path ensures these semantics by monitoring
tuples that are entering the SPE and disconnecting the tentative input stream as soon as a
REC DONE tuple appears on the stream with the background corrections.

Table 4.3 shows the extended algorithm for switching between upstream neighbors using
both a Curr(s) neighbor to get the most recent inputs and a Bck(s) neighbor to get back-
ground corrections. The algorithm is actually simpler than it appears. The basic idea is
for a node to first select the Curr(s) neighbor as before using the algorithm from Table 4.2.
The selected replica is the best possible replica from the point of view of availability. Given
the choice for Curr(s), the node selects a replica to serve as Bck(s), if possible and useful. If
Curr(s) is in UP FAILURE, the node connects to a Bck(s) neighbor in the STABILIZATION
state, if such a replica exists. If choosing the best possible replica for Curr(s) yields a replica
in STABLE, STABILIZATION, or FAILURE state, a background corrections streams either
does not exist or would not be helpful, and the node disconnects from any Bck(s) neighbor.

Supporting background corrections also requires a change in the upstream neighbor
monitoring algorithm (Figure 4-10). If a node remains longer than a given time P3 in
the UP FAILURE state, the Consistency Manager should consider all STABLE upstream
neighbors as being in the STABILIZATION state instead. Indeed, if the node connects
to one of these STABLE replicas, it will take time to receive and process the replay or
corrections. As we discuss above, once an upstream node finishes sending all corrections
and catches up with current execution, it sends a REC DONE tuple. As soon as the Data
Path at the downstream node receives such a tuple, it disconnects the background stream
ensuring that no tentative tuples follow the REC DONE. The Consistency Manager then
marks the corresponding upstream neighbor as being in the STABLE state again.

We further discuss switching between upstream neighbors in various consistency states
when we discuss the properties of DPC in Section 4.11.

In summary, once failures heal, to ensure eventual consistency, a node transitions into
the STABILIZATION state when it reconciles its state and corrects the output it produced
during the failure. To maintain availability while performing these corrections, the node
engages in a simple inter-replica communication protocol to stagger its reconciliation with
respect to that of other replicas. Because the number of corrected tuples on a stream may
be large, a node corrects its inputs in the background, while continuing to process the most
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State Condition Action
InState(Curr(s), s) InState(Bck(s), s) R = Replicas(s) −

Curr(s)− Bck(s)

1 STABLE — — Unsubscribe from Bck(s)
Bck(s)← NIL

Remain in state 1

2 ! STABLE NIL or ! STABLE ∃r ∈ R , InState(r, s) =
STABLE

Curr(s)← r
Go to state 1

3 UP FAILURE STABILIZATION ∀r ∈ R , InState(r, s) 6=
STABLE

Remain in state 3

4 UP FAILURE NIL or
UP FAILURE or
FAILURE

∀r ∈ R , InState(r, s) 6=
STABLE and
∀r′ ∈ R ,
InState(r′, s) 6=
STABILIZATION

Unsubscribe from Bck(s)
Bck(s)← NIL

Remain in state 4

5 UP FAILURE NIL or
UP FAILURE or
FAILURE

∀r ∈ R , InState(r, s) 6=
STABLE and
∃r′ ∈ R ,
InState(r′, s) =
STABILIZATION

Bck(s)← r′

Subscribe to Bck(s)
Go to state 3

6 STABILIZATION NIL or FAILURE ∀r ∈ R , InState(r, s) 6=
STABLE and
∀r ∈ R , InState(r, s) 6=
UP FAILURE

Unsubscribe from Bck(s)
Bck(s)← NIL

Remain in state 6

7 STABILIZATION NIL or FAILURE ∀r ∈ R , InState(r, s) 6=
STABLE and
∃r′ ∈ R ,
InState(r′, s) =
UP FAILURE

Bck(s)← r′

Subscribe to Bck(s)
Bck(s)↔ Curr(s)
Go to state 3

8 STABILIZATION STABILIZATION — Most advanced of the two
should become Curr(s)
Unsubscribe from Bck(s)
Bck(s)← NIL

Go to state 6 or 7

9 FAILURE NIL or FAILURE ∀r ∈ R , InState(r, s) 6=
STABLE and
∃r′ ∈ R ,
InState(r′, s) =
UP FAILURE

Curr(s)← r′

Subscribe to Curr(s)
Go to state 4, or 5

10 FAILURE NIL or FAILURE ∀r ∈ R , InState(r, s) 6=
STABLE and
∃r′ ∈ R ,
InState(r′, s) =
STABILIZATION

Curr(s)← r′

Subscribe to Curr(s)
Go to state 6, or 7

11 FAILURE NIL or FAILURE ∀r ∈ R , InState(r, s) =
FAILURE

Unsubscribe from Bck(s)
Bck(s)← NIL

Remain in state 11

Table 4.3: Algorithm for switching between replicas of an upstream neighbor in
order to maintain availability, while enabling background corrections of input
streams. Replicas(s) is the set of replicas producing stream s. Curr(s) and Bck(s) are
the upstream neighbor replicas used to get the most recent tentative input data for s
or the background corrections, respectively. The state of Curr(s), Bck(s), and the states
of nodes in Replicas(s) is given by InState and is thus updated periodically. These states
define the conditions that can trigger switches between upstream neighbors. These switches
in turn cause the states of Curr(s) and Bck(s) to change. For the following sequence of
possible states: STABLE, UP FAILURE, STABILIZATION, FAILURE, we only examine states
where State(Curr(s),s) is on the left of State(Bck(s),s). We assume the two are switched
automatically otherwise. 77



recent tentative data. After correcting its state and catching up with current execution,
if no new failures occurred during STABILIZATION, the node transition into the STABLE
state. Otherwise, it transition back into the UP FAILURE state.

4.8 Failed Node Recovery

In the above sections, we described failure and recovery when a node temporarily loses
one or more of its input streams. Independent of these failures, a node can also crash. A
crashed node restarts from an empty state and must re-build a consistent state before it can
consider itself in the STABLE state again. When a node recovers, it must not reply to any
requests (including heartbeat requests) until it reaches the STABLE state. Rebuilding the
state of a crashed node has been investigated elsewhere [83, 146] and we only summarize
how it can be achieved.

Rebuilding the state can occur in one of two ways, depending on the types of opera-
tors in the query diagram. The state of convergent-capable operators depends only on a
finite window of input tuples and is updated in a manner that always converges back to
a consistent state. If a query diagram consists only of these types of operators, the state
of the node will always converge to a consistent state, after the node processes sufficiently
many input tuples. To rebuild a consistent state, a node simply needs to process tuples and
monitor their progress through the operators’ states [83]. Once the first set of processed
tuples no longer affects the state of any operator, the state has converged. To speed-up
recovery, rather than processing only new input tuples, a node can also reprocess some of
the tuples already buffered at upstream nodes [83].

If operators are deterministic but not convergent-capable their states may depend on
arbitrarily old input tuples. To rebuild a consistent state a node must either reprocess
all input tuples ever processed or it must acquire a copy of the current consistent state.
Because we assume that at least one replica of each processing node holds the current
consistent state at any time (i.e., at most R − 1 replicas out of R ever crash at the same
time, although all of them can be in the UP FAILURE state at the same time), when a node
recovers, it can always request a copy of the current state from one of the other replicas.
This specific recovery technique is similar to that investigated by Shah et al. [146], and we
do not investigate it further.

4.9 Buffer Management

In the previous sections, we presented the details of the DPC fault-tolerance protocol. For
DPC to work, Data Paths must buffer output tuples and SUnions must buffer input tuples.
In Section 4.7.1, we discussed how SUnions can truncate their buffers after each checkpoint.
Until now, we assumed, however, that output buffers could grow without bounds. Even if
old tuples are written to disk, it is undesirable to let buffers grow without bounds.

We now present algorithms for managing these input and output buffers. We first review
which tuples must be buffered and where they need to be buffered in order for DPC to work.
We then show that correcting all tentative tuples after failures heal (even those that did
not change) significantly reduces buffering requirements. We present a simple algorithm for
periodically truncating output buffers in the absence of failures. Because input or output
buffers may not always be truncated during failures, we also show how the system can
handle long-duration failures with only bounded buffer space: for convergent-capable query
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Figure 4-13: Example use of output buffers.

diagrams, the system can maintain availability but may be able to correct only the most
recent tentative tuples. For other deterministic query diagrams, the system may have to
block when failures last long enough to fill up buffers.

4.9.1 Buffering Requirements

To support DPC, the Data Path must buffer output tuples and SUnions must buffer input
tuples. We now review when each type of buffer is necessary.

Output Buffers: A node must buffer the output tuples it produces until all replicas of
all downstream neighbors receive these tuples. Indeed, at any point in time, any replica of
a downstream neighbor may connect to any replica of an upstream neighbor and request all
input tuples it has not yet received. Output buffers are necessary during failures. Upstream
nodes must buffer output tuples as long as downstream nodes are unable to receive them.
Output buffers are also needed in the absence of failures, because nodes do not process and
transmit data at the same time. We assume that nodes have spare processing and bandwidth
capacity (see Section 4.1.2). Therefore, nodes can keep up with input rates without falling
behind. Nevertheless, some nodes may run somewhat ahead of others nodes. The nodes
that are ahead must buffer their output tuples until the other nodes produce the same
output tuples and forward them downstream. Figure 4-13 illustrates the need for buffering
output tuples. In the example, Node 1 is ahead of its replica Node 1′. Node 1 already
produced tuple with tuple id= 50. Node 1′ only produced tuple 30. If Node 1′ fails, Node
2′ will request from Node 1 all tuples since tuple 30. These tuples must still be buffered at
Node 1.

Input Buffers: When failures occur, nodes need to buffer the input tuples they re-
ceive in order to reprocess them later during STABILIZATION. Exact buffering needs de-
pend on the technique used for state reconciliation. As illustrated in Figure 4-14, with
checkpoint/redo, SUnions placed on input streams need to buffer tuples they receive be-
tween checkpoint, because reconciliation involves restarting from the last checkpoint and
reprocessing all input tuples received since then. We discuss the buffering requirements of
undo/redo in Appendix B.
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Figure 4-14: Locations where tuples are buffered with checkpoint/redo. SUnions
on input streams buffer all tuples received between checkpoints. Operators that buffer
tuples are outlined.
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Figure 4-15: Locations where tuples are buffered with checkpoint/redo when
all tentative tuples are always corrected. SUnions on input streams buffer only stable
tuples received between checkpoints. Operators that buffer tuples are outlined.

4.9.2 Avoiding Buffering Tentative Tuples

For long failures, nodes can produce significant amounts of tentative tuples that are later
corrected. The first step in buffer management is to decide whether nodes need to buffer
these tentative tuples or not.

After a failure heals, nodes stabilize their outputs. Frequently, however, the oldest ten-
tative tuples produced at the beginning of a failure are replaced with identical stable tuples.
This may occur, for example, when the oldest tentative buckets on input streams already
received all their data and were only missing boundary tuples. DPC’s data model and
protocols enable nodes to correct only the suffix of tentative tuples that actually changed.
Such an optimization, however, requires that tentative tuples be buffered both on output
streams and at downstream nodes because any subset of them may never be corrected.

In contrast, if we force nodes to correct all tentative tuples, tentative tuples need never
be buffered, which results in significant savings in buffer space:

1. The Data Path must still buffer output tuples until all replicas of all downstream
neighbors receive these tuples. However, it only needs to buffer stable tuples. Tentative
tuples are discarded after being sent.

2. For checkpoint/redo, SUnions placed on input streams buffer only stable tuples re-
ceived since the last checkpoint before the failure (Figure 4-15).
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4.9.3 Basic Buffer Management Algorithm

Buffers inside SUnions grow only during failures. Data Path output buffers, however, must
explicitly be truncated. A possible technique to truncate output buffers is for downstream
nodes to send acknowledgments to all replicas of their upstream neighbors after they receive
input tuples and for upstream nodes to delete tuples from output buffers once they are
acknowledged by all replicas of all downstream neighbors [83, 146].

4.9.4 Handling Long-Duration Failures

With the above buffer truncation algorithm, tuples are deleted from buffers periodically as
long as no failures occur. If downstream nodes crash or become disconnected they may
no longer send acknowledgments, forcing buffers to grow with the duration of the failure.
Tuples in buffers can be written to disk so even without additional mechanisms, DPC can
tolerate relatively long failures. We want, however, to bound the size of all buffers. We now
discuss how the system can cope with long-duration failures given bounded buffer sizes.

When nodes buffer and reprocess all tuples since the beginning of a failure, they ensure
that clients eventually receive corrections to all previously tentative results, but even more
importantly, they are able to reconcile their states. Limiting buffer sizes may prevent nodes
from reconciling their states after a sufficiently long failure. The best approach to handling
long-duration failures depends on the type of operators in the query diagram.

Deterministic Operators: The state of a deterministic operator can, in the worst
case, depend on all tuples that the operator ever processed. With such operators, any tuple
loss during a failure may prevent nodes from becoming consistent again. Such a situation
is called system delusion [71]: replicas are inconsistent and there is no obvious way to
repair the system. To avoid system delusion, when operators are not convergent-capable,
we propose to maintain availability only as long as there remains space in buffers. Once
a node’s buffers fill up, the node blocks. Blocking creates back pressure all the way up to
the data sources, which start dropping tuples without pushing them into the system. This
technique maintains availability only as long as buffer sizes permit but it ensures eventual
consistency. It avoids system delusion.

Convergent-Capable Operators: Convergent-capable operators have the nice prop-
erty that any input tuple affects their state only for a finite amount of time. When a query
diagram consists only of these types of operators, we can compute, for any location in the
query diagram, a maximum buffer size, S, that guarantees enough tuples are being buffered
to rebuild the latest consistent state and correct the most recent tentative tuples. With this
approach, the system can support failures of arbitrarily long duration with bounded-size
buffers.

Convergent-capable operators perform computations over windows of data that slide as
new tuples arrive. To obtain S at any point in the query diagram, in the worst case, we need
to sum up the window sizes of all downstream operators. If we also want to correct a window
W of latest tentative tuple, we can add this value to the sum of all the windows. When the
same attribute is used for both window specifications and tuple stime values (Section 4.5),
S translates into a maximum range of tuple stime values. Given S and a boundary tuple
with value B, the Data Path or SUnions need only keep tuples that satisfy:

tuple stime > B − S. (4.2)

Since only stable tuples are buffered, buffer truncation is possible even during failures.
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Figure 4-16: Example buffer size allocation with convergent-capable operators.
Buffer sizes are indicated with S. The query diagram comes from Figure 4-9 but operator
labels have been replaced with example window sizes. The user wants to receive stable
versions of the most recent W = 10 tentative tuples.

Figure 4-16 shows an example of buffer size allocations.
Hence, with bounded buffers and convergent-capable operators, DPC maintains avail-

ability for failures of arbitrarily long duration. DPC no longer ensures that all tentative
tuples are corrected after a failure heals. Instead, an application specifies a window, W , and
only the latest W worth of tentative tuples are corrected. For instance, a network monitor-
ing application may specify that it needs to see at least all intrusions and other anomalies
that occurred in the last hour. Convergent-capable query diagrams are thus more suitable
for applications that need to maintain availability during failures of arbitrarily long dura-
tion, yet also need to reach a consistent state after failure heals. For other deterministic
operators, buffer sizes determine the duration of failures that the system can support while
maintaining availability.

Buffer management is the last component of DPC. In the next section, we briefly discuss
the impact of DPC on client applications and data sources.

4.10 Client Applications and Data Sources

DPC requires client applications and more importantly data sources to participate in the
fault-tolerance protocol. This can be achieved by having clients and data sources use a
fault-tolerance library or by having them communicate with the system through proxies
(or nearby processing nodes) that implement the required functionality. We now describe
the latter solution. Figure 4-17 illustrates the use of proxies for data sources and client
applications.

4.10.1 Client Proxies

If a client application communicates with the system through a proxy, when the client
subscribes to a stream, the proxy receives the request and subscribes itself to the stream
instead. Because the proxy runs the fault-tolerance protocol, it monitors all replicas of
its upstream neighbors and switches between them in a manner that maintains availability
and ensures eventual consistency. Instead of an SUnion, however, the proxy only runs
a pass-through filter and sends all output tuples directly to the client application. As
illustrated in Figure 4-17(a), the client receives both new tentative tuples and corrections
to previous tentative tuples intertwined on the same stream. The proxy ensures that no
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(a) Client proxy (b) Data source proxy

Figure 4-17: Client and data source proxies.

tentative tuples appear after a REC DONE unless they indicate the beginning of a new
failure. Ideally, the proxy should run on the same machine as the client, such that if the
proxy becomes disconnected from the rest of the system, the client becomes disconnected
as well. A proxy failure is considered equivalent to a client failure.

4.10.2 Data Source Proxies

DPC requires data sources to perform the following functions:

1. Send their streams to all replicas of the nodes that process these streams.
2. Buffer output tuples until all replicas of all downstream neighbors acknowledge re-

ceiving them.
3. Set tuple tuple stime values.
4. Insert periodic boundary tuples.

As illustrated in Figure 4-17(b), a proxy can perform the above tasks on behalf of one
or more data sources. The proxy should be located near data sources because any network
failure between the data source and the proxy is considered to be a data source failure.
The failure of the proxy is also considered to be a data source failure. As part of the
fault-tolerance protocol, a proxy can set tuple tuple stime values and can insert periodic
boundary tuples on behalf of its data sources, if the latter cannot perform these tasks.
Because the proxy is co-located with the data sources, it assumes that if it doesn’t hear
from these sources, they have no data to send (either because no data is available or because
the sources have failed). Because the proxy can fail, it must log tuples persistently before
transmitting them to the system, in order to ensures that all replicas eventually see the
same input tuples. An alternate technique is for proxy to have a hot-standby replica that
takes over when the primary fails.

As mentioned in Section 4.1.2, DPC currently supports only transient failures of data
sources or their proxies. Permanent failures would be equivalent to a change in the query
diagram.
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Property # Brief description
1 Process available inputs in spite of failures.
2 Maintain low-latency processing of available inputs.
3 Choose techniques that reduce inconsistency.
4 Ensure eventual consistency (conditional).
5 Handle multiple simultaneous failures.
6 Handle failures during recovery.
7 Handle frequent failures.

Table 4.4: Summary of properties.
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Figure 4-18: Paths in a query diagram.

4.11 Properties of DPC

In Section 4.1, we outlined four properties that we wanted DPC to meet (Properties 1
through 4). We now revisit these properties, refine them, and show how DPC meets them.
Table 4.4 summarizes the revised properties.

To help us state these properties, we start with a few definitions. We say that a data
source contributes to a stream, s, if it produces a stream that becomes s after traversing
some sequence of operators, called a path. Figure 4-18 shows examples of paths in a query
diagram with and without replication. In the example, source d1 contributes to streams
{s1, s4, s5}. Source d2 contributes to {s2, s4, s5}. Source d3 contributes only to {s3, s5}.
Without replication (Figure 4-18(a)), there is one path between each source and the client
c. By replicating the Union and the Join (Figure 4-18 (b)), there are now four paths from
d1 to c. Other paths are not represented but there are also four paths from d2 to c and two
paths from d3 to c.

The union of paths that connect a set of sources to a destination (a client or an operator),
forms a tree. A tree is valid if paths that traverse the same operator also traverse the same
replica of that operator. Otherwise the tree is not valid. A valid tree is stable if the set
of data sources in the tree includes all sources that contribute to the stream received by
the destination. A stable tree produces stable tuples during execution. If the set of sources
does not include all those that contribute to the stream, and any of the missing sources
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Figure 4-19: Possible types of trees in a distributed and replicated query-
diagram.

would connect to the tree through non-blocking operators, the tree is tentative. Otherwise,
the tree is blocking. Figure 4-19 shows an example of each type of tree using the replicated
query diagram from Figure 4-18.

4.11.1 Availability and Consistency Properties

The main goal of DPC is to maintain availability, while ensuring eventual consistency and
minimizing inconsistency at any time. In this section, we show that DPC meets these goals.

We first focus on availability. In Section 4.1, Property 2 stated that if a path of non-
blocking operators exists between a data source and a client application, the client receives
results within the desired time-bound. Property 3 stated that DPC favors stable results
over tentative one. With the more precise notion of trees, we now re-state these properties
more precisely and give either a proof or a qualitative argument for each one of them.

Property 1 Process available inputs in spite of failures: In a static failure state, if there
exists a stable tree, a destination receives stable tuples. If only tentative trees exist, the
destination receives tentative tuples from one of the tentative trees. In other cases, the
destination may block.

Precondition: We assume that all nodes start in the STABLE state and are able to com-
municate with each other when a set of failures occur. Afterward, no other failure occurs
and none of the failures heal.

Proof. This property involves three algorithms: the algorithm for determining the state
of output streams from the state of input streams (we assume nodes use the more detailed
algorithm from Figure A-1), the algorithm for monitoring input streams (Figure 4-10), and
our upstream neighbor switching algorithm from Table 4.3. We prove this property by
induction. The induction is on the depth of the tree.

1. Base case: Nodes that communicate directly with a data source receive stable tuples
if and only if the source is available (and thus a stable tree exists). If the data source
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fails or gets disconnected, neither a stable nor a tentative tree exists, and the nodes
do not receive any tuples. Hence the property holds for the base case.

2. Induction hypothesis (part 1): If a node is downstream from a stable tree, it uses the
stable stream as input. If a node is downstream from a tentative tree and no stable
trees exist, the node uses the tentative inputs. Otherwise, the node may block. We
assume, for the moment (and argue in part 2), that nodes label their outputs properly
to reflect the type of tree to which each stream belongs: the output of a stable tree is
STABLE, the output of a tentative tree is labeled as UP FAILURE and the output of
a blocking tree is labeled as FAILURE.

3. Argument for the induction step (part 1): Downstream nodes periodically request
the state of upstream neighbors’ replicas, using the algorithm in Figure 4-10. Using
that information, nodes switch between replicas of upstream neighbors following the
algorithm in Table 4.3. If there exists a stable replica of an upstream neighbor, a node
switches to using that replica (Table 4.3, state 2). If no stable replica exists but a
replica in UP FAILURE exists, node switches to that replica instead (Table 4.3, state
7 and 9). Hence if there exists a stable tree, nodes choose the output of that tree as
their input. If no such tree exists but a tentative tree exists, nodes choose the output
of the tentative tree as input. Otherwise only blocking trees exist and the node may
block.

4. Induction hypothesis (part 2): Nodes label their outputs correctly as per the type of
tree to which they belong.

5. Argument for the induction step (part 2). Nodes use algorithm A-1 to label their
output streams. If all inputs are stable, all outputs are labeled as also stable (lines
5 and 7). If a node itself is blocked because it is reconciling its state, the affected
outputs are blocked (line 3). For the other cases, we must determine if an output
stream affected by a failure is the output of a blocking tree or a tentative tree. For
a stream to be the output of a blocking tree, it must be either downstream from a
blocking operator with at least one blocked input (line 9) or downstream from an
operator with all its inputs blocked (line 11). Otherwise, the output is tentative (line
14).

Hence, since the property holds for nodes that receive their inputs directly from data
sources, nodes label their outputs in a way that reflects the type of tree to which they
belong, and downstream nodes always switch their inputs to the best available tree, the
property holds for all nodes.

While a node maintains the above property, it may also correct tentative input tuples
using a second input stream that we called Bck(s) but these background corrections do not
affect availability.

Our goal is not only to ensure that clients receive the best results possible but also that
these results arrive within a bounded processing latency.

Property 2 Maintain low-latency processing of available inputs: If a stable or tentative
tree exists, the destination receives results with a delay that satisfies Delaynew < kD, where
D is the delay assigned to each SUnion operator and k is the number of SUnions on the
longest path in the tree.

Proof. Property 1 states that if a stable or tentative tree exists, a node always chooses the
output of that tree over an output of a blocking tree. In DPC, an SUnion never buffers an
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input tuple longer than its assigned delay D. Since there are at most k SUnions in a path,
the added processing delay for a tuple cannot exceed kD.

We further study the delay properties in Chapter 5, where we also discuss how delays
are assigned to SUnions.

Another desired property of DPC is to minimize inconsistency. More specifically, we
strive to achieve the following property:

Property 3 Choose techniques that reduce inconsistency: Among possible ways to achieve
Properties 1 and 2, we seek methods that produce the fewest tentative tuples: i.e., Ntentative
produced by the chosen method is less than Ntentative of any other method.

To achieve this property, we experiment with different variants of DPC, measuring both
the Delaynew and Ntentative of each one. We show that the best approach is adaptive: it
handles differently failures of different durations. We defer this discussion to Chapter 5.

The above properties address one of the main goals of DPC, which is to maintain
availability in spite of failures and try to minimize inconsistency. The other main goal of
DPC is to ensure eventual consistency. We first present the case of a single failure. We
discuss simultaneous failures in Properties 5 through 7.

Property 4 Ensure eventual consistency: Suppose a set of failures causes some nodes to
crash and some nodes to lose communication with each other, and no other failure occurs.
If at least one replica of each processing node does not crash, when all failures heal, the
destination receives the complete stable output stream.

Precondition: We assume that all nodes start in the STABLE state and are able to com-
municate with each other when the set of failures occur. Afterward, no other failure occurs.
Nodes buffer tuples and remove them from buffers as described in Section 4.9. All buffers are
sufficiently large (respectively failures are sufficiently short) to ensure no tuples are dropped
due to lack of space.

Proof. We prove the above property by induction. The induction is on the depth of the
tree and uses the properties of the upstream neighbor switching algorithm from Table 4.3.

1. Base case: Because we assume all tuples produced during the failure are buffered, when
a failure heals, all nodes that communicate directly with data sources receive a replay
of all previously missing tuples. At least one of these nodes must have remained
up and running during the whole failure. This node goes into STABILIZATION: it
reconciles its state and stabilizes its outputs. Because the node re-processes all tuples
from the beginning of the failure, it can also correct all tentative output tuples it
produced during the failure. Hence the downstream neighbors of the node now have
access to stable tuples that correct all previously tentative tuples.

2. Induction hypothesis: When at least one upstream neighbor corrects all tentative
tuples it previously produced, a downstream node that remained up and running
during the failure can reconcile its state and stabilize its output, correcting in turn,
all tentative tuples that it produced.

3. Argument for induction step: When at least one replica of an upstream neighbor
corrects all previously tentative tuples, the replica goes back to the STABLE state.
Because all failures healed, downstream nodes detect the transition and switch to using
the stable replica as upstream neighbor (algorithm from Table 4.3, state 2). When a
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node switches to a stable replica of an upstream neighbor, it sends the identifier of
the last stable tuple it received. Because we assume that buffers could hold all tuples
produced during the failure, the new upstream neighbor can correct all tentative tuples
following the one identified by the downstream node. The downstream node will now
have received the complete and correct input streams. (Nodes can also correct their
inputs in the background as the upstream node is still in STABILIZATION, shown in
Table 4.3, states 3 and 6).
Once a node receives the stable version of all previously tentative or missing inputs,
it can go into STABILIZATION. The node can re-process all tuples since the beginning
of the failure, reconciling its state and correcting all tentative tuples it produced.

Hence, after a failure heals, nodes that communicate with data sources receive a replay
of all previously missing tuples. Each node reconciles its state and stabilizes its output,
correcting all tentative tuples it produced during the failure. Every time a node stabilizes
its output, its downstream neighbors can correct their inputs, reconcile their states, and
stabilize their outputs in turn. Since we assume that at least one replica of each processing
node remained up and running during the failure, this process propagates all the way to
the client applications.

As discussed in Section 4.9, when failures exceed buffer capacity, for convergent-capable
query diagrams, nodes drop old tuples from buffers and no longer correct all tentative
tuples, but only the most recent ones. For other query diagrams, once buffers fill up DPC
blocks and prevents new inputs from entering the system. The system no longer maintains
availability in order to ensure eventual consistency and avoid system delusion.

4.11.2 Multiple Failure Properties

In addition to the basic properties above, we show that DPC handles simultaneous failures
as well as failures during recovery. In Property 5, we show that as failures occur and a node
switches multiple times between replicas of an upstream neighbor, stable tuples on its input
streams are never undone, dropped, nor duplicated. In Property 6, we show that when a
node reconciles its state, it never drops, duplicates, nor undoes stable output tuples in spite
of simultaneous failures and failures during recovery. Finally, in Property 7, we show that
a node periodically produces stable output tuples, even when its input streams frequently
fail and recover.

Property 5 Handle multiple simultaneous failures: Switching between trees never causes
stable input tuples to be dropped, duplicated, or undone.

Precondition: Nodes buffer tuples and remove them from buffers as described in Sec-
tion 4.9. All buffers are sufficiently large (respectively failures are sufficiently short) to
ensure no tuples are dropped due to lack of space.

We argue this property by studying each possible neighbor-switching scenario:
1. Switching from an upstream neighbor that was in STABLE state before the failure

occurred to an upstream neighbor still in STABLE state: Because the downstream
node indicates the identifier of the last stable tuple it received, a new STABLE replica
can continue from the correct point in the stream either by waiting to produce the
identified tuple or replaying its output buffer.
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Figure 4-20: Switching between replicas of upstream neighbors in different con-
sistency states. Node 2 and all its replicas are switching to using Node 1. Node 1 always
continues with the most recent tentative tuples because it is in the UP FAILURE state.

2. Switching from a neighbor in the UP FAILURE state to one in the STABLE state: In
this situation, the downstream node indicates the identifiers of the last stable tuple it
received and a flag indicating that it processed tentative tuples since that last stable
one. The new upstream neighbor thus knows that it needs to stabilize the output and
the exact point in the stream where to start the corrections.

3. Switching to an upstream neighbor in the UP FAILURE state. In this situation the
downstream node and its new upstream neighbor are most likely to have to continue
in mutually inconsistent states. Indeed, the last stable tuple produced by the new
neighbor (before it went into the UP FAILURE state) occurred on the stream either
before or after the last stable tuple received by the downstream node, as illustrated
in Figure 4-20.
If the last stable tuple produced by the new neighbor appears earlier on the
stream (Figure 4-20 Node 2 and Node 2’), the new upstream neighbor has been in
UP FAILURE state longer than the previous upstream neighbor. Because nodes cannot
undo stable tuples, the new upstream and downstream pair must continue processing
tuples while in mutually inconsistent states.
If the last stable tuple produced by the new neighbor appears later on the stream (as
in the case of Node 2” in Figure 4-20), the new upstream neighbor could stabilize the
oldest tentative tuples before continuing with the most recent tentative ones. The
downstream node, however, is connecting to the replica in UP FAILURE state in order
to get the most recent input data rather than corrections. Therefore, the new replica
continues directly with the most recent tentative tuples.
In both cases, the upstream neighbor remembers the last stable tuples received by
each new downstream neighbor but sends them directly the most recent tentative
data. After failures heal and the upstream node stabilizes its output, it looks up the
last stable tuple received by each downstream client and produces the appropriate
undo and correction for each one of them.

4. Finally, a node may connect to a replica in the STABILIZATION state to correct
input streams in the background. Because the node indicates the last stable tuple it
received, background corrections always start at the appropriate point in the stream.
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Additionally, when a node receives both new tentative input tuples and corrections,
DPC requires that the Data Path monitors these incoming streams ensuring that only
the background stream carries stable data.

We have shown that when a node switches between replicas of upstream neighbors, for
all consistency combinations of these neighbors, the downstream node receives the correct
input tuples: stable tuples are never undone, dropped, or duplicated. Tentative tuples, how-
ever, can be duplicated and more likely dropped while a node switches between upstream
neighbors but these duplications or losses affect neither availability nor eventual consistency.

The second problem with multiple failures is that input streams become tentative at
different points in time and may not all get corrected at the same time. In the extreme
case, there can always be at least one failed input. Additionally, new failures can occur at
any time, which includes the time when a node is in the process of recovering from earlier
failures. To maintain consistency, we must ensure that stabilization never causes output
tuples to be duplicated, dropped, or undone.

Property 6 Handle failures during failures and recovery: Stabilization never causes stable
output tuples to be dropped, duplicated, or undone.

Precondition: Nodes buffer tuples and remove them from buffers as described in Sec-
tion 4.9. All buffers are sufficiently large (respectively failures are sufficiently short) to
ensure no tuples are dropped due to lack of space.

We argue the above property by examining each possible failure scenario for each state
reconciliation technique. We present checkpoint/redo here. We discuss undo/redo in Ap-
pendix B. We show that DPC handles failures during failures and recovery without the risk
of dropping, duplicating, or undoing stable tuples.

Because our goal is to produce few tentative tuples, for a node to enter the STABI-
LIZATION state, it must have received corrections to previously tentative tuples on all its
input streams. Indeed, if a node launched reconciliation when only one stream had been
corrected, if the stream was unioned or joined with another still tentative stream, it is likely
that only new tentative tuples would have resulted from the reconciliation. Hence, when a
node starts to reconcile its state it has old stable tuples on all its input streams. If a failure
occurs during stabilization, the new tentative tuples appear after these stable tuples on the
input streams.

Because SUnions are placed on all input streams and they buffer all stable tuples that
arrive between checkpoints, restarting from a checkpoint cannot cause any tuple losses.

SOutput operators guarantee that stable tuples are neither undone nor duplicated.
When restarting from a checkpoint, SOutput enters a “duplicate elimination” mode. It
remains in that state and continues waiting for the same last duplicate tuple until it pro-
duces the UNDO tuple, even if another checkpoint or recovery occur. After producing the
UNDO, SOutput goes back to its normal state, where it remembers the last stable tuple
that it sees and saves the identifier of that tuple during checkpoints. If a new failure occurs
before the node had time to catch up and produce a REC DONE tuple, SOutput forces a
REC DONE tuple between the last stable and first tentative tuples that it sees.

Hence, with checkpoint/redo recovery, failures can occur during failures or reconciliation
and the system still guarantees that stable tuples are not undone, dropped, nor duplicated.
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Finally, we address the problem of frequent failures, and show that even if there is no
time when all components and communication in a system are fully functional, the system
can make forward progress. We define forward progress as producing new stable tuples.
To enable forward progress on output streams, each stream in the query diagram must
periodically make forward progress.

Property 7 Handle frequent failures: Even if inputs to a processing node fail so frequently
that at least one is down at any time, as long as each input stream recovers between failures
and makes forward progress, the node itself makes forward progress.

Precondition: Nodes buffer tuples and remove them from buffers as described in Sec-
tion 4.9. All buffers are sufficiently large (respectively failures are sufficiently short) to
ensure no tuples are dropped due to lack of space.

An input stream makes forward progress when a node is able to receive a replay of
previously missing inputs or corrections to previously tentative inputs. A node makes
forward progress when it reconciles its state and stabilizes its output.

We argue this property through a set of assertions about the processing node with the
failing inputs. These assertions lead to the main conclusion. For clarity, we assume that
SUnion operators placed on input streams buffer tuples in buckets identified with sequence
numbers that increase with time. We also assume that, for all SUnions, buckets with the
same sequence number correspond to roughly the same point in time.

1. Assertion 1: For any stream s and bucket i, the node eventually receives stable tuples
for that bucket on that stream. Argument: A stream that fails always eventually
recovers and makes forward progress before failing again. Each recovery enables the
downstream node to correct (possibly in the background) at least a subset of tuples
previously missing or tentative on that stream. Hence, a node eventually receives
stable input tuples for all buckets on all input streams.

2. Assertion 2: For any i, all SUnion operators eventually have only stable tuples in their
bucket i. Argument: Follows directly from Assertion 1.

3. Assertion 3: The node eventually goes into the stabilization state. Argument: Let
j be the first bucket processed as tentative by at least one SUnion. By Assertion 2,
eventually, all SUnions will have stable tuples in their bucket j. The node will then
be able to go into STABILIZATION.

4. Assertion 4: A node makes forward progress processing stable tuples, in spite of
failures. Argument: By assertion 3, a node eventually goes into STABILIZATION.
Assuming the node uses checkpoint/redo,7 at the first state reconciliation, the node
restarts from a checkpoint taken before processing bucket j. It then processes bucket
j and following. Tentative tuples eventually appear in bucket k > j. At the next
stabilization, even if the node restarts from the same checkpoint, it processes bucket
j through k before starting to process new tentative tuples. Once again, the node
makes forward progress. Of course, to avoid re-processing the same tuples multiple
times and having SOutput filter duplicates, a node should checkpoint its state before
starting to process any tuples from bucket k.

5. Conclusion: Because a node can periodically enter the STABILIZATION state and
make forward progress processing stable tuples, it periodically produces new stable
tuples on its output streams.

7The argument is similar for undo/redo reconciliation.
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4.12 Summary

In this chapter, we presented DPC, an approach to fault-tolerant distributed stream pro-
cessing. DPC introduces an enhanced data model, where tuples are explicitly labeled as
either tentative or stable. DPC is based on replication: each query diagram fragment is
replicated on multiple processing nodes. Replication enables the system to mask many node
and network failures, and reduces the probability of total system failure. DPC is based on
the principle that each replica should manage its own availability and consistency. With
DPC, each node implements a fault-tolerance protocol based on a three-state state machine.
In the STABLE state, replicas maintain mutual consistency by using SUnion, a simple data
serializing operator, coupled with periodic boundary tuples. Nodes also detect failures on
their input streams by using these boundary tuples and an explicit upstream neighbor moni-
toring mechanism. When failures occur, nodes transition into the UP FAILURE state, where
they maintain the required availability, while trying to minimize inconsistency by switching
between replicas of upstream neighbors, and possibly delaying processing new input tuples.
Once failures heal, nodes transition into the STABILIZATION state, where they reconcile
their states using either undo/redo or checkpoint/redo. To maintain availability during
STABILIZATION, nodes run an inter-replica communication protocol to stagger their recon-
ciliation. DPC requires that nodes buffer output tuples and input tuples, and we presented
an approach for managing these buffers. To benefit from fault-tolerance without implement-
ing any additional protocols, client applications and data sources can communicate with
the system through a nearby processing node that acts as their proxy. We have shown that
DPC provides the required availability and consistency and supports both single failures
and multiple simultaneous failures. DPC is designed for a low failure frequency, but it also
works when failures occur frequently. DPC works particularly well when query diagrams
are convergent-capable. In the next chapter, we present the implementation of DPC in
Borealis and its evaluation through experiments with our prototype implementation.
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Chapter 5

Fault-Tolerance: Evaluation

In this chapter, we present the implementation of DPC in Borealis and evaluate its perfor-
mance through experiments with our prototype implementation.

Our evaluation has two main goals. First, we show that DPC can ensure eventual
consistency while maintaining, at all times, a required level of availability, both in a single-
node and a distributed deployment. Second, we study techniques that enable a SPE to
minimize the number of tentative tuples it produces, while meeting specific availability and
consistency goals. In this second part, we find that the best strategy is for any SUnion to
block for the maximum incremental processing latency when it first detects a failure. If the
failure persists, SUnions should process new tuples without delay because later delays are
not helpful.

Another important goal of our evaluation is to study and compare techniques to effi-
ciently reconcile the state of an SPE. We find that checkpoint/redo outperforms undo/redo.
We show how to enhance the checkpoint-based approach to avoid any overhead in the ab-
sence of failures and, when failures occur, limit reconciliation and even overhead to those
operators affected by the failures.

The rest of this chapter is organized as follows. In Sections 5.1 and 5.2, we present
the details of DPC’s implementation and discuss how a user can write a fault-tolerant ap-
plication, respectively. We also show an illustrative example of the input received by an
application when the SPE experiences a temporary failure that it cannot mask. In Sec-
tion 5.3, we run a few experiments demonstrating that DPC properly handles multiple
simultaneous failures including failures during recovery. We show that regardless of the
failure scenario, DPC always correctly stabilizes the output stream. In Section 5.4, we turn
to the quantitative evaluation of DPC and study the trade-offs between availability and
consistency. In Section 5.5, we compare the performance of state reconciliation using either
checkpoint/redo or undo/redo. In Section 5.6, we study the overhead of DPC. We summa-
rize the main conclusions from the evaluation in Section 5.7 and discuss the limitations of
DPC in Section 5.8.

5.1 Implementation

In this section, we present the implementation of DPC in Borealis. We already presented
the overall software architecture in Section 4.3. We now summarize the main functions of
each component and add a few implementation details. Figure 5-1 presents the complete
extended software architecture.
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Figure 5-1: Extended software node architecture for fault-tolerant stream pro-
cessing.

5.1.1 Consistency Manager and Availability Monitor

The Consistency Manager makes all global decisions related to failure handling:
1. For each input stream, the Consistency Manager selects, by implementing the algo-

rithm from Table 4.3, the replica that should serve as upstream neighbor and option-
ally the one to serve as background corrections.

2. The Consistency Manager computes the states of output streams. In the current
implementation, the Consistency Manager assigns the state of the node as the adver-
tised state of all output streams, rather than using the more sophisticated algorithm
from Figure A-1. To determine the state of the node, the Consistency Manager
uses information from SUnion and SOutput operators. These operators send mes-
sages to the Consistency Manager in the form of tuples produced on separate control
output streams. When an SUnion starts processing tentative data, it produces an
UP FAILURE message. As soon as one SUnion goes into UP FAILURE, the whole node
is considered to be in that state. When an SUnion receives sufficiently many correc-
tions to reconcile its state, it produces a REC REQUEST message. Once all previously
failed SUnions on input streams are ready to reconcile, the Consistency Manager trig-
gers state reconciliation (either checkpoint/redo or undo/redo), taking the node into
the STABILIZATION state. Once reconciliation finishes or another failure occurs, each
SOutput sends a REC DONE tuple downstream and to the Consistency Manager. Af-
ter receiving one such tuple from each SOutput, the Consistency Manager takes the
node back to the STABLE or the UP FAILURE state.

3. To ensure that replicas stagger their state reconciliations, the Consistency Manager
implements the inter-replica communication protocol from Section 4.7.3.

The Consistency Manager uses a separate component, the Availability Monitor, to im-
plement the upstream neighbor monitoring protocol from Figure 4-10. The Availability
Monitor informs the Consistency Manager only when the state of any output stream at any
replica changes. The Availability Monitor is a generic monitoring component that could
easily be extended to provide monitoring for purposes other than fault-tolerance.

5.1.2 The Data Path

The Data Path handles the data coming into the SPE and the data sent to downstream
neighbors. DPC requires a few extensions to this component:
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Figure 5-2: A node in STABLE state stabilizes the input streams of new down-
stream neighbors as per the information they provide in their subscriptions.
Subscription information is shown on the right of each downstream node (Node 2, Node 2′,
and Node 2′′). Actions taken by upstream Node 1 are shown on the arrows.

1. The Data Path monitors the input tuples entering the SPE. For each input stream, the
Data Path remembers the most recent stable tuple and whether any tentative tuples
followed the last stable one. The Data Path provides this information to the Consis-
tency Manager when the latter decides to switch to another replica of an upstream
neighbor. The information is sent to the new replica in a susbscribe message.

2. The greater challenge in managing input streams is for the Data Path to handle both
a main input stream and a second input stream with background corrections. If a
stream of corrections exists, the Data Path must verify that the main input carries
only tentative tuples. Other tuples must be dropped. Additionally, the main input
stream must be disconnected as soon as a REC DONE tuple appears on the background
corrections stream. The latter then takes the place of the main input stream.

3. The Data Path must also buffer stable output tuples (tentative and UNDO tuples
are never buffered), and stabilize, when appropriate, the data sent to downstream
neighbors. Figure 5-2 illustrates the tuples sent by a node in STABLE state to new
downstream neighbors in different consistency states. Each downstream neighbor
provides information about the most recent data it received in the subscribe message.
The Data Path uses that information to decides what tuples to send. The upstream
node also sends a REC DONE right after sending the missing stable tuples.
If the upstream node itself is experiencing a failure, the Data Path simply sends
the most recent tentative data to all new downstream neighbors. Once it starts
stabilizing its output streams, however, the Data Path uses the information from
the subscription messages to produce and send the appropriate UNDO tuple and
corrections to each downstream neighbor. Figure 5-3 illustrates the tuples sent to
downstream neighbors when they first connect and later when the node goes from
UP FAILURE to STABILIZATION. After stabilizing its state, the Data Path propagates,
to all downstream clients, the REC DONE tuple that appears on its output stream.

5.1.3 Query Diagram Modifications

DPC requires three modifications to the query diagram: the addition of SUnion operators,
the addition of SOutput operators, and small changes to all other operators.
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(a) When a node in UP FAILURE acquires new downstream neighbors, it sends them the
most recent tentative data.



 

 











 

 



 









(b) The node stabilizes the input streams of downstream neighbors only after stabilizing its
own output streams.

Figure 5-3: Stream stabilization by a node in the UP FAILURE state.

SUnion

SUnion operators appear on all input streams of an SPE node but they can also appear in
the middle of the local query diagram fragment. SUnions in the middle behave somewhat
differently than SUnions on inputs. We now outline these differences.

SUnions on input streams can be seen as performing two roles: the role of an SUnion
and the role of an input buffer. This difference is visible during checkpoints when an SUnion
in the middle of the diagram behaves like an ordinary operator. It makes a copy of its state
or reinitializes its state (i.e., its buckets of tuples) from a checkpoint. An SUnion on an
input does not make a copy of its state during checkpoints. Instead, it only remembers the
identifier of the bucket it is currently processing. Indeed, an input SUnion does not receive
a replay of earlier stable tuples. It is the one to perform the replay.

The location of an SUnion also determines the manner in which it processes and pro-
duces control tuples. Since failures can only occur on inputs, only input SUnions need to
communicate with the Consistency Manager, although in our current implementation, all
SUnions signal failures and readiness to reconcile.

Besides differences between an SUnion placed on an input stream and one in the middle
of the diagram, the behavior of an SUnion also depends on the operator that follows it
in the query diagram. If an SUnion simply monitors an input stream or replaces a Union
operator, it produces all tuples on a single output stream. This is not the case for an
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SUnion that precedes a Join operator. In Borealis, a Join operator has two distinct input
streams. To enable a Join to process input tuples deterministically, the SUnion placed in
front of the Join orders tuples by increasing tuple stime values but it outputs these tuples
on two separate streams that feed the Join operator. We modify the Join to process tuples
by increasing tuple stime values, breaking ties between streams deterministically. We call
the modified Join a Serializing Join or SJoin.

SOutput

SOutput operators monitor output streams. Independently of the sequence of checkpoints
and recovery, SOutputs ensure they produce UNDO and REC DONE tuples when appro-
priate. When restarting from a checkpoint, the normal case is for SOutput to produce an
UNDO tuple, drop duplicate stable tuples until the first new tuple appears, and forward
the REC DONE tuple when it finally makes its way to the output. There are three other
interesting cases. First, if SOutput did not see any tentative tuples after a checkpoint, it
only drops duplicate stable tuples without producing an UNDO. Second, if another check-
point and another recovery occur while SOutput is dropping duplicates, after the recovery,
SOutput goes back to dropping duplicates and expecting the same last stable tuple as be-
fore. Finally, if a failure occurs during recovery SOutput forces a REC DONE tuple before
the first new tentative tuple. All SOutputs propagate REC DONE tuples to the Consistency
Manager in addition to sending them downstream.

Operator Modifications

DPC also requires a few changes to stream processing operators. In the current implemen-
tation, we have modified Filter, Map, Join, and Aggregate to support DPC, and SUnion
replaces the Union operator. We already mentioned the modification of the Join operator to
make it process tuples in the deterministic order prepared by a preceding SUnion operator.
We now outline the other necessary changes.

For checkpoint/redo, operators need the ability to take snapshots of their state and
recover their state from a snapshot. Operators perform these functions by implementing a
packState and an unpackState method.

For undo/redo, the changes are significantly more involved. Operators must keep an
undo buffer. They must compute stream markers and remember the last tuple they output.
They must understand and process UNDO tuples. The undo handling functionality can
be implemented with a wrapper, requiring that the operator itself only implements two
methods: clear() clears the operator’s state and findOldestTuple(int stream id) returns the
oldest tuple from input stream, stream id, that is currently in the operator’s state. In the
prototype, we only implemented undo/redo directly inside an experimental Join operator.
Because the approach does not perform as well as checkpoint/redo, we did not implement
it for other operators.

Operators must also be modified to set the tuple stime value on output tuples, in ad-
dition to other fields in the tuple headers. Different algorithms are possible. Stateless
operators can simply copy the value from the input tuples. Aggregate operators can use the
most recent tuple stime value in the window of computation. Join can use the most recent
value among those present in the two tuples being joined. The chosen algorithm determines
how an operator processes boundary tuples. For this reason, we chose to implement both
functionalities directly inside operators. To produce a boundary tuple, an operator must
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implement the method findOldestTimestamp() that returns the oldest tuple stime value that
the operator can still produce. This value depends on the algorithm used to assign tu-
ple stime values. In the best case, the operator can simply propagate the boundaries it
receives. In the worst case, this boundary value is the minimum of all tuple stime values in
the operator’s state and the latest boundary tuples received on each input stream.

Finally, upon receiving a tentative tuple, operators must start to label their output
tuples as TENTATIVE as well.

5.1.4 Implementation Limitations

The implementation currently lacks the following features:
1. We did not implement tentative boundaries. Currently, the SUnion operator always

uses a timeout to decide when to process a tentative bucket. Even when an SUnion
should process tuples as soon as they arrive, we set a minimum timeout of 300 ms.
SUnion would not need the timeout with tentative boundaries, but the SUnion logic
would have to be changed to properly handle failed input streams that do not even
carry tentative boundaries.

2. We did not implement data source proxies. The current system does not tolerate data
source failures, and assumes data sources produce boundary tuples and set tuple stime
values. Data sources can use an intermediate Borealis node to send data to multiple
replicas, replaying it as necessary. The system will not support a failure of the proxy.

3. We did not implement the buffer management algorithm. For each output stream,
the Data Path uses a circular buffer of a pre-defined size.

4. As we mentioned above, we have a full implementation of checkpoint and redo. We
only implemented undo capabilities inside SUnions and inside one experimental Join
operator. Focusing on a single technique, however, makes the implementation of
the Consistency Manager cleaner because the logic inside the latter must be a little
different for undo-based recovery.

5. The Consistency Manager does not distinguish the exact states of output streams but
equates them with the state of the node itself.

6. A failed node can currently re-join the system only during a time-period without
failures such that its state has time to converge to a consistent state before any node
subscribes as downstream neighbor. Because the node joins with an empty state, the
scheme only supports convergent-capable query diagrams at the moment.

7. The Borealis operator scheduler is quite simple. A constant defines how many input
tuples an operator reads every time it gets scheduled. All operators use the same
constant independent of their selectivities. SUnion operators are sensitive to this
constant because they process and potentially produce one bucket of data for every
iteration. This sensitivity may manifest itself during state reconciliation. It affects
reconciliation times and the way queues build up then clear during recovery.

5.2 Fault-Tolerant Applications

We now discuss how users can write fault-tolerant applications, and show the sample output
of an application during a failure that the SPE cannot mask.

To make an application fault-tolerant, it is currently necessary for the application writer
to manually include all necessary SUnion and SOutput operators, although it would not
be difficult to add these operators automatically. Application writers must also use the
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modified Join operator called SJoin. For aggregates, to ensure that they are convergent-
capable, an option called “independent window alignment” must be set. This option ensures
that window boundaries are independent of the exact value inside the first tuple processed
by the operator. When deploying a query diagram onto processing nodes, a user can simply
label groups of nodes as replica sets. Assigning a query diagram fragment to a replica set
automatically replicates the fragment. For the client proxy, the deployment should include,
as the last hop, a Borealis node running a pass-through filter.

Figure 5-4 shows two screenshots from an application that illustrates the output of a
query diagram. Each screen is composed of two panels. The top panel shows the types of
tuples that appear on the output stream. Each tuple is displayed as one square. Tuples
are displayed in four columns and are drawn from left to right and from top to bottom.
Hence the oldest tuple is the square in the top left corner and the most recent tuple appears
at the bottom right. Columns shift left by one when all four columns fill up. Stable
tuples are shown in green. Tentative tuples are shows in yellow, control tuples (UNDO and
REC DONE) are shown in red, and missing tuples leave gray holes. The bottom panel shows
the end-to-end processing latency for tuples. The x-axis shows the time when a tuple was
received and the y-axis shows the processing latency for that tuple. In the example, the
diagram unions three streams and performs some processing equivalent to a pass-through
filter. The maximum incremental processing latency is set to 3 seconds and one of the three
input streams becomes temporarily disconnected for 20 seconds.

Figure 5-4(a) shows the output during the failure. The figure shows that the output is
stable at first. Green squares appear in the first two and a half columns. The processing
latency, shown in the bottom window, is also small for these tuples. As the failure occurs, the
processing latency increases to almost 3 seconds as the SPE suspends processing. Because
the failure persists, however, in order to meet the required 3-second availability, the system
starts producing tentative results. These results appear as yellow squares. In this example,
each input stream contributes one third of the output tuples, so a third of the output tuples
are also missing during the failure.

Figure 5-4(b) shows the output after the failure heals. The previously tentative results
are replaced with a red UNDO tuple, a sequence of stable corrections, and a red REC DONE
tuple. Note that the output of Figure 5-4(b) is shifted by two columns compared with that of
Figure 5-4(a) because time has passed between the two screenshots. In this example, we used
a single SPE node to show how the processing latency increases during state reconciliation.
The bottom panel of Figure 5-4(b) shows a second peak in processing latency corresponding
to the reconciliation.

5.3 Multiple Failures

In this section, we show examples of how DPC with checkpoint/redo handles simultaneous
failures and failures during recovery. We show that client applications eventually receive
the stable version of all result tuples and that no stable tuples are duplicated.

We run a simple query diagram (Figure 5-5) that produces, on the output stream, tuples
with sequentially increasing identifiers. We first cause a failure on input stream 1. We label
this failure as “Failure 1”. We then cause a failure on input stream 3. We label this failure
as “Failure 2”. We plot the sequence numbers received by the client application over time
as the two failures occur and heal. Figure 5-6(a) shows the output when the two failures
overlap in time. Figure 5-6(b) shows the output when Failure 2 occurs exactly at the
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(a) When the failure occurs, the SPE node first suspends processing tuples then produces
tentative results.

(b) When the failure heals, previously tentative data is replaced with the final stable results.

Figure 5-4: Screenshots from a client application during a partial failure of the
SPE.
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Figure 5-5: Query diagram used in simultaneous failures experiments.
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Figure 5-6: Example outputs with simultaneous failures.

moment when Failure 1 heals and the node starts reconciling its state.

In the case of simultaneous failures (Figure 5-6(a)), as Failure 1 occurs, the output first
stops because the node suspends all processing. All tuples following the pause are tenta-
tive tuples. Nothing special happens when the second failure occurs because the output
is already tentative. Nothing happens either when the first failure heals because the sec-
ond failure is still occurring. It is only when all failures heal, that the node enters the
STABILIZATION state and sends the stable version of previously tentative data. As the
node finishes producing corrections and catches up with normal execution, it produces a
REC DONE tuple that we show on the figure as a tuple with identifier zero (tuple that
appears on the x-axis). As the experiment shows, in our implementation, we chose the sim-
pler approach of waiting for all failures to heal before reconciling the state. This approach
works well when failures are infrequent. In the case of a large number of input streams and
frequent failures, we could change the implementation to reconcile the state as soon as the
first failure heals and the node can reprocess a few buckets of stable input tuples on all
input streams.

In the example with a failure during recovery (Figure 5-6(b)), as the first failure heals,
the node enters STABILIZATION and starts producing corrections to previously tenta-
tive results. Before the node has time to catch-up with normal execution and produce
a REC DONE the second failure occurs and the node suspends processing once again. The
node then produces a REC DONE to indicate the end of the sequence of corrections before
going back to processing tentative tuples once again. After the second failure heals, the
node corrects only those tentative tuples produced during the second failure. The corrections
are followed by a REC DONE. Hence all tentative tuples get corrected and no stable tuple
is duplicated.
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5.4 Availability and Consistency Trade-Offs

In the previous sections, we described the implementation of DPC in Borealis and showed
sample outputs produced during executions with failures. We also showed examples of
how DPC handles simultaneous failures and failures during recovery. In this section, we
turn toward a quantitative evaluation of DPC and study trade-offs between availability and
consistency.

Our first goal is to show that DPC meets a pre-defined level of availability, measured as
a maximum incremental processing latency, while ensuring eventual consistency. For long
failures, we show that it is necessary for nodes to process tentative tuples both during failures
and stabilization in order to meet a given availability goal. However, nodes can sometimes
suspend or delay processing new tuples, yet still provide the required availability. Our
second goal is to study which such DPC variant produces the fewest tentative tuples.

In Section 5.4.1, we show results for a single-node deployment. Most results are straight-
forward, showing that suspending processing enables the system to mask short failures
without introducing any inconsistency. For long failures, suspending breaks the availability
requirement, but continuously delaying new tuples as much as possible produces fewer ten-
tative tuples than processing them without delay. In Section 5.4.2, we compare the same
techniques but in a distributed setting and show that, interestingly, delaying new tuples
hurts availability often without improving consistency.

Finally, because many failures are short, it is always best for a node to suspend processing
new tuples for some time-period, D, when a failure first occurs. For a single node and
SUnion, D equals the maximum incremental processing latency. For a sequence of SUnions,
however, the optimal value of D that each SUnion should use depends on the overall failure
handling dynamics. In Section 5.4.3, we study different algorithms for assigning delays
to SUnions and show the availability and consistency that result from each assignment.
We find that assigning the maximum incremental delay to each SUnion yields the best
consistency, while still meeting the availability requirement.

All single-node experiments are performed on a 3 GHz Pentium IV with 2 GB of memory
running Linux (Fedora Core 2). Multi-node experiments are performed by running each pair
of node replicas on a different machine. All machines have 1.8 GHz Pentium IV processors
or faster with at least 1 GB of memory.

The basic experimental setup is the following. We run a query diagram composed of
three input streams, an SUnion that merges these streams into one, an SJoin that serves as
a generic query diagram with a 100 tuple state size, and an SOutput. The aggregate input
rate is 3000 tuples/s. We create a failure by temporarily disconnecting one of the input
streams without stopping the data source. After the failure heals, the data source replays
all missing tuples while continuing to produce new tuples. Unless stated otherwise, nodes
use checkpoint/redo to reconcile their state.

5.4.1 Single-Node Performance

We first examine the availability and consistency of a single Borealis node during
UP FAILURE and STABILIZATION. Because the experiments in this section are highly de-
terministic, each result is an average of three experiments.

Our measure of availability is Delaynew, the maximum added processing latency for any
new output tuple. In most experiments, however, we use a single output stream and plot
directly the maximum processing latency Procnew = Delaynew + proc(t). Our measure of
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(a) Ntentative. (b) Procnew.

Figure 5-7: Benefits of continuously delaying new tuples during failures. During
a 5-second failure, the SPE first suspends processing new tuples for a variable time, D,
then either processes them as they arrive (Process) or continuously delaying them (Delay).
Continuously delaying tuples (Delay) during UP FAILURE reduces Ntentative.

consistency is Ntentative, the number of tentative tuples received by the client application.1

Handling Most Recent Input Tuples During Failures

In DPC, each SUnion is given a maximum incremental latency, D, and it must ensure that
it processes available input tuples within time D of their arrival. To minimize the number of
tentative result tuples, while meeting the above availability requirement, SUnion can handle
all failures with a duration shorter than D by suspending processing new tuples until the
failure heals. When a failure lasts longer than D, however, the SUnion can no longer suspend
processing available input tuples without breaking the low-latency processing requirement.
SUnion can, however, either continuously delay new tuples by D or catch-up and process
new tuples soon after they arrive. We call these alternatives “Delay” and “Process” and
examine their impact on Procnew and Ntentative.

We cause a 5-second failure, vary D from 500 ms to 6 seconds (this set-up is equivalent
to holding D fixed and varying the failure duration), and observe Procnew and Ntentative
until after STABILIZATION completes. Figure 5-7 shows the results. From the perspective
of DPC’s optimization, Delay is better than Process as it leads to fewer tentative tuples.
Indeed, with Process, as soon as the initial delay is small compared with the failure duration
(D ≤ 4 s for a 5-second failure), the node has time to catch-up and produce a number of ten-
tative tuples almost proportional to the failure duration. The Ntentative graph approximates
a step function. In contrast, Delay reduces the number of tentative tuples proportionally
to D. With both approaches, Procnew increases approximately linearly with D.

Handling Most Recent Input Tuples During Stabilization

In UP FAILURE, a node should thus continuously delay new input tuples up to the maximum
delay, D. We now examine how the node should process new tuples during STABILIZATION.
Three techniques are possible. The node can either suspend new tuples (Suspend), or have
a second version of the SPE continue processing them with or without delay (Delay or

1proc(t), Delaynew, and Ntentative are defined more precisely is Section 4.1.
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Figure 5-8: Availability and consistency resulting from delaying, processing, or
suspending new tuples during UP FAILURE and STABILIZATION. X-axis starts at 2 s.
Delay & Delay meets the availability requirement for all failure durations, while producing
the fewest tentative results.

Process). Because delaying tuples during UP FAILURE affects the results of suspending
or delaying tuples during STABILIZATION, we examine all six possible combinations: (1)
delaying or (2) processing new tuples during UP FAILURE then (a) suspending, (b) delaying,
or (c) processing new tuples during STABILIZATION. Our goal is to determine the failure
durations when each combination of techniques produces the fewest tentative tuples without
breaking the availability requirement.

In this experiment, we use D = 2.7 s. Since X = D = 2.7 s, and the normal processing
latency is below 300 ms, Delaynew < X when Procnew < 3 s. We increase the input rate to
4500 tuples/s to emphasize differences between approaches.

Figure 5-8 shows Procnew and Ntentative for each combination and for increasing failure
durations. We only show results for failures up to 1 minute. Longer failures continue the
same trends. Because suspending is optimal for short failures, all approaches suspend for
time-period D, and produce no tentative tuples for failures below this threshold.

Processing new tuples without delay during UP FAILURE and STABILIZATION (Pro-
cess & Process) ensures that the maximum delay remains below D independent of failure
duration. This baseline combination, however, produces the most tentative tuples as it
produces them for the duration of the whole failure and reconciliation. The SPE can reduce
the number of tentative tuples without hurting Procnew, by delaying new tuples during STA-
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Figure 5-9: Setup for experiments with a distributed SPE.

BILIZATION (Process & Delay), during UP FAILURE, or in both states (Delay & Delay).
This last combination produces the fewest tentative tuples.

Delaying tuples in UP FAILURE then suspending them during STABILIZATION (Delay
& Suspend) is unviable because delaying during failures brings the system on the verge
of breaking the availability requirement. Suspending during reconciliation then adds a
delay proportional to the reconciliation time. It is, however, possible to process tuples as
they arrive during failures in order to have time to suspend processing new tuples during
reconciliation (Process & Suspend). This approach is viable only as long as reconciliation is
shorter than D. Once reconciliation becomes longer than D (for a failure duration around
8 seconds), Process & Suspend causes Delaynew to exceed D. With Process & Suspend, the
savings in terms of Ntentative is proportional to the reconciliation time, which is thus always
less then D, otherwise the approach breaks the availability requirement. With Delay &
Delay, the savings is always equal to D. Delay & Delay is thus always equivalent or better
than Process & Suspend.

In summary, to meet the availability requirement for long failures, nodes must pro-
cess new tuples not only during UP FAILURE but also during STABILIZATION. Nodes can
produce fewer tentative tuples, however, by always running on the verge of breaking that
requirement (Delay & Delay).

5.4.2 Multiple Nodes

We now examine the performance of the above techniques in a distributed setting. Because
it is never advantageous to suspend processing during reconciliation and because suspend-
ing breaks the availability requirement for long failures, we only compare two techniques:
continuously delaying new tentative tuples (Delay & Delay) and processing tentative tuples
almost as they arrive (Process & Process). We expect that delaying tuples as much as
possible will result in a longer processing latency but will lead to fewer tentative tuples on
the output stream. We show that in contrast to our expectations, delaying tentative tuples
does not improve consistency, except for short failures.

Figure 5-9 shows the experimental setup: a chain of up to four processing nodes. Each
node runs a trivial diagram composed of just an SUnion and an SOutput. Such a diagram
ensures that when we measure processing latencies, we do not measure any effects of the
operator scheduler. More complex diagrams would simply have longer reconciliation times.
As in the previous section, the first SUnion merges the inputs from three streams. Sub-
sequent SUnions process a single input stream. Each pair of processing nodes runs on a
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Figure 5-10: Procnew for a sequence of processing nodes. Each node runs a single
SUnion with D = 2 s. Results are independent of failure durations. Each result is the
average of 10 experiments (Standard deviations, σ, are within 3% of means). Both tech-
niques meet the required availability of 2 seconds per-node. Process & Process provides a
significantly better availability.

different physical machine. The data sources, first processing nodes, proxy, and client all
run on the same machine.

To cause a failure, we temporarily prevent one of the input streams from producing
boundary tuples. We chose this technique rather than disconnecting the stream to ensure
that the output rate at the end of the chain is the same with and without the failure. Keeping
the output rate the same makes it easier to understand the dynamics of the approach. The
aggregate input rate is 500 tuples/second. We cause failures of different durations between
5 seconds and 60 seconds.

Figure 5-10 shows the measured availability of the output stream during UP FAILURE
and STABILIZATION as we increase the depth of the chain. We show results only for a 30-
second failure because the end-to-end processing latency is independent of failure duration,
except for very short failures. In this experiment, we assign a maximum delay, D = 2 s, to
each SUnion. The end-to-end processing latency requirement thus increases linearly with
the depth of the chain. It is 2n seconds for a chain of n nodes. Both Delay & Delay
and Process & Process provide the required availability, but the availability is significantly
better with Process & Process.

We now explain the results in more detail. For Delay & Delay, each node in the chain
delays its input tuples by D before processing them. The processing latency thus increases
by a fixed amount for every consecutive processing node. For Process & Process, we would
expect the maximum processing latency to be the same. As a failure occurs and propagates
through the chain, each node that sees the failure first delays tuples by D, before processing
subsequent tuples almost as they arrive. The first bucket without a boundary tuple should
thus be delayed by each node in sequence. Instead, for Process & Process, the end-to-end
processing latency is closer to the delay imposed by a single processing node. Indeed, as the
failure occurs, all nodes suspend processing at the same time because when the first node
suspends processing it also suspends producing boundary tuples. All nodes stop receiving
boundary tuples at the same time. Thus, after the initial 2 second delay, tuples stream
through the rest of the chain with only a small extra delay per node. This observation is
important because it affects the assignment of delays to SUnions, as we see later in this
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Figure 5-11: Ntentative during short failures and reconciliations. Each node runs
a single SUnion with D = 2 s. Each result is the average of 10 experiments. (Standard
deviations, σ, are within 4 % of means except for 5-second failure with Delay & Delay,
where σ is about 16 % of the mean for deep chains). Delaying improves consistency only
by a fixed amount approximately proportional to the total delay through the chain.

section. In summary, Process & Process achieves a significantly better availability (latency),
although both techniques meet our requirement.2

We now compare the number of tentative tuples produced on the output stream to
examine how much delaying helps improve consistency (i.e., reduces Ntentative).

Figure 5-11 shows Ntentative measured on the output stream for each technique and
failures up to 30 seconds in duration. In these examples, failures are relatively short and
reconciliation is relatively fast. The main conclusion we can draw is that delaying tentative
tuples reduces inconsistency. The gain is constant and approximately proportional to the
total delay through the chain of nodes (i.e., the gain increases with the depth of the chain).
However, this also means that the relative gains actually decrease with failure duration (i.e.,

2The processing latency increases by a small amount per-node even with Process & Process because, in
the current implementation, SUnions do not produce tentative boundaries. Without boundaries, an SUnion
does not know how soon a bucket of tentative tuples can be processed. We currently require SUnions to
wait for a minimum, 300 ms, delay before processing a tentative bucket. Using tentative boundaries would
enable even faster processing of tentative data and latency would remain approximately constant with the
depth of the chain (increasing only as much as the actual processing latency).
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Figure 5-12: Dynamics of state reconciliation through a chain of nodes. When
a failure heals, at least one replica from each set enters the STABILIZATION state. Every
node thus receives simultaneously potentially delayed tentative tuples and stable tuples,
which slowly catch-up with current execution.

as reconciliation gets longer). At 30 seconds, the gains start to become insignificant.
To discuss the results in more detail, we must first examine the dynamics of state recon-

ciliation through a chain of nodes. In the implementation, a node enters the STABILIZATION
state as soon as one previously tentative bucket becomes stable. As a failure heals, the first
node starts reconciling its state and starts producing corrections to previously tentative tu-
ples. Almost immediately, the downstream neighbors receive sufficiently many corrections
for at least one bucket to become stable, and one of the downstream neighbors enters the
STABILIZATION state. Hence, in a chain of nodes, as soon as a failure heals, at least one
replica of each node starts to reconcile its state. These replicas form a chain of nodes in the
STABILIZATION state. The other replicas form a parallel chain of nodes that remain in the
UP FAILURE state, as illustrated in Figure 5-12. This approach has two important effects.

First, the total reconciliation time increases only slightly with the depth of the chain
because all nodes reconcile roughly at the same time. For Process & Process, the number
of tentative tuples is proportional to the failure duration plus the stabilization time. For
30-second and 15-second failures, we clearly see the number of tentative tuples increase
slightly with the depth of the chain.3

Second, because a whole sequence of nodes reconciles at the same time, the last replica
in the chain that remains in UP FAILURE state receives both delayed tentative tuples from
its upstream neighbor in UP FAILURE state and most recent corrected stable tuples from the
upstream neighbor in the STABILIZATION state. The last node in the chain processes these
most recent stable tuples as tentative because it is still in the UP FAILURE state. For short
failures, reconciliation is sufficiently fast that the last node in UP FAILURE state does not
have time to get to these most recent tuples before the end of STABILIZATION at its replica.
The last node in the chain only processes the delayed tentative tuples. Therefore, for Delay
& Delay and short failures, the number of tentative tuples decreases with the depth of the
chain. It decreases proportionally to the total delay imposed on tentative tuples.

The result is different for long failures, though. Figure 5-13 shows Ntentative on the
output stream when the failure lasts 60 seconds. The figure shows that the benefits of

3For short 5-second failures, the number of tentative tuples decreases with the depth of the chain even
for Process & Process, because a small number of tentative tuples is dropped every time a node switches
upstream neighbors. For short failures, these small drops are not yet offset by increasing reconciliation times.
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Figure 5-13: Ntentative during a long failure and reconciliation. Each node runs a
single SUnion with D = 2 s. Each result is the average of 10 experiments (Standard devia-
tions, σ, are within 3% of means). For long failures, delaying does not improve consistency.

delaying almost disappear. Delay & Delay can still produce a little fewer tentative tuples
than Process & Process but the gain is negligible and independent of the depth of the chain.
The gain is equal to only the delay, D, imposed by the last node in the chain. Therefore,
for long failures, delaying sacrifices availability without benefits to consistency.

In summary, in a distributed SPE, the best strategy for processing tentative tuples
during failure and reconciliation is to first suspend all processing hoping that failures are
short. If failures persist past the maximum delay, D, the new best strategy is to continuously
delay new input tuples as much as possible. As the failure persists and an increasingly large
number of tuples will have to be re-processed during state reconciliation, delaying is no
longer beneficial, and nodes might as well improve availability by processing tuples without
any delay. This technique could easily be automated, but as we show later an even better
strategy exists.

5.4.3 Assigning Delays to SUnions

In the previous sections, we assumed that each SUnion was assigned a fixed delay, D. We
now examine how to divide an end-to-end maximum added processing latency, X, among
the many SUnions in a query diagram.

We first study a chain configuration and examine two different delay assignment tech-
niques: uniformly dividing the available delay among the SUnions in the chain or assigning
each SUnion the total incremental delay. For a total incremental delay of 8 seconds, and a
chain of four processing nodes, the first technique assigns a delay of 2 seconds to each node.
This is the technique we have been using until now. In contrast, with the second technique,
we assign the complete 8 second delay to each SUnion. In the experiments, we actually use
6.5 s instead of 8 s because queues start to form when the initial delay is long.

Figure 5-14 shows the maximum processing latency for a chain of 4 nodes and the
two different delay assignment techniques. Figure 5-15(a) shows Ntentative for the same
configurations. The left and middle graphs repeat the results from the previous section:
each SUnion has D = 2 s and either delays tentative tuples or processes them without delay.
The graphs on the right show the results when each SUnion has D = 6.5 s and processes
tuples without delay.
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Figure 5-14: Procnew for a sequence of four processing nodes and different failure
durations. Each result is the average of 10 experiments. (Standard deviations, σ, are
within 3% of means). It is possible to assign the full incremental delay to each SUnion in
a chain and still meet the availability requirement.

Interestingly, assigning the total delay to each SUnion meets the required availability
independently of the depth of the chain. Indeed, when a failure occurs, all SUnions down-
stream from the failure suspend at the same time. After the initial delay, however, nodes
must process tuples as they arrive to meet the availability requirement (alternatively, they
could revert to delaying by only 2 s). At a first glance, though, assigning the total delay to
each SUnion appears to have the worse availability of Delay & Delay and the worse number
of tentative tuples of Process & Process. Figure 5-15(b) shows a close-up on the results
for only the 5-second and 10-second failures. For the 5-second failure, when D = 6.5 s,
the system produces not a single tentative tuple. Since we can expect such short, intermit-
tent failures to be frequent, assigning the maximum incremental processing latency to each
SUnion thus enables a system to cope with the longest possible failures without introducing
inconsistency and still meeting the required availability. Additionally, the high maximum
processing latency when assigning the whole delay to each SUnion affects only the tuples
that enter the system as the failure first occurs. After the initial delay, nodes process sub-
sequent tuples without any delay. The availability thus goes back to the low processing
latency of Process & Process.

Hence, the best delay assignment strategy is to assign the total incremental processing
latency to each SUnion in the query diagram. Such a delay assignment meets the required
availability, while masking the longest failures without introducing inconsistency. The ap-
proach thus minimizes Ntentative for all failures shorter than D.

In a more complex graph configuration, the same result holds. When an SUnion first
detects a failure, all downstream SUnions suspend processing at the same time. The initial
delay can thus be equal to X. After the initial delay, however, SUnions can either process
tuples without further delay, or they can continuously delay new tuples for a shorter in-
cremental time, D. We have shown that additive delays are not useful for long-duration
failures. In a graph configuration, they are also difficult to optimize. Figure 5-16 illustrates
the problem. Every time two streams meet at an operator, their respective accumulated de-
lays depend on the location of upstream failures and the number of SUnions they traversed.
There is therefore no single optimal incremental delay that SUnions can impose individually,
even when delays are assigned separately to each input stream at each SUnion. As shown
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(a) Various failure durations. (b) Short failures only.

Figure 5-15: Ntentative for different delay assignments to SUnions. Process &
Process with D = 6.5 s is the only technique that can mask the 5-second failure while
performing as well as the other approaches for longer failures. Each result is the average of
10 experiments (Standard deviations, σ, are within 11% of means).
















  



 












Figure 5-16: Assigning incremental delays to SUnions in a query diagram. The
assignment is difficult because accumulated delays depend on the diagram structure and on
the failure location.

on the figure, it is possible to produce an assignment guaranteeing that the SPE meets a
required availability, but some failure configurations can cause some tentative tuples to be
systematically dropped by an SUnion. Pre-defined additive delays are thus undesirable.

To circumvent this problem, the SPE could encode accumulated delays inside tuples and
SUnions could dynamically adjust the incremental delays they impose based on the total
accumulated delays so far. This type of assignment would lead to a new set of possible
delay assignment optimizations, and we leave it for future work.

In this section, we investigated trade-offs between availability and consistency for a
single SPE and for simple distributed deployments. We showed that in order to minimize
inconsistency while meeting a desired availability level, when first detecting a failure, each
SUnion should suspend processing for as long as the total incremental latency specified by
the application. After this initial delay, SUnions should process tuples as they arrive because
independent incremental delays do not improve consistency after long-duration failures and,
for complex query diagrams, may cause a greater number of tuples to be dropped because
of mismatches in accumulated delays on different streams.
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Approach Delaynew (i.e., reconciliation time) CPU
Overhead

Memory Overhead

Checkpoint Spcopy + (F + 0.5l)λpproc
Spcopy

l S + (l + F )λin

Undo S(pcomp + pproc) + (F + 0.5l)λ(pcomp + pproc)
Spcomp

l S + (l + F )λ

Table 5.1: Performance and overhead of checkpoint/redo and undo/redo recon-
ciliations.

5.5 State Reconciliation

We now study the performance of state reconciliation through checkpoint/redo and
undo/redo. We compare the time it takes for an SPE to reconcile its state using each
approach. We also compare their CPU and memory overhead. We introduced state recon-
ciliation with checkpoint/redo in Section 4.7.1. We describe undo/redo in Appendix B.

Independently of the state reconciliation technique, nodes must buffer their output tu-
ples until all replicas of all their downstream neighbors receive these tuples. We discussed
the overhead of these buffers in Section 4.9. Since it is the same overhead for both tech-
niques, we ignore it in this section. Similarly, DPC also introduces some additional minor
overheads, which we discuss in the next section. In this section, we focus only on comparing
checkpoint/redo with undo/redo.

Table 5.1 summarizes the analytical reconciliation times and overheads. In the table,
pcomp is the time to read and compare a tuple. pcopy is the time to copy a tuple. pproc is the
time an operator takes to process a tuple. We assume pproc is constant but it may increase
with an operator’s state size. S is the size of the state of the query diagram fragment (i.e.,
the sum of the state sizes of all operators including their input queues). F is the failure
duration. l is the interval between checkpoints or between stream marker computations.
λ is the average aggregate tuple rate on all input and intermediate streams. λin is the
aggregate rate only on input streams to the node.

5.5.1 Reconciliation Time

For checkpoint/redo, reconciliation consists of reinitializing the state of the query diagram
from the last checkpoint taken before the failure, and reprocessing all tuples since then.
The average reconciliation time is thus the sum of Spcopy, the time to copy the state of size
S, and (F + 0.5l)λpproc, the average time to reprocess all tuples since the last checkpoint
before failure. In the experiments, we use approximately constant input rates.

For undo/redo, reconciliation consists of processing the undo history up to the correct
stream markers and reprocessing all tuples since then. Producing an UNDO tuple takes a
negligible time. We assume that the number of tuples necessary to rebuild an operator’s
state is equal to the state size. This assumption is realistic only for convergent-capable
operators. We also assume that stream markers are computed ever l time units. The
average number of tuples in the undo log that must be processed backward then forward
is thus: (F + 0.5l)λ + S. The first term accounts for tuples that accumulate during the
failure, since the last marker computation. The second term accounts for the tuples that
are needed to rebuild the pre-failure state. In the backward direction, each tuple must be
read and compared to the UNDO tuple. In the forward direction, each tuple must actually
be processed. The average reconciliation time is thus: S(pcomp +pproc)+(F +0.5l)λ(pcomp +
pproc).
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(a) Procnew for increasing state size. (b) Procnew for increasing failure size starting
at 5000 tuples.

Figure 5-17: Performance of checkpoint/redo and undo/redo reconciliations.
Checkpoint/redo outperforms undo/redo in all configurations.

Because pcomp is small compared with pcopy and pproc, and because pproc > pcopy, we
expect checkpoint/redo to perform better than undo/redo, but the difference should appear
only when the state of the query diagram is large.

Figure 5-17 shows the experimental Procnew as we increase the state size, S, of the query
diagram (Figure 5-17(a)) or the number of tuples to re-process, Fλ (Figure 5-17(b)). In
this experiment, F is 5 seconds and we vary λ. For both approaches, the time to reconcile
increases linearly with S and Fλ. When we vary the state size, we keep the tuple rate low
at 1000 tuples/s. When we vary the tuple rate, we keep the state size at only 20 tuples.
As expected and as shown in Figure 5-17(a), undo/redo takes longer to reconcile primarily
because it must rebuild the state of the query diagram (Spproc) rather than recopy it
(Spcopy). Interestingly, even when we keep the state size small and vary the number of
tuples to reprocess (Figure 5-17(b)), checkpoint/redo beats undo/redo, while we would
expect the approaches to perform the same (∝ (F + 0.5l)λpproc). The difference is not due
to the undo history (i.e., to (F + 0.5l)λpcomp), because the difference remains even when
operators do not buffer any tentative tuples in the undo buffer (Undo “limited history”
curve). In fact, an SPE always blocks for D (1 s in this experiment) before going into
UP FAILURE. For checkpoint/redo, because the node checkpoints its state every 200 ms,
it always checkpoints the pre-failure state and avoids reprocessing on average 0.5lλ tuples,
which corresponds to tuples that accumulate between the checkpoint and the beginning
of the failure. Undo/redo always pays this penalty, as stream markers are computed only
when an operator processes new tuples. Although, we could modify operators to always
compute stream markers just before processing their first tentative input tuple.

As shown in Figure 5-17, for both approaches, splitting the state across two operators
in series (curves labeled “2 boxes”), simply doubles λ and increases curve slopes.

5.5.2 CPU Overhead

In theory, checkpoint/redo has higher CPU overhead than undo/redo because checkpoints
are more expensive than scanning the state of an operator to compute stream markers
(Figure 5-18). However, because a node has time to checkpoint its state when going into
UP FAILURE state, it can perform checkpoints only at that point and avoid the overhead of
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Figure 5-18: CPU overhead of checkpoint/redo and undo/redo reconciliations.
Checkpoints are more expensive than stream marker computations because they involve
recopying the state of all operators and their input queues.

periodic checkpoints at runtime. Stream markers can also be computed only once a failure
occurs. Hence, both schemes can avoid CPU overhead in the absence of failures.

5.5.3 Memory Overhead

To compare the memory overhead of the approaches, we first assume that nodes buffer all
tuples (stable and tentative) during failures.

With checkpoint/redo, a node must keep in memory its checkpointed state and all
tuples that accumulate on input streams since the last checkpoint. The overhead is thus:
S+(l+F )λin, where λin is the aggregate input rate. However, since nodes always checkpoint
their state when entering UP FAILURE, l = 0, and the overhead is actually only S + Fλin,

Checkpoint/redo must always reprocess all tuples since the beginning of the failure.
With undo/redo, it is possible to undo only the suffix of tentative tuples that actually
changed. Correcting a suffix of tentative tuples is equivalent to recovering from a shorter
failure than F . This possibility, however, causes undo/redo to incur a high memory over-
head, because all operators must keep an undo buffer. Even stateless operators (e.g., Filter)
need an undo buffer because they must remember when they produced each output tuple
in order to produce the appropriate UNDO tuple. Only operators that produce exactly
one output tuple for each input tuple (e.g., Map) need not keep an undo buffer, because
they can produce the correct UNDO from the one they receive. Even if we assume that a
query diagram needs no more than S tuples to rebuild its state, the total overhead is then:
S + (l + F )λ.

The situation is different if nodes buffer only stable tuples. With this approach, all ten-
tative tuples must always be corrected (not just the suffix that actually changed). However,
both techniques realize great savings in memory overhead, making the approach preferable.

When a failure occurs, suppose a fraction α of input streams becomes tentative. With
checkpoint/redo, a node only needs to buffer tuples that arrive on the (1− α) stable input
streams. The overhead is then:

S + (1− α)Fλin. (5.1)

With undo/redo, all stateful operators must still buffer sufficiently many tuples to re-
build their pre-failure states, which remains a significant memory overhead. However, only
operators that have both stable and tentative inputs during the failure need to buffer any ad-
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ditional tuples. They must buffer tuples on their stable inputs. The overhead of undo/redo
can thus vary greatly between query diagrams.

In summary, both schemes save significantly on overhead when only stable tuples are
buffered during failures. Undo/redo has the potential of even greater savings compared
with checkpoint/redo, but keeping sufficiently many tuples to rebuild the pre-failure state
continues to impose a very high overhead. When all tentative tuples are corrected after
each failure, checkpoint/redo always significantly outperforms undo/redo in terms of recon-
ciliation time. Finally, an interesting advantage of the undo-based approach, which we have
ignored in the above analysis, is that reconciliation propagates only on paths affected by
failures. It would be interesting to enhance the checkpoint-based approach with the same
feature.

5.5.4 Optimized Checkpoint/Redo Approach

The above results lead us to conclude that the best state-reconciliation technique should
combine the benefits of (1) recovering the SPE state from a checkpoint, (2) reconciling only
operators affected by failures, and (3) buffering tuples only at operators with at least one
stable and one tentative input.

We propose an approach based on checkpoint/redo that provides all these benefits. This
approach is not yet implemented in Borealis. The idea is for operators to use checkpoints
to save and recover their pre-failure states. Instead of checkpointing and recovering the
state of the whole query diagram, however, operators checkpoint and recover their states
individually. To perform such localized checkpoints, an operator checkpoints its state only
when it is about to process its first tentative tuple. To recover only on paths affected by
a failure, just as in the undo-based technique, SUnions on previously failed inputs push an
UNDO tuple into the query diagram before replaying the stable tuples. When an operator
receives an UNDO tuple, it recovers its state from its checkpoint and reprocesses all stable
tuples that follow the UNDO. Interestingly, with this technique, UNDO tuples no longer
need to explicitly identify a tuple because all tentative tuples are always undone.

With this approach, only operators that see a failure checkpoint their state. The only
SUnions that need to buffer tuples are those with both tentative and stable inputs, and
they only need to buffer tuples on the stable inputs (the only tuples they are in charge of
replaying). Finally, only those operators that previously experienced a failure participate
in the state reconciliation.

5.6 Overhead and Scalability

Buffering tuples during failures in order to replay them during state reconciliation is the
main overhead of DPC. There are, however, a few additional sources of overhead. We now
discuss these secondary overheads.

Tuple serialization is the main additional cause of overhead. If the sort function requires
an SUnion to wait until a bucket is stable before processing tuples in that bucket, the
processing delay of each SUnion increases linearly with the boundary interval (we assume
this interval is equal to the bucket size). Table 5.2 shows the average end-to-end delay
from nine 20 s experiments and increasing bucket sizes. Tuple serialization also introduces
memory overhead because SUnions must buffer tuples before sorting them. This memory
overhead increases proportionally to the number of SUnion operators, their bucket sizes,
and the rate of tuples that arrive into each SUnion. However, because we typically chose
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Boundary interval (ms) 50 100 150 200 250 300
Average processing delay 69 120 174 234 298 327
Stddev of the averages 0.5 4 10 28 55 70

Table 5.2: Latency overhead of serialization.

the tuple stime to correspond to the expected order of tuples on input streams, we could
significantly reduce overhead by allowing SUnions to output tuples as soon as they receive
input tuples with higher tuple stime values on all their input streams, reducing both memory
and latency overhead. This optimization requires that all operators process and produce
tuples in increasing tuple stime values.

Other overheads imposed by DPC are negligible. Operators must check tuple types and
must process boundary tuples. The former is negligible while the latter requires, in the
worst case, a scan of all tuples in the operator’s state, and, in the best case, requires simply
that the operator propagates the boundary tuple. Each SOutput must also save the last
stable tuple that it sees in every burst of tuples that it processes.

Finally, DPC relies on replication. It increases resource utilization proportionally to the
number of replicas. These replicas, however, can actually improve runtime performance by
forming a content distribution network, where clients and nodes connect to nearby upstream
neighbors rather than a single, possibly remote, location.

5.7 Lessons Learned

Our analysis and experiments lead us to draw the following conclusions about fault-tolerance
in a distributed SPE.

First, even when operators are deterministic, to ensure that all replicas of the same
operator remain mutually consistent (i.e., they go through the same states and produce the
same output tuples), it is necessary to introduce boundary tuples into streams. These tuples
serve both as punctuations and heartbeats. The punctuation property enables all replicas of
an operator to sort tuples in the same deterministic order. The heartbeat property enables
replicas to process tuples without much delay, even in the absence of data on some input
streams.

Second, our design decision to put each node in charge of maintaining its own availability
and consistency works well for complex failure scenarios involving concurrent failures and
failures during recovery. Each node monitors the availability and consistency of its input
streams and keeps track of the data it receives. No matter when failures occur, a node
can readily request the missing data from the most appropriate replica. DPC thus avoids
complex communication protocols between nodes.

Third, one of the greatest challenges of DPC is the requirement to continuously maintain
availability. Because DPC guarantees that tuples are never delayed more than a pre-defined
bound, every time a node needs to process or even simply receive old input tuples, it must
continue processing the most recent input tuples. To maintain availability at all times, it
is thus necessary to perform all replays and corrections in the background.

Fourth, to ensure eventual consistency nodes must buffer tuples during failures. Nodes
can avoid buffering tentative tuples if all these tuples are always corrected after failures
heal. Because buffers cannot grow without bound, even when buffering only stable tuples,
sufficiently long failures require nodes to truncate their buffers or block. Convergent-capable
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query diagrams are therefore most suitable for applications that favor availability over
consistency. With these types of query diagrams, nodes can keep fixed-sized buffers, yet,
after failures heal, tuples in these buffers suffice to rebuild a consistent state and correct
the latest tentative tuples.

Fifth, to reconcile the state of a node, it is faster for operators to restart from a check-
point rather than rebuild their state dynamically. Additionally, runtime overhead reduces
significantly when all tentative tuples are always corrected and nodes buffer only stable
tuples. Because reconciling only the state of operators affected by failures further reduces
overhead and improves availability, we proposed an approach based on checkpoint/redo that
limits checkpoints and reconciliation to paths affected by failures.

Sixth, DPC enables users to set the trade-off between availability and consistency,
by specifying a maximum incremental processing latency that gets distributed across the
SUnions in the query diagram. We find that giving the total added delay to each SUnion and
requiring them to use it all when a failure first occurs, enables the system to handle longer
failures without introducing inconsistency, while still achieving the required availability.

Finally, in a distributed SPE, the deployment of operators to processing nodes affects
fault-tolerance. With non-blocking operators, every additional input stream to a node in-
creases the chances of an upstream failure cannot be masked. With blocking operators,
every additional input stream increases the chance of a total failure, especially in deploy-
ments over deep chains of nodes. In all cases, increasing the degree of replication improves
the probability that the system masks a set of simultaneous failures, but the replicas must
be located at different sites to increase the likelihood that their failures are not correlated.

5.8 Limitations and Extensions

We now discuss the limitations of DPC and possible extensions to address these limitations.

5.8.1 Non-determinism

DPC handles only deterministic operators. This restriction enables us to ensure that all
replicas of the same operator remain mutually consistent simply by ensuring that they all
process tuples in the same order. DPC maintains the latter property by inserting SUnion
operators into the query diagram and adding boundary tuples to streams.

With non-deterministic operators, replicas states can diverge even if they process tu-
ples in the same order. A possible approach to handling non-deterministic operators is to
designate one replica as a primary. The primary produces a stream of tuples, called deter-
minants [50], each tuple encoding the result of one non-deterministic event. This stream of
tuples forms an additional input at other replicas. The challenge is that all replicas go into
UP FAILURE state every time the primary experiences a failure. An alternate technique is
to add extra machinery to elect a new primary, every time an old primary fails. To ensure
that replicas agree, at any time, on which node is the primary, the election should use a
consensus protocol such as Paxos [99], and this approach has high overhead.

5.8.2 Dynamic Modifications of the Query Diagram

Currently, DPC assumes a static query diagram and a static deployment of the diagram:
I.e., we assume that all data sources, operators, and clients remain fixed through the exe-
cution. We also assume a static assignment of operators to processing nodes and a static
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choice of replicas for each node. An example of a dynamic change to the query diagram is
the addition or removal of operators or data sources. An example of a dynamic change to
the deployment is the addition or removal of some replicas of a node or the movement of
an operator from one processing node to another. Because we assume a static assignment,
we further assume that all failures are transient. A failed node, connection, or data source
eventually recovers and re-joins the system. We consider it to be a dynamic change when
a failed node or data source does not re-join the system. A direct area of future work is to
extend DPC to support dynamic query diagram and deployment modifications.

A related area of future work is to study operator placement strategies maximizing the
probability that a system masks failures or produces at least tentative outputs.

5.8.3 Precision Information

We currently do not include any accuracy information in tentative tuples. Tentative tuples
only indicate that a failure occurred and the current value is not the final one. A user cannot
distinguish between an upstream failure where 80% of inputs are being processed and one
where only 10% of tuples are being processed. An interesting area of future work is to add
such precision information to tentative tuples. We could either encode precision bounds
(e.g., the value of this average is accurate within 5%) or we could encode information about
the failure itself (e.g., the result is the average from processing only streams 1 through 3).

It might also be interesting to enable applications to specify some integrity constraints
that determine the level of failures when streams still carry interesting information or the
conditions necessary for two tentative streams that experienced different upstream failures
to still be correlated or otherwise merged.

5.8.4 Resource Utilization

More importantly, DPC requires the system to buffer tuples when failures occur and re-
process them after failures heal. DPC is thus particularly well suited for convergent-capable
operators. With these operators, DPC can bound buffers and still ensure that nodes re-build
a consistent state and correct the most recent tentative tuples. With other deterministic
operators, however, once buffers fill-up, DPC blocks. DPC no longer maintains availability.
An interesting area for future work would be to allow these operators to continue processing
and later use a separate mechanism to allow replicas to become at least mutually consistent
again. This problem is difficult because reconciliation is expensive and disruptive. Ideally,
the system should quickly converge to some useful state after a failure heals.

5.8.5 Failures of all Replicas

To ensure eventual consistency, DPC assumes that at least one replica of each processing
node remains available at any time. If all replicas of a node fail, the system can still continue
processing and can produce tentative tuples. The problem occurs when the failed nodes
recover and re-join the system. When query diagrams are convergent-capable, nodes can
buffer sufficiently many tuples in their output buffers to enable failed downstream nodes
to rebuild a consistent state and correct a pre-defined window of output tuples. With
deterministic query diagrams, to support the failure of all replicas of a processing node,
replicas would have to take periodic checkpoints and save these checkpoints persistently.
Persistent checkpoints would add significant runtime overhead.
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5.8.6 Persistent Storage

DPC is geared toward convergent-capable query diagrams that operate on finite transient
state. We do not address, for instance, query diagrams that read and write from a persis-
tent store. DPC could handle operators that perform computation over a persistent store
by treating the persistent store as a deterministic operator with a state that depends on
every single tuples the operator ever processed. Of course, with these types of operators
checkpoints become more expensive. We also need to serialize all reads and write opera-
tions handled by the persistent store in the same way we serialize tuples processed by other
deterministic operators with multiple input streams. We could therefore place an SUnion
operator in front of the persistent store. Because the reads and writes would come from dif-
ferent streams that may have boundary tuples with significantly different values, we would
have to use a different serialization function in the SUnion to avoid delaying tuples. SUnion
operators, however, are general enough to support different serialization functions.

5.9 Summary

In this chapter, we presented the implementation and evaluation of DPC. We showed that
DPC handles both single failures and multiple concurrent failures — DPC maintains avail-
ability at any time and corrects all tentative tuples in the background without dropping
nor duplicating stable results (assuming sufficiently large buffers).

Given a maximum incremental processing latency, DPC handles all failures shorter than
the given bound without introducing any inconsistency. DPC achieves this by having all
SUnion operators affected by a failure simultaneously suspend processing new tuples, when
a failure first occurs. For long failures, we showed that at least one replica of each processing
node must continue processing the most recent input data at any time, in order to meet
the required availability. DPC achieves this by having nodes correct their inputs in the
background and communicate with each other to decide when each node reconciles its state.
Furthermore, for long failures, we found that processing tentative tuples without added delay
achieves the best availability without hurting consistency compared with delaying tuples as
much as possible.

To reconcile the state of an SPE, we compared the performance and overhead of check-
point/redo with that of undo/redo and proposed a checkpoint-based scheme that combines
the benefits of both techniques. To achieve the fast recovery time of checkpoint/redo, we
proposed that operators recover their states from checkpoints. To avoid the overhead of
periodic checkpoints, we proposed that operators checkpoint their state upon receiving their
first tentative input tuples. As in undo/redo, to constrain recovery to query-diagram paths
affected by the failure, we proposed to propagate an UNDO tuple through the query diagram,
letting each operator recover its state from its checkpoint upon receiving and forwarding
the UNDO tuple.

Finally, we have shown that the processing latency overhead of DPC is small, especially
when tuples are ordered by increasing timestamp values on all streams, and SUnions simply
interleave the tuples that arrive on their many inputs. The main overhead of DPC is due
to buffering tuples during failures in order to reprocess them when failures heal. We have
shown, in the previous chapter, that this overhead can be bounded when query diagrams are
convergent-capable. With bounded buffers and convergent-capable query diagrams, DPC
can ensure that all replicas converge to a mutually consistent state and correct the last
pre-defined window of tentative tuples produced during the failure.

119



Overall, we have shown that it is possible to build a single scheme for fault-tolerant
distributed stream processing that enables an SPE to cope with a variety of node and net-
work failures, while giving applications the freedom to set their desired trade-off between
availability and consistency. This chapter concludes our investigation of fault-tolerant dis-
tributed stream processing. In the next chapter, we turn our attention to load management,
another important problem in federated, distributed systems.
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Chapter 6

Load Management

In this chapter, we study load management, a second important problem that arises in
a distributed SPE. We present the Bounded-Price Mechanism (BPM), an approach that
enables autonomous participants to manage their load variations using offline-negotiated
pairwise contracts. Although motivated by stream processing, BPM is applicable to a
variety of distributed systems.

In an SPE, as users add and remove operators from the query diagram, and as the
input rates and input data distributions vary, the load on the system varies. To improve
performance or at least avoid significant performance degradation, the system may have to
periodically change the assignment of operators (tasks) to processing nodes.

As we discussed in Chapter 1, dynamic load management is a widely studied problem
(e.g., [49, 64, 96]) and various techniques have been proposed to enable a system to reach
load distributions that optimize some overall utility, such as throughput, processing la-
tency, or queue sizes. These approaches usually assume a collaborative environment, where
all nodes work together to maximize overall system performance. Many distributed sys-
tems, however, are now deployed in federated environments, where different autonomous
organizations own and administer sets of processing nodes and resources.

Federated systems arise when individual participants benefit from collaborating with
others. For example, participants may collaborate in order to compose the services they
provide into more complete end-to-end services. Cross-company workflows based on Web
services [48, 94] and peer-to-peer systems [38, 45, 97, 120, 137, 153, 174] are examples of
such federated systems. Another benefit of federation is that organizations can pool their
resources together to cope with periods of heavy load (load spikes) without individually hav-
ing to maintain and administer the computing, network, and storage resources required for
peak operation. Examples of such federated systems include computational grids composed
of computers situated in different domains [3, 29, 61, 164] and overlay-based computing
platforms such as Planetlab [131]. Stream processing applications are naturally distributed
and federated because data streams often come from remote geographic locations (e.g., sen-
sor networks deployed in remote areas) and even from different organizations (e.g., market
feeds). Data streams can also be composed in different ways by different organizations to
create various services.

Load management in a federated environment is challenging because participants are
driven by self-interest. Some earlier efforts to enable load management between autonomous
participants have proposed the use of computational economies (e.g., [3, 29, 154, 175]).
Because none of these schemes has seen a widespread deployment, we posit that these
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techniques do not entirely solve the problem. Instead, we note that in practice, autonomous
participants tend to collaborate by establishing pairwise agreements [42, 53, 94, 81, 138, 171,
176, 178].

Inspired by the successful use of pairwise agreements in practice, we propose BPM, a
distributed mechanism for managing load in a federated system based on private pairwise
contracts. Unlike computational economies that use auctions or implement global markets
to set resource prices at runtime, BPM is based on offline contract negotiation. Contracts
set tightly bounded prices for migrating each unit of load between two participants and may
specify the set of tasks that each is willing to execute on behalf of the other.

With BPM, runtime load transfers occur only between participants that have pre-
negotiated contracts, and at a unit price within the contracted range. The load transfer
mechanism is simple: a participant moves load to another if the expected local processing
cost for the next time-period is larger than the expected payment it would have to make to
the other participant for processing the same load (plus the migration cost).

Hence, in contrast to previous proposals, BPM (1) provides privacy to all participants
regarding the details of their interactions with others, (2) facilitates service customization
and price discrimination, (3) provides simple and lightweight runtime load management
using pre-negotiated prices, and as we show, (4) has good system-wide load balance prop-
erties. We envision that contracts will be extended to contain additional clauses further
customizing the offered services (e.g., performance, security, and availability guarantees),
but we leave such extensions for future work.

In this chapter, we present BPM and some of its properties. We start by formalizing
our problem in Section 6.1 and overview the approach in Section 6.2. Each of the following
sections presents one component of BPM. In Section 6.3, we first present the strategies
and algorithms for runtime load movements assuming each participant has a set of fixed-
price contracts and assuming that load is fixed. We enhance BPM to handle dynamic load
variations in Section 6.4. In Section 6.5, we discuss strategies for establishing fixed-price
contracts offline. Because fixed-price contracts do not always lead to acceptable allocation,
in Section 6.6, we propose to relax the fixed-price constraint and allow contracts to specify
small pre-negotiated price ranges. Finally, we discuss how BPM applies to federated SPEs
in Section 6.7, and present some properties of BPM in Section 6.8. We describe the imple-
mentation of BPM in Borealis and its evaluation through simulations and experiments in
the next chapter.

6.1 Problem Definition

In this section, we present the load management problem: we introduce the system model
and define the type of load allocation that we would like a load-management mechanism to
achieve. We use a federated stream processing engine as an illustrative example and later
to evaluate our approach but our goal is to support any federated system.

6.1.1 Tasks and Load

We assume a system composed of a set N of autonomous participants. Each participant
owns and administers a set of resources that it uses to run tasks on behalf of its own
clients. We assume a total set, K, of time-varying tasks. Each task in K originates at some
participant in N , where it is submitted by a client. Since we only examine interactions
between participants, we use the terms participant and node interchangeably.
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(a) Participants P2 and P3 are overloaded. (b) Some tasks move to the more lightly
loaded participants P1 and P2.

Figure 6-1: Example of a desired load reallocation in a federated SPE composed
of four participants.

A task is a long-running computation that requires one or more resources (e.g., memory,
CPU, storage, and network bandwidth). In an SPE, a task comprises one or more inter-
connected operators, as illustrated in Figure 6-1. A query diagram is made up of one or
more tasks. We do not address the problem of optimally partitioning a query diagram
into tasks. We assume that we are given a set of tasks. We also assume that each task is
sufficiently fine-grained that is uses a relatively small fraction of a node’s resources. We use
a task as the unit of load movement. In an SPE, if a single operator uses a large amount of
resources (e.g., a large aggregate), the operator may frequently be partitioned into multiple
smaller tasks [147].

6.1.2 Utility

The total amount of resources used by tasks forms the load experienced by participants.
For each participant, the load imposed on its resources represents a cost. Indeed, when
load is low, the participant can easily handle all its tasks. As load increases, it may become
increasingly more difficult for the participant to provide a good service to its clients. This,
in turn, may cause clients to become dissatisfied: clients can seek a different service provider
or they can demand monetary compensation. We assume that a participant is thus able to
quantify the processing cost for a given load.

More specifically, we define a real-valued cost function of participant, i, as:

∀i ∈ N, Di : {taskseti ⊆ K} → R, (6.1)

where taskseti is the subset of tasks in K running at i. Di gives the total cost incurred
by i for running its taskset. This cost depends on the load, load(taskseti), imposed
by the tasks. From a game-theoretic perspective, the cost function can be viewed as the
type of each participant. It is the private information that fully determines a participant’s
preference for different load allocations.

Each participant monitors its own load and computes its processing cost. There are
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Figure 6-2: Prices and processing costs.

an unlimited number of possible cost functions and each participant may have a different
one. We assume, however, that this cost is a monotonically increasing and convex function.
Indeed, for many applications that process messages (e.g., streams of tuples), an important
cost metric is the per-message processing delay. For most scheduling disciplines this cost
is a monotonically increasing, convex function of the offered load, reflecting the increased
difficulty in offering low-delay service at higher load. Figure 6-2 illustrates such a cost
function for a single resource. We will use Figure 6-2 repeatedly in this chapter.

We denote the incremental cost or marginal cost for node i of running task u given its
current taskseti as:

∀i ∈ N, MCi : {(u, taskseti) | taskseti ⊆ K, u ∈ {K − taskseti}} → R (6.2)

Figure 6-2 shows the marginal cost, m, caused by adding load x, when the current load is
Xcur. Assuming that the set of tasks in taskseti imposes a total load Xcur and u imposes
load x, then MC(u, taskseti) = m. If x is one unit of load, we call m the unit marginal
cost. As we discuss later, nodes compute marginal costs to determine when it is profitable
to offer or accept a set of tasks.

We assume that participants are selfish. They aim to maximize their utility,
ui(taskseti), computed as the difference between the payment, pi(taskseti), that par-
ticipant i receives for processing some tasks, and the processing cost, Di(taskseti), it
incurs:

ui(taskseti) = pi(taskseti)−Di(taskseti). (6.3)

When a task originates at a participant, we assume that the client who issued the task pays
the participant. As we discuss later, when participants move load from one to the other,
they pay each other for the processing.
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We also assume that each participant has a pre-defined maximum load level, Ti, that
corresponds to a maximum processing cost, Di(Ti), above which participant i considers
itself overloaded. We often speak of Ti as the participant’s capacity, although participants
can select any load level below their capacity as their maximum desired load.

6.1.3 Social Choice Correspondence

In contrast to previous proposals, we argue that optimal load balance is not needed in
a federated system. When a participant is lightly loaded, it can provide good service to
its clients and load movements will not improve overall system performance much. They
will mostly add overhead. If a participant is heavily loaded, however, performance may
significantly degrade. Participants usually acquire sufficient resources to handle their own
load most of the time. They experience flash crowds, where the total load significantly
exceeds the usual load, only from time to time. A participant can either over-provision to
handle such rare peak loads, or it can collaborate with other participants during overload.
Our goal is to enable participants to re-distribute such excess load. The goal of BPM is
thus to ensure that no participant is overloaded, when spare capacity exists. If the whole
system is overloaded, the goal is to use as much of the available capacity as possible. We
call an allocation acceptable if it satisfies these properties. In summary, our goal is for
BPM to implement a social choice correspondence1 whose outcomes are always acceptable
allocations.

Definition 9 An acceptable allocation is a task distribution where (1) no participant is
above its capacity threshold, or (2) all participants are at or above their capacity thresholds
if the total offered load exceeds the sum of the capacity thresholds.

More formally, the acceptable allocation satisfies:

Di(taskseti)

{
≤ Di(Ti) : ∀i ∈ N, if the federated system is underloaded, or
≥ Di(Ti) : ∀i ∈ N, if the federated system is overloaded.

(6.4)

As a concrete example, imagine the query diagram deployment shown in Figure 6-1(a).
Most of the time, each of the four participants handles its own load. If the input rate
increases significantly on input streams, S3 and S4, the total load may exceed the capacity
of participants P3 and P4. In that case, we would like other participants to handle some of
the excess load for the duration of the overload, as shown in Figure 6-1(b).

6.2 BPM Overview

We now present and overview of BPM. In the following sections, we discuss the details of
each component of the approach.

The goal of mechanism design [127] is to implement an optimal system-wide solution to
a decentralized optimization problem, where each agent holds an input parameter to the
problem and prefers certain solutions over others. In our case, agents are participants and
their cost functions, capacities, and tasks are the optimization parameters. The system-
wide goal is to achieve an acceptable allocation, while each participant tries to optimize

1Given agent types (i.e., their cost functions), the social choice correspondence selects a set of alternative
load allocations and participant payments.
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its utility within its pre-defined capacity. Because the set of tasks changes with time, the
allocation problem is an online optimization. Since the system is a federation of loosely
coupled participants, no single entity can play the role of a central optimizer and the
implementation of the mechanism must be distributed. We first present the fixed-price
mechanism and also assume that load is fixed. We extend the approach to dynamic load in
Section 6.4 and to bounded prices in Section 6.6.

In a mechanism implementation, we must define: (1) a set, S, of strategies available
to participants (i.e., the sequence of actions they can follow), and (2) a method to select
the outcome given a set of strategies chosen by participants. The outcome is the final
allocation of tasks to participants. The method is an outcome rule, g : SN → O, that maps
each possible combination of strategies adopted by the N participants to an outcome O.

We propose an indirect mechanism: participants reveal their costs and tasks indirectly
by offering and accepting tasks rather than announcing their costs directly to a central
optimizer or to other participants. Additionally, agents pay each other for the load they
process. Our mechanism is based on contracts, which we define as follows:

Definition 10 A fixed-price contract Ci,j between participants i and j defines a price,
FixedPrice(Ci,j), that participant i must pay j for each unit of resource i purchases at
runtime (i.e., for each unit of load moved from i to j).

Participants establish contracts offline. At runtime, participants that have a contract
with each other may perform load transfers. Based on their load levels, they agree on
a set of tasks, the moveset, that will be transferred from one partner to the other. The
participant offering load also pays its partner a sum of FixedPrice(Ci,j) ∗ load(moveset).
The payment is proportional to the amount of resources that the task requires. The idea
is that i purchases resources from j, but it indicates the specific tasks that need these
resources. Hence, partners determine a price offline, but they negotiate at runtime the
amount of resources that one partner purchases from the other.

What we propose is thus that participants play two games on different timescales: an
offline game of contract negotiation and a runtime game of load movements.

In the first, offline game, participants establish contracts. Assuming for simplicity that
all participants are identical, the strategy of a participant is the number of contracts it
chooses to establish and the price it negotiates for each contract. The outcome of this game
is a contract graph in which the nodes are the participants and an edge between two nodes
signifies the existence of a pairwise contract.

We establish the following rules for contract negotiations. As part of the negotiation, we
require that participants mutually agree on what one unit of processing, bandwidth, or other
resource represent. Different pairs of participants may have contracts specifying different
unit prices. Each contract applies only to one direction. There is at most one contract
for each pair of participants in each direction. Participants may periodically renegotiate,
establish, or terminate contracts offline. We assume the contract graph is connected. The
set of contracts at a participant is called its contractset. We use C to denote the maximum
number of contracts that any participant has. Contracts may contain additional clauses
such as the set of tasks that can be moved or a required minimum performance, security,
availability, etc. We ignore these additional clauses in our discussion. We further discuss
establishing contracts in Sections 6.5 and 6.6.

In the second, runtime game, participants move load to partners. With fixed-price
contracts, the set of actions available to participants comprises only the following three

126

























(a) Offering load can improve utility (b) Accepting load can improve utility

Figure 6-3: Load movement decisions based on marginal costs.

actions: (1) offer load at the pre-negotiated price, (2) accept load at the pre-negotiated
price, or (3) do neither. The strategy of each participant determines when it performs each
one of the above actions.2 The desired system-wide outcome is an acceptable allocation.
The sequence of runtime load movements defines the final task allocation, or outcome of the
game. We establish the following rules for the online game. Participants may only move
load to partners with whom they have a contract and must pay each other the contracted
price. Every time a participant offers a set of tasks at a given price, the offer is binding.
If the partner accepts, the participant that initiated the movement must pay the offered
price. As we show in Section 6.3, this choice can help participants avoid overbooking their
resources. We further discuss runtime load movements in Sections 6.3 and 6.4.

Participants may be unwilling to move certain tasks to some partners due to the sensi-
tive nature of the data processed or because the tasks themselves are valuable intellectual
property. For this purpose, contracts can also specify the set of tasks (or types of tasks)
that may be moved, constraining the runtime task selection. In offline agreements, partici-
pants may also prevent their partners from moving their operators further thus constraining
the partner’s task selections. BPM can handle these constraints as it is based on pairwise
contracts; for simplicity, we ignore them in the rest of the discussion.

To ensure that a partner taking over a task provides enough resources for it, contracts
may also specify a minimum per-message processing delay (or other performance metric).
A partner must meet these constraints or pay a monetary penalty. Such constraints are
commonplace in SLAs used, for example, for Grid computing [139], Web and application
hosting services [26, 63], and Web services [138]. Infrastructures exist to enforce them
through automatic verification [26, 94, 138, 139]. We assume such infrastructure exists
and participants provide sufficient resources for the tasks that they run. To avoid breaching
contracts when load increases, participants may prioritize on-going tasks over newly arriving
tasks.

In summary, we propose a set of two games. Offline, participants negotiate contracts
that specify the price they are going to pay each other for processing load. At runtime, given
a set of contracts, each participant offers and accepts load paying or receiving the contracted

2Our approach works independently of the strategy that agents use to select the set of tasks they offer or
accept. To simplify our analysis, we exclude the task selection problem from the strategy space (i.e., from
the set of all possible combinations of strategies selected by participants). We also exclude the problem of
ordering contracts (i.e., selecting the partner to whom offer load first). This order is typically defined offline
by the relationships between participants.
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00. PROCEDURE OFFER LOAD:
01. repeat forever:
02. sort(contractset on price(contractsetj) ascending)
03. foreach contract Cj ∈ contractset:
04. offerset← ∅
05. foreach task u ∈ taskset

06. total load← taskset− offerset− {u}
07. if MC(u, total load) > load(u) ∗ price(Cj)
08. offerset← offerset ∪ {u}
09. if offerset 6= ∅
10. offer← (price(Cj), offerset)
11. (resp, acceptset)← send offer(j, offer)
12. if resp = accept and acceptset 6= ∅
13. transfer(j, price(Cj), acceptset)
14. break foreach contract
15. wait Ω1 time units

Figure 6-4: Algorithm for shedding excess load.

price. In the following sections, we present the different components of the bounded-price
mechanism and analyze its properties. We show that the bounded-price mechanism imple-
ments the acceptable allocation in a Bayesian-Nash equilibrium —i.e., when participants
adopt strategies that optimize their expected utilities given prior assumptions about the load
and contracts of other participants.

6.3 Runtime Load Movements

Given a set of contracts, a participant can use different strategies to improve its utility at
runtime. We now present the strategy or algorithm that we would like each participant to
follow. Parkes and Shneidman [129] call such algorithm the intended implementation. The
proposed algorithm is quite natural —we want a participant to offer load or accept load
when doing so improves its utility. In Section 6.8, we show that, under certain conditions,
the proposed algorithm is indeed the optimal strategy for participants, in a Bayesian-Nash
equilibrium.

The strategy that we propose is based on the following simple observation. With fixed-
price contracts, if the marginal cost per unit of load of a task is higher than the price in a
contract, then processing that task locally is more expensive than paying the partner for
the processing. As a result, offering the task to the partner can potentially improve utility.
Conversely, when a task’s marginal cost per unit of load is below the price specified in a
contract, then accepting that task results in a greater payment than cost increase and can
improve utility. Figure 6-3 illustrates both cases. In the example, Xcurr is the current load
level at the node. X is the load level for which the unit marginal cost equals the contract
price. When Xcurr > X, the unit marginal cost is above the contract price and offering
load can improve utility (Figure 6-3(a)). When Xcurr < X, the unit marginal cost is below
the contract price and accepting load can improve utility (Figure 6-3(b)). Moving load
using marginal costs or marginal utilities is a natural choice and many previous schemes
have used this approach (e.g., [96, 141]). When the cost function is convex, moving tasks
from a participant with a higher marginal cost to one with a lower marginal cost leads to
a gradient descent: each load movement strictly decreases the total cost of the allocation.

Given a set of contracts, we propose that each participant concurrently run one algorithm
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00. PROCEDURE ACCEPT LOAD:
01. repeat forever:
02. offers← ∅
03. for Ω2 time units or while (movement = true)
04. foreach new offer received, new offer:
05. offers← offers ∪ {new offer}
06. sort(offers on price(offersi) descending)
07. potentialset← ∅
08. foreach offer oi ∈ offers

09. acceptset← ∅
10. foreach task u ∈ offerset(oi)
11. total load← taskset ∪ potentialset ∪ acceptset

12. if MC(u, total load) < load(u) ∗ price(oi)
13. acceptset← acceptset ∪ {u}
14. if acceptset 6= ∅
15. potentialset← potentialset ∪ acceptset

16. resp← (accept, acceptset)
17. movement← true

18. else resp← (reject, ∅)
19. respond(oi, resp)

Figure 6-5: Algorithm for taking additional load.

for shedding excess load (Figure 6-4) and one for taking on new load (Figure 6-5).
The basic idea in shedding excess load is for an overloaded participant to select a max-

imal set of tasks from its taskseti that cost more to process locally than they would cost
if processed by one of its partners and offer them to that partner. Participants can use
various algorithms and policies for selecting these tasks. We present a general algorithm
in Figure 6-4. Because our mechanism makes offers binding, if the partner accepts even a
subset of the offered tasks, the accepted tasks are transferred, and the participant shed-
ding load must pay its partner. An overloaded participant could consider its contracts in
any order. We assume that order is established offline. One approach is to exercise the
lower-priced contracts first with the hope of paying less and moving more tasks. Procedure
OFFER LOAD waits between load transfers to let local load level estimations (e.g., exponen-
tially weighted moving averages) catch-up with the new average load level. If no transfer is
possible, a participant retries to shed load periodically. Alternatively, the participant may
ask its partners to notify it when their loads decrease sufficiently to accept new tasks.

The basic idea in accepting load is for a participant to accept all tasks that are less
costly to process locally than the offered payment from the partner. These offers improve
utility as they increase the total payment more than the total processing cost. Because
multiple offers can arrive approximately at the same time, participants can accumulate
offers for a short time period before examining them (although BPM does not require this).
More specifically, in procedure ACCEPT LOAD (Figure 6-5), each participant continuously
accumulates load offers and periodically accepts subsets of offered tasks, examining the
higher unit-price offers first. Another approach would be to accept the offers with the
highest expected utility increase per unit of load. Since accepting an offer results in a load
movement (because offers are sent to one partner at the time), the participant keeps track of
all accepted tasks in the potentialset and responds to both accepted and rejected offers.
Participants that accept a load offer cannot cancel transfers and move tasks back. They
can, however, use their own contracts to move load further or to move it back.

Figure 6-6 illustrates three load movement scenarios. In a single load movement, A can
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Figure 6-6: Three load movement scenarios for two partners.

transfer to B all tasks with a unit marginal cost greater than the contract price (scenarios
1 and 2). Only those tasks are transferred for which the marginal cost per unit of load at
B does not exceed the price in the contract (scenario 3).

Other protocols can also be designed based on fixed-price contracts. Participants could,
for instance, offer their load simultaneously to all their partners. For a single overloaded
node, this approach would converge faster in the worst-case. This scheme, however, creates
a large communication overhead since C (the number of contracts) offers are made for every
load movement. Offering load simultaneously to many partners also prevents these partners
from knowing which tasks they will actually receive from among all the tasks they accept.
This in turn makes it difficult for them to determine how many profitable movements to
accept without the risk of overbooking their resources. In contrast, under static load, BPM,
allows participants to accept many offers at once without the risk of overbooking. BPM also
avoids the extra communication overhead because participants send offers to one partner
at the time.

In this section, we showed one strategy for runtime load movements assuming a static
system load. The strategy is based on two simple protocols for using contracts at runtime
in a way that improves utility. In the next section, we enhance the algorithm to account
for dynamic load variations.

6.4 Dynamic Load Conditions

Because load varies with time, and because such variations affect participant load movement
decisions, we extend fixed-price contracts to include a unit load movement duration in
addition to a price. We show how participants can fine-tune their decisions to offer or
accept load, given such contracted durations.

With the approach that we introduced, given some load distribution, participants move
load to their partners improving their individual utilities and producing successively less
costly allocations. A sudden change in total system load will abruptly modify the utility
of one or more participants. From that point on, however, participants can again improve
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their utilities by moving load. A sudden change in load thus translates into restarting the
convergence toward acceptable allocation from a different initial load distribution.

Although it may appear that the approach presented so far does naturally handle load
variations, there are two problems. In the current mechanism, once load moves, it moves
forever. With this constraint, successive load variations may cause a situation where all
participants eventually run other participants’ tasks rather than their own tasks, which
may not be desirable. Furthermore, participants may have some expectations about the
duration of their overload and may be unwilling to move load if they expect the overload
to be of short duration. We could lessen these problems by modeling load increases and
decreases as the arrival and departure of tasks. Such a model is difficult to implement in
practice because it requires extra machinery to isolate and move only excess load, and may
not always be possible. Additionally, operators accumulate transient state that may have
to be moved back after the load subsides.

To address these issues, we propose instead to extend our definition of a contract to
include a unit duration, d, for every load movement:

Definition 11 (revisited) A fixed-price contract Ci,j between participants i and j defines
a unit duration, d, for each load movement and a price, FixedPrice(Ci,j), that participant
i must pay j for each unit of resource i purchases at runtime (i.e., for each unit of load
moved from i to j).

Load always moves for the pre-defined time d. After this period, either partner can
request that the load move back. Of course, partners can also agree that it is still beneficial
for both of them to leave the load where it is for another time-period, d. To limit the
frequency of load offers, we also impose the constraint that if a participant refuses load, its
partner can retry offering load only after a time-period d. We discuss this latter constraint
further in Section 6.8.

Under static load, it is beneficial for a participant to move a task, u, to a partner j,
when the local per-unit processing cost exceeds the contract price:

MC(u, total load) > load(u) ∗ price(Cj). (6.5)

When the offered load (i.e., the set of tasks in the system and the load imposed by
any task) changes dynamically, both load and MC become function of time. For example,
load(u, t) is the load imposed by task u at time t, and MC(u, total load, t) is the marginal
cost of task u at time t.

Under dynamic load, to decide whether to offer or accept load, a participant should
compare its expected marginal cost for a task over the next time-period, d, against the
expected payment for that task. A participant should perform a load movement only when
the movement improves the expected utility. For instance, the participant should offer load
when:∫ t=now+d

t=now

E[MC(u, total load, t)] dt >

∫ t=now+d

t=now

E[load(u, t)] ∗ price(Cj) dt. (6.6)

Similarly, a participant should accept load when, for the duration of a movement, the
expected marginal cost for that load is below the expected payment for the same load:∫ t=now+d

t=now

E[MC(u, total load, t)] dt <

∫ t=now+d

t=now

E[load(u, t)] ∗ price(Cj) dt. (6.7)
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In all cases, even though load varies, the price, price(Cj), remains fixed.
Participants can use different techniques to estimate expected load levels and marginal

costs. If the unit time-period, d, is short compared to the frequency of load variations,
participants can assume, for example, that the current load level will remain fixed over the
whole time period, d.

Moving load for a bounded time interval also makes it easier to take into account the
cost of load migration (which we ignored until now). If the expected overload for the next
time period, d, is greater than the price a participant would have to pay a partner plus
twice the migration cost, then it is beneficial to perform the load movement.

The choice of the proper value of d is an interesting problem. d must be long enough for
the gains from a load movement to cover the overhead of the actual migration. Otherwise,
it may never be worth to move any load. d should not be too long, though, because
the probability that load will not persist for the whole interval increases with d. In this
dissertation, we simply assume that d is some fixed value.

6.5 Establishing Fixed-Price Contracts Offline

In the previous sections, we presented strategies for runtime load movements assuming that
each participant had a set of fixed-price contracts. We now analyze the set of contracts that
a participant should try to establish in order to avoid overload and improve utility.

To simplify the analysis, we assume a system of identical participants with independent
load levels that all follow the same distributions. We also assume that all participants
wish not to exceed the same load threshold T . We analyze heterogeneous settings through
simulations, in Chapter 7. We show that a small number of contracts suffice for participants
to get most of the benefits from the system.

When a participant negotiates a contract to shed load, it must first determine its maxi-
mum desired load level T , and the corresponding marginal cost per unit load. This marginal
cost is also the maximum unit price that the participant should accept for a contract. For
any higher price, the participant risks being overloaded and yet unable to shed load. A
higher price is also equivalent to a processing cost greater than T , a cost that the partici-
pant does not want to incur. Any price below that maximum is acceptable but, in general,
higher contract prices increase the probability that a partner will find it cost-effective to ac-
cept load. Therefore, the optimal strategy for a participant to minimize its chances of being
overloaded, is to negotiate contracts at a price just below T . Figure 6-2 illustrates, for a
single resource and a strictly convex function, how a load level X maps to a unit price. In
general, this price is the gradient of the cost function evaluated at X.

A participant could try to establish as many contracts as possible, but maintaining a
contract comes with recurring costs due to periodic offline re-negotiations. It is only cost
effective to establish a contract when the benefits of the contract offset its recurring main-
tenance costs. We compute the optimal number of contracts by computing the cumulative
benefit of contracts and comparing it with the maintenance costs.

Let buyer B be a participant who is shedding load by buying resources from others. To
B, all other participants in the system are potential resource sellers. We first study the
optimal number of contracts that B should establish.

From B’s perspective, the load of each seller follows some probability density function,
p(x), within [k, T ]. The buyer does not distinguish between a seller with load T and a
seller with load greater than T because both have no spare resources to offer. We denote
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(a) Bounded Pareto load distributions. (b) Various skewed load distributions

Figure 6-7: Illustration of various bounded load distributions with k = 0.01,
T = 1.0, and different values of α.

the cumulative distribution function for a given seller i with F (x) = P (Xi < x). The
buyer has a second probability density function, g(x), for its expected load spikes, when its
local load exceeds T . We assume that load spikes can exceed T by orders of magnitude. We
model the load spikes and the normal load distributions with two separate functions because
sellers also exchange load among themselves and may therefore have a more uniform load
distribution within [k, T ], than an isolated node.

We analyze different types of density functions. With a uniform distribution over an
interval [k, T ], any value within the interval is equally likely to occur: puniform(x) = 1

T−k for
k ≤ x ≤ T and 0 otherwise. The corresponding cumulative distribution is:

Funiform(x) = Puniform(k ≤ X ≤ x) =
x− k

T − k
for k ≤ x ≤ T. (6.8)

Frequently, however, a participant is likely to be either lightly of heavily loaded most
of the time, while staying within a bounded range [k, T ]. In some cases, especially for
load spikes, the distribution can even be heavy-tail. We could use various distributions
to model such load conditions. The bounded Pareto density function is commonly used:
p(x) = α

xα+1
kα

1−
(

k
T

)α for k ≤ x ≤ T , where 0 < α < 2 is the “shape” parameter. The

corresponding cumulative distribution is:

Fpareto(x) = Ppareto(k ≤ X ≤ x)

=
∫ X=x

X=k
αX−α−1 kα

1−
(

k
T

)α dX.

=

(
1−

(
k

x

)α)(
1

1−
(

k
T

)α

)
.

(6.9)

Figure 6-7(a) illustrates the load distribution for k = 0.01, T = 1.0, and different values
of α. The mean of the bounded Pareto distribution is:

E(x) =
( kα

1−
(

k
T

)α)( α

α− 1

)( 1
kα−1

− 1
Tα−1

)
. (6.10)

We use the Pareto distribution to model load spikes. In many cases, we assume that
spikes can exceed the threshold T by a few orders of magnitude.
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(a) Spikes follow a bounded Pareto with
α = 0.14 and range [0.01, 10T ].

(b) Spikes follow a bounded Pareto with
α = 0.5 and range [0.01, 100T ].

Figure 6-8: Probability of overload when a load spike occurs. In all six configura-
tions, the first few contracts provide most benefits.

To analyze various non-heavy-tail distributions, we use the same cumulative distribution
function as above, but we vary α within a wider range. Figure 6-7(b) illustrates the various
resulting distributions. For α = −1.0, the distribution is uniform. Decreasing α, increases
the fraction of nodes that have a heavier load than in the uniform distribution. Increasing
α, increases the fraction of nodes that have a lighter load than in the uniform distribution.

In the absence of contracts, when a load spike occurs, the participant is overloaded with
probability 1.0.

Poverload(0, T ) = G(X > 0) = 1. (6.11)

With one contract at threshold T , a participant is overloaded only when it experiences
a load spike that its partner cannot absorb. Assuming highly fine-grained tasks, the prob-
ability is:

Poverload(1, T ) ≈ G(X > T ) +
∫ T

x=0
G(X = x)P (X1 > T − x) dx. (6.12)

where G(X > T ) is the probability of a load spike that exceeds the partner’s total capacity,
T . The integral computes the probability that a spike occurs within the partner’s capacity,
T, but the partner’s load is too high to absorb it (given by P (X1 > T −x)). We denote the
partner’s load with X1.

We can generalize this relation to N contracts. A participant is overloaded when it
experiences a load spike greater than the total capacity of its C partners, G(X > CT ), or
when it experiences a smaller load spike, but the aggregate available capacity at its partners
is less that the value of the spike:

Poverload(C, T ) ≈ G(X > CT ) +
∫ CT

x=0
G(X = x)P (X1 + X2 + ...XC > CT − x) dx. (6.13)

Figure 6-8 shows the probability of overload in six concrete configurations. Each sub-
figure shows results for a different distribution used for load spikes, although both distri-
butions have the same mean, T . Each curve in each graph shows the results for a different
distribution for the load at the sellers. These distributions have different means, but in
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Figure 6-9: Expected magnitude of overload when a load spike occurs. Without
contracts the expected magnitude of the overload is 1.0. It decreases with each additional
contract, but the decrease is sharpest for the first few contracts.

all cases the load varies within range [0.01, 1.0]. The “light” distribution has mean 0.37
(α = −0.5), “the uniform” has mean 0.505 (α = −1.0), and the “heavy” has mean 0.67
(α = −2.0). We run Monte-Carlo simulations to compute Poverload(C, T ) for increasing val-
ues of C. Each point is the result from running 500,000 simulations. In all configurations,
increasing the number of contracts reduces the probability of overload during a spike. Be-
cause load spikes can be orders of magnitude higher than capacity, the probability remains
above zero even with many contracts. Interestingly, the first few contracts provide most
of the benefit (3 to 5 in the examples). When load spikes are more uniformly distributed
(Figure 6-8(a)), larger numbers of contracts are helpful, although each additional contract
brings an increasingly smaller improvement.

The benefit of a set of C contracts, denoted with Benefit(C), is not only the savings
realized from reducing the frequency of overload, but also a function of reducing the expected
magnitude of overload. Figure 6-9 shows the expected magnitude of overload for the same
experiments as in Figure 6-8. Given the expected magnitude of overload, we compute the
benefit of a set of C contracts as follows:

Benefit(C) = Pspike f
(
E[Overload(0)]− E[Overload(C)]

)
, (6.14)

where E[Overload(0)] is the expected magnitude of the overload when a load spike occurs
and the participant has zero contracts. E[Overload(C)] is the expected magnitude of the
overload with C contracts. The difference represents the savings. f is a function of the
savings realized by moving excess load to a partner rather than incurring processing costs
locally. Pspike is the probability that a load spike occurs at all. It is cost-effective to establish
a contract only when the added benefit of the contract offsets the cost of negotiating and
maintaining that contract. Figure 6-10 shows Benefits(C) for an increasing number of
contracts for the set of experiments from Figure 6-8. In the figure, Pspike = 0.05, f is the
identity function, and the total cost of a set of contracts grows linearly with the number of
contracts in the set. Once again, each additional contract is beneficial. When load spikes
can exceed capacity by orders of magnitude, the benefits increase almost linearly with the
number of contracts. If contracts are extremely cheap, then it is beneficial for a buyer to
establish large numbers of them. With smaller load spikes, the first few contracts provide
most benefits and, as the cost of maintaining a contract increases, it quickly becomes cost-
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Figure 6-10: Example of cost and benefit of an increasing number of fixed-price
contracts for the same experiments as in Figure 6-8. Unless contracts are very
inexpensive, it is only cost-effective to establish a few of them.

effective to maintain only a few contracts (fewer than 10 in the experiment). Of course, if
contracts are very expensive, it may not be beneficial to establish any contract at all.

The computation is different for contracts in the reverse direction. When a participant
acts as a seller, every contract that it establishes causes it to receive some extra load from
time to time. Because any given buyer experiences overload with small probability, Pspike,
and because the buyer does not use all its partners for every spike, a seller receives extra
load with probability, Pextra load < Pspike. Because the probability of extra load from
a single contract is small, the cumulative benefit of contracts grows linearly with their
number. If the benefit of one contract is greater than the cost of maintaining that contract,
a participant can profit from establishing many contracts as a seller. Of course, when the
number of contracts is very large, eventually, the seller is always heavily loaded and the
benefit of additional contracts starts to decrease.

A participant may establish additional contracts to buy resources at a price below T .
The participant will use these contracts not to absorb its load spikes but rather to reduce
its overall processing costs. Similarly, a participant may establish additional contracts to
sell resources at a price below T . In both cases, participants maximize contract bene-
fits by maximizing the profit on each load movement and the load movement frequency.
Figure 6-11 shows the expected amount of resources a buyer will purchase and the ex-
pected savings it will make from a set of contracts at load levels βT with T = 1.0 and
β ∈ {0.25, 0.33, 0.5, 0.66, 0.75}. The figure shows results for three different load distribution
functions: uniform (α = −1.0, range [0.01, 1.0]), light (α = −0.5, range [0.01, 1.0]), and
heavy (β = −2.0, range [0.01, 1.0]). For the savings computation, we use a simple mono-
tonically increasing cost function: ρ−0.2

1−ρ+0.2 , as an illustrative example. Each point is the
average of 500, 000 simulations.

For a very small number of contracts (up to 3), the median price (0.5 for uniform, 0.3
for light, and 0.7 for heavy) yields the greatest amount of resources moved. With more
contracts, a price a little below the median results in more resources moved because the
buyer is more frequently in a position to purchase resources while at least one of the sellers
has spare resources. Prices a little below the median also yield the greatest utility increase
for the buyer. When prices are too low, the benefit is lower because fewer resources can be
moved.

For a seller, the graphs would be reversed. Prices just a little above the median would
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Figure 6-11: Buyer benefits for contracts below threshold T . (left) Expected
resource purchases by a buyer and (right) buyer utility gains for various contracts below T
and various load distributions: (a) and (b) uniform, (c) and (d) light load (α = −0.5), (e)
and (f) heavy load (α = −2.0).
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Load level corresponding
to the contract price

Contract direction Number of contracts

Maximum load Buyer A few
Median load Buyer A few
Maximum load Seller Many
Median load Seller A few

Table 6.1: Heuristics for establishing offline contracts.

yield the largest benefit. Because neither the buyer nor the seller has an incentive to concede
faster during a negotiation, and because both will benefit greatly from a contract at the
median price, we can expect contracts to be established at that price. With a price around
the median, 5 to 6 contracts suffice to get nearly the maximum benefit.

Table 6.1 summarizes the optimal number of fixed-price contracts that a participant
should try to establish. For resource buyers, the first few contracts (approximately five)
suffice to attain most of the possible benefits. Each additional contract provides only a small
incremental improvement in utility. If, however, load spikes are several orders of magnitude
greater than capacity while contract prices are extremely cheap, then the buyer should
establish as many contracts as possible. For resource sellers, it is beneficial to establish only
a few contracts if these contracts have low prices. For contracts at a price corresponding to
the maximum capacity, the utility increases almost linearly with the number of contracts,
making larger numbers of contracts profitable.

6.6 Bounded-Price Contracts

In the previous sections, we presented the basic components of BPM. We showed how to
establish and use fixed-price contracts for moving load, possibly for only a limited amount
of time. Fixed-price contracts, however, do not always produce acceptable allocations. In
this section, we show that by extending fixed-price contracts to cover a small price range,
we can guarantee that a system of uniform nodes and contracts converges to acceptable
allocations in all contract and load configurations. Because the final price is not fixed
anymore, participants must negotiate the final price within range. We present a simple
negotiation protocol and show that in most cases, participants agree on the final price even
without negotiating.

Fixed-price contracts do not necessarily lead to acceptable allocation because load can-
not always propagate through a sequence of nodes. We have shown in Section 6.5 that it
is not cost-effective for a participant to establish enough contracts to ensure that its direct
partners can always absorb its excess load. Partners can always use their own contracts to
move load further but such movements are not possible in all configurations of the contract
graph. A chain of identical contracts is one example of a configuration that prevents load
from spreading. As illustrated in Figure 6-12, a lightly loaded node in the middle of a
chain accepts new tasks as long as its marginal cost is strictly below the contract price. The
node eventually reaches maximum capacity (as defined by the contract price) and refuses
additional load. It does not offer load to partners that might have spare capacity because
its unit marginal cost is still lower than any of its contract prices. Hence, if all contracts
are identical, a task can only propagate one hop away from its origin.
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Figure 6-12: Fixed-price contracts do not lead to acceptable allocation in certain
configurations. In a chain of three nodes with two identical contracts, the middle node
has no incentive to propagate load from an overloaded to a lightly loaded partner.

6.6.1 Minimal Price Range

To achieve acceptable allocations for all configurations, participants need to specify a small
range of prices, [FixedPrice−∆; FixedPrice], in their contracts. With a contracted price-
range, partners negotiate the final price for each load movement at runtime. By allowing
prices to vary, we enable load to propagate through chains of nodes. Indeed, a participant
can now forward load from an overloaded partner to a more lightly loaded one by accepting
tasks at a higher price and offering them at a lower price (i.e., selling resources at a high
price and buying resources at a lower price). We call bounded-price contracts those contracts
that specify a range of prices rather than a fixed price.

Definition 12 A bounded-price contract Ci,j between participants i and j defines a unit
duration, d, for each load movement and a price range: [FixedPrice(Ci,j) − ∆(Ci,j),
FixedPrice(Ci,j)], that bounds the runtime price paid by participant i for each unit of
resource it purchases from j at runtime (i.e., for each unit of load moved from i to j).

Since a fixed unit price equals the gradient (or derivative) of the cost curve at some load
level, a price range converts into a load level interval as illustrated in Figure 6-2. The price
range is the difference in the gradients of the cost curve at interval boundaries.

With a larger price range, the unit marginal costs of nodes are more likely to fall within
the dynamic range. Because load variations within the contracted price range easily create
load movement opportunities, a large price range increases price volatility and the number
of reallocations caused by small load variations. Our goal is therefore to keep the range as
small as possible and extend it only enough to ensure convergence to acceptable allocations.

We now derive the minimal price range that ensures convergence to acceptable alloca-
tions. We analyze a network of homogeneous nodes with identical contracts. We explore
heterogeneous contracts through simulations in Chapter 7. For clarity of exposition, we
also assume in the analysis that all tasks are identical to the smallest migratable task, u
and impose the same load.
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Figure 6-13: Example of δk(taskset) computation, for k = 3.

We define δk as the decrease in unit marginal cost due to removing k tasks from a node’s
taskset:

δk(taskset) =
MC(u, taskset− u)− MC(u, taskset− (k + 1)u)

load(u)
. (6.15)

δk is thus approximately the difference in the cost function gradient evaluated at the load
level including and excluding the k tasks. Figure 6-13 illustrates the concept of δk.

Given a contract with price, FixedPrice, we define tasksetF as the maximal set of
identical tasks u that a node can handle before its unit marginal cost exceeds FixedPrice
and triggers a load movement. I.e., tasksetF satisfies: MC(u, tasksetF − u) ≤ load(u) ∗
FixedPrice and MC(u, tasksetF) > load(u) ∗ FixedPrice.

If all contracts in the system specify the same price range, [FixedPrice−∆, FixedPrice]
such that ∆ = δ1(tasksetF), any task can now travel two hops away from the node
where it originated. As illustrated in Figure 6-14, a lightly loaded node accepts tasks
at FixedPrice− δ1(tasksetF) until its load reaches that of tasksetF − u. The node then
alternates between accepting one task, u, at FixedPrice and offering one task at price
FixedPrice − δ1(tasksetF). Similarly, for load to travel through a chain of M + 1 nodes
(or M transfers) the price range must be at least δM−1(tasksetF). The jth node in such
a chain alternates between accepting a task at price FixedPrice − δj−1(tasksetF) and
offering it at price FixedPrice− δj(tasksetF).

We now show the following lemma:

Lemma 1 In a network of homogeneous nodes, tasks, and contracts, to ensure conver-
gence to acceptable allocations in an underloaded system, the price range in contracts
must be at least [FixedPrice − δM−1(tasksetF), FixedPrice], where M is the di-
ameter of the network of contracts and tasksetF is the set of tasks that satisfies
MC(u, tasksetF−u) ≤ load(u)∗FixedPrice and MC(u, tasksetF) > load(u)∗FixedPrice.
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Figure 6-14: Load movements between three nodes using a small price range.

Conditions for the Lemma: All participants have cost functions that are monotonically
increasing and convex. Any node can run any task.

We consider a system to be underloaded when the total load is less than the sum
of all node capacities at the lowest price bound. For a price range [FixedPrice −
δM−1(tasksetF), FixedPrice], the capacity of a node at the lowest price bound is
tasksetF − (M − 1)u.

Proof. We prove Lemma 1 by contradiction. Suppose that node N0 has a load level above
capacity in the final allocation. We show that N0 cannot exist in an underloaded system
with the properties outlined in the Lemma.

By definition of an underloaded system, as long as N0 is above capacity (and therefore
has an above average load), there exists at least one node NM in the system that has a
load level below tasksetF − (M − 1)u (below average) and can thus accept load. NM is
at most M , the diameter of the contract network, hops away from N0. Because the price
range is δM−1(tasksetF) load can propagate for M hops. Load can thus propagate from
N0 to the closest underloaded node, NM . Load movements continue until the load at NM

reaches tasksetF − (M − 1)u. At this point, if the load at N0 is still above capacity, there
must exist another node NM with a load level below tasksetF − (M − 1)u. Hence, load
movements do not stop until the load level at N0 falls below capacity. Because convergence
follows a gradient descent, load movements eventually stop. Therefore, N0 cannot exist in
the final allocation.

We consider a system to be overloaded when the total load is greater than the sum of
node capacities at the lowest price bound. When the system is overloaded, a price range
does not lead to an acceptable allocation (where ∀i ∈ N, Di(taskseti) ≥ Di(tasksetFi)).
Indeed, because of the dynamics of load movements through a chain, in the final allocation,
some participants may have a marginal cost as low as FixedPrice− δM (tasksetFi) (wider
ranges do not improve this bound). For overloaded systems, price-range contracts achieve
instead nearly acceptable allocations defined as:

Definition 13 A nearly acceptable allocation satisfies ∀i ∈ N, Di(taskseti) >
Di(tasksetFi−Mu). I.e., all participants operate above or only slightly below their maximum
capacity.
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In summary, a small price range proportional to the diameter of the network of con-
tracts suffices to ensure that underloaded systems always converge to acceptable allocation,
and overloaded systems converge to nearly acceptable allocation. We now examine how
participants can negotiate the final price at runtime.

6.6.2 Negotiating the Final Price

With a bounded-price contract, participants must negotiate the final price within the con-
tracted range at runtime. The negotiation is performed automatically by agents that rep-
resent participants. In this section, we propose a simple and efficient negotiation protocol.

The negotiation protocol is based on three observations. First, reaching an agreement
is individual rational 3, i.e., both participants are interested in reaching an agreement
because a load movement at a unit price within their respective marginal costs increases
both their utilities. Second, the price range is small, limiting the maximum gain that a
participant can achieve from negotiating compared to accepting the worst price within the
range. Third, in Section 6.5, we showed that participants improve their expected utilities
by establishing multiple contracts at the same price. Multiple equivalent contracts create
competition between both resource buyers and resource sellers. The competition is greater
between resource sellers for contracts corresponding to the pre-defined capacity load, T ,
because buyers are rarely overloaded. For contracts at lower prices, the competition is the
same for both types of participants. Given the above observations, we propose a simple
negotiation protocol that ensures an efficient, often one-step, negotiation. The protocol
favors resource buyers by leveraging the competition between resource sellers to improve
negotiation efficiency (i.e., avoid lengthy negotiations).

Assuming a price range [pL = FixedPrice−∆, pH = FixedPrice], with 0 ≤ pL ≤ pH <
1, and pH − pL << 1, negotiation proceeds as follows:

1. As before, when the buyer wants to purchase some resources, it offers a set of tasks
to a seller at a price p1 = pL, the lowest price within the contracted range.

2. If the seller accepts the offered load (or subset of the load), the negotiation completes.
The load moves and the buyer pays p1.

3. If the seller refuses the lowest price, it can reply with a counter-offer, p2 ∈ [p1, pH ],
for a subset of the offered tasks or it can terminate the negotiation. The seller must
respond within a short pre-defined time-period or the buyer concludes that the seller
rejected the offer.

4. The seller’s counter-offer is also binding. If the movement at p2 is profitable for the
buyer, the buyer can move a subset of the accepted load and pay p2. Otherwise,
the buyer rejects the counter-offer and the negotiation terminates. The buyer must
also respond within a bounded amount of time or the seller concludes that the buyer
rejected the counter-offer.

5. At least d time-units after the initial offer, the buyer can try to offer load at p1 = pL

again. At that point, a new negotiation starts.
All offers and counter-offers are binding for a limited time period. We propose to make

seller’s counter-offers binding for a sufficiently long time to enable the buyer to offer load to
all its partners in turn before the first counter-offer expires. If a buyer’s offer is binding for
a duration, t, and the buyer has C contracts, the seller’s counter-offers must be binding for
a time Ct. With these constraints, upon receiving a counter-offer, the buyer can offer load

3A mechanism is individual rational if participation leads to a higher expected utility than non-
participation.
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to another partner that it has not tried yet or if all partners are heavily loaded, it can move
load to the partner that replied with the lowest counter-offer and pay the counter-offered
price. Because there are multiple sellers, because sellers do not see each other’s counter-
offers, and because these counter-offers are binding, the negotiation is thus equivalent to a
first-price reverse auction with sealed-bids. The auction is a reverse auction because it is
conducted by the buyer rather than the seller.

We now examine the strategies available to the buyer and the seller, starting with the
buyer. For a given contract price, if the load distributions at the sellers are all the same or
they are unknown, the buyer can send a load offer to a randomly selected seller (or it can
use a pre-defined order). If the seller refuses the lowest price, the buyer should send the
same offer to another seller, as it is possible the other will accept it at the lowest price p1.
If all sellers refuse p1, however, the optimal strategy for the buyer is to move load to the
partner with the lowest counter-offer, paying the lowest possible price for the load. In case
of a tie, the buyer can randomly pick the winner or it can pick the preferred partner based
on offline relationships. The best strategy for the buyer is thus to act as an auctioneer in a
reverse auction.

We now examine the strategies available to a seller. A seller can either accept the lowest
price p1, or reply with a higher price p2, hoping to make a greater profit. Because each
participant establishes C contracts, there is a probability, 1 − p

(C−1)
1 , that another seller

has a marginal cost below p1 and can accept p1 directly. This probability is high when p1

is close to 1 or C is large. Additionally, because the price range is small, potential extra
gains from a counter-offer are small as well. Therefore, as long as selling resources at p1

increases utility, accepting p1 directly is often the optimal strategy for the seller (we discuss
this scenario further in Section 6.8, Property 2).

If a seller is heavily loaded, however, and its marginal cost is close to or above p1, the
seller maximizes its expected utility by counter-offering a higher price. If there exists at
least one other seller who can accept p1, then the value of the counter-offer p2 does not
matter, but if all other sellers are also loaded, they will all make counter-offers (or they will
reject the offer). In that situation, a high p2 increases the possible profit but reduces the
chances of winning the load because of competition and because the buyer itself may not
be able to accept the higher price. The seller must thus counter-offer, p2, that maximizes:

E[ProfitSeller] = (p2 − S)P (p2). (6.16)

where S is the seller’s valuation for the offered tasks (i.e., the average per-unit marginal
cost), p2 − S is the seller’s profit given its valuation, S, and P (p2) is the probability of
winning the load with a counter-offer p2.

As an example, let’s assume a price range [0, 1] and a uniform distribution of competing
offers in the range. The seller needs to select its counter-offer p2 to maximize its expected
profit given by:

E[ProfitSeller] = (p2 − S)(1− p2)(C−1)(1− p2). (6.17)

where p2 − S is the profit realized by the seller, (1 − p2)(C−1) is the probability that none
of C − 1 competing sellers places a bid below p2. Because the buyer can have a valuation
within the range as well, we use 1− p2 to model a linearly decreasing probability that the
buyer can accept the price. Table 6.2 shows examples of counter-offers assuming between 1
and 7 competing sellers. With as few as 5 competitors, it is never profitable to over-price
by more than 15% of the total price range, showing that sellers will produce counter-offers
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Seller’s valuation, S 0 0.25 0.5 0.75
1 competitor 0.33 (33%) 0.50 (25%) 0.67 (17%) 0.83 (8%)
3 competitors 0.20 (20%) 0.40 (15%) 0.60 (10%) 0.8 (5%)
5 competitors 0.14 (14%) 0.36 (11%) 0.57 (7%) 0.79 (4%)
7 competitors 0.11 (11%) 0.33 (8%) 0.55 (5%) 0.78 (3%)

Table 6.2: Example of counter-offers (and the corresponding over-pricing ex-
pressed as a percent of total price range) by sellers with different valuations for
resources and different numbers of competitors.

only a little over their true valuations. In practice, of course, all rational sellers would follow
the over-pricing strategy and would produce counter-offers higher than their valuations.

A well-known result from auction theory [172] is that if a set of C risk-neutral partici-
pants4 bid for a single item, and if their valuations are uniformly distributed in the range
[0, 1], then a Nash equilibrium strategy (i.e., the best strategy for each agent assuming all
other agents follow that strategy) is to bid αB = C−1

C B, where B is the buyer’s valuation
for the item.

In a reverse auction, the sellers bid rather than the buyers. The situation, however, can
also be viewed as a regular auction where the sellers bid for the discount they will offer to
the buyer. If a seller bids its true valuation S ∈ [0, 1], the discount to the buyer is 1−S. It
is the savings compared to paying the maximum price 1. The Nash equilibrium bids for the
sellers can then be expressed as: 1− C−1

C (1−S). In our case, counter offers must be within
the contracted range [pL, pH ]. For a valuation, S ∈ [pL, pH ], and assuming a fraction, β, of
sellers has a unit marginal cost within the contracted range, the equilibrium counter offer
should thus be:

p2 = pH −
βC − 1

βC
(pH − S). (6.18)

The above result does not consider the fact that the buyer itself may not be able to
accept a higher price, but we could model the buyer as an extra seller. The above result
uses the assumption that the buyer breaks ties randomly.

In summary, assuming the buyer has a set of C equivalent contracts, the optimal strategy
for a seller when its average unit marginal cost, S, for the offered tasks falls below the price
range is to accept the lowest price p1. When its average unit marginal cost falls within the
contracted range, the optimal strategy for the seller is to counter-offer a price p2 a little
above S. Otherwise, the seller must reject the offer. We prove this property and discuss
possible values of β in Section 6.8.

The above strategy analysis assumes that the buyer offers a single task to sellers. In
BPM, the buyer offers groups of tasks. As long as a seller’s unit marginal cost is below
pL, the seller can accept the complete set of tasks or a subset of these tasks at the lowest
price. Similarly, if its counter-offer is equal to the highest price within range, a seller should
accept all tasks that improve utility. Within the price range, however, a participant can
choose between counter-offering a lower price for a single task or a higher price for a group
of tasks. To simplify the approach, we assume that within range, counter-offers are made
for a single task.

In most cases, even when participants’ counter-offers are a little higher than their actual

4A risk-neutral participant is neither risk-averse nor risk-seeking. A risk-neutral participant is, for exam-
ple, willing to bet up to $50 for a 0.5 chance of winning $100 and a 0.5 chance of winning $0.
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valuations, a load movement occurs and both the buyer and the seller improve their utilities.
A possible load movement fails only when the buyer’s valuation, B, is within [S, p2], where
p2 is the counter-offered price. Because p2 is only a little higher than S, this situation
occurs rarely. Additionally, the failure is not permanent. After a time-period, d, the buyer
can retry to move load at the minimum price. Based on the failure of the previous load
movement, the seller can update its estimate of the buyer’s load and counter-offer a price
p′2 < p2. With this approach, if a load movement is possible, it occurs eventually.

The negotiation protocol that we presented is one possible approach. BPM works in-
dependently of the protocol used in the final price negotiation, but we showed that it is
possible to make the final price negotiation efficient. We further discuss the properties of
the price negotiation in Section 6.8. We now discuss how BPM can apply to federated SPEs.

6.7 Application to Federated SPEs

As we outlined at the beginning of this chapter, BPM can be directly applied to a stream
processing engine. Tasks in an SPE have an interesting property, though: the output
streams of some tasks serve as input streams to others.

These relationships between tasks affect marginal costs. For the same additional task,
a participant already running related tasks incurs a lower processing cost increase than a
participant running only unrelated tasks. Hence, participants can lower their processing
costs by clustering related tasks together, preferring to offer more loosely coupled tasks
during overload. Clustering inter-dependent tasks can help improve overall performance.

Relationships between tasks have a second impact on the system. A load movement
by a participant may affect the processing cost of upstream participants because the latter
may have to send their output streams to a different location. Such a change may cause
an upstream participant to perform a load movement, in turn. These dependencies do not
cause oscillations, however, because there are no cycles in query diagrams and dependencies
are unidirectional —downstream movements affect only upstream participants.

6.8 Properties of BPM

In this section, we present BPM’s properties. These properties are summarized in Table 6.3.
For each property, we give an intuitive description, state the property, and either follow with
a proof (under certain conditions) or a qualitative argument.

The main property of BPM is to enable autonomous participants to collaboratively
handle their peak load by using pre-negotiated, private, pairwise contracts. Contracts
enable participants to develop or leverage preferential, long-term relationships with each
other. Such relationships, coupled with pre-negotiated bounded prices provide predictability
and stability at runtime. Through these properties, BPM differs from other efforts that
propose the use of open markets and auctions, where prices and collaborators typically
change much more frequently. We believe that privacy, predictability, stability, and reliance
on offline-established relationships make BPM more acceptable in practice. The questions
are whether BPM redistributes load between participants well and whether the runtime
overhead is not too high. In this section, we answer these questions by analyzing a few
properties of BPM. In the following chapter, we further evaluate BPM in different settings
by running simulations and experiments.
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Property # Brief description (not the actual statements)
Property 1 The bounded-price mechanism is individual rational
Theorem 1 Following the intended implementation is a Bayesian-Nash equilibrium.
Property 2 Negotiating the final price only when valuation falls within price range

and counter-offering with a price slightly higher than the valuation is
nearly always an optimal strategy for a seller.

Theorem 2 A small price range suffices to achieve acceptable allocation for under-
loaded systems and a nearly acceptable allocation for overloaded systems.

Property 3 The mechanism has low complexity: convergence occurs quickly.
Property 4 The mechanism imposes only a low communication overhead.

Table 6.3: Summary of the bounded-price mechanism properties.

We show that our approach provides sufficient incentives for participants to engage in
the mechanism that we have designed (Property 1). We also show that it is in a partic-
ipant’s best interest to follow the intended implementation that we have outlined in the
previous sections (Theorem 1 and Property 2). Given that participants follow the intended
implementation, we show that a small price range suffices to ensure that a uniform system
always converges to acceptable allocation (Theorem 2). BPM is also indirect, algorithmi-
cally tractable, and distributed. BPM is indirect because participants reveal their costs only
indirectly by accepting or offering load to their partners. The implementation is distributed
as there is no central optimizer. Participants negotiate directly with one another. BPM is
also algorithmically tractable because it has, as we show in Property 3, a polynomial-time
computational complexity (i.e., the convergence to final load allocation occurs quickly)
and a worst-case communication overhead polynomial in the amount of load that needs
reallocating (Property 4).

6.8.1 Additional Assumptions

To facilitate our analysis, and simplify the stated properties, we make three assumptions.
First, we assume that participants are risk neutral, i.e., they are willing to pay (or incur
a cost) for a load movement up to the amount they expect to gain from that movement.
BPM does generalize to participants with different attitudes toward risk. Such participants
simply use different thresholds to decide when to engage in a load movement. Risk-averse
participants need a risk premium: they engage only in load movements with expected gains
exceeding costs by some pre-defined margin (proportional to the expected costs). Risk-
seeking participants may gamble and move load even when expected gains minus costs are
negative. The attitude toward risk also affects the counter-offers that a participant makes
when negotiating the final price within a contracted range. We ignore these risk adjustments
to simplify the properties.

Second, we assume that participants evaluate expected costs and gains without con-
sidering possible future movements. With this simplifying assumption, a participant never
accepts a load movement that is expected to lower its utility hoping to offset the movement
later with another more profitable one. This assumption enables us to significantly reduce
and simplify the strategy space of participants.

Third, we assume, that each participant can correctly estimate its expected load condi-
tions for the current time interval di, and that actual load conditions match the expected
ones. Participants use these estimates to make load movement decisions. We also assume,
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however, that load distributions are memoryless at all participants between these time in-
tervals, i.e., the load at time interval di+1 does not depend on the load during interval
di. This assumption enables us to avoid considering strategies where participants try to
anticipate their future load conditions or those of their partners. In practice, this property
may hold for large enough time intervals.

6.8.2 Properties

Because participants are not forced to use our approach, we start by showing that partici-
pation in the bounded-price mechanism is beneficial. Intuitively, participation is beneficial
because each participant has the option at runtime to accept only those movements expected
to improve its utility. More specifically, our mechanism has the following property:

Property 1 The bounded-price mechanism is individual rational: i.e., the expected utility
from participation is greater than the utility from non-participation.

Precondition: For each participant, the actual load for the current time period, di, equals
the expected load for that time period.

Proof. If participants choose to take part in the mechanism, their runtime strategies are
constrained to accepting and offering load at a price within the contracted range, after
possible negotiation.

Under static load, if participants move load to a partner or accept load from a partner
only when doing so increases their utility (i.e., when the marginal processing cost is strictly
higher or strictly lower than the contract price), then it is straightforward that participation
improves utility.

Under variable load, participants move load only for a time-period d (i.e., for the current
interval di). When the time expires, either participant can request that the load moves
back, reverting to an allocation that would have existed if they did not participate in the
mechanism. Assuming participants can correctly estimate their expected load level for the
current interval, di (such that the actual load level equals the expected one), moving load
only when doing so improves the expected utility for that time period results in a higher
expected utility than none participation.

Hence, under both static and dynamic load participants benefit from the bounded-price
mechanism.

We now explore the strategies that participants should adopt to maximize their utilities.
We show that following the intended implementation presented in Section 6.3 is the best-
response strategy5 of a participant given the knowledge of memoryless load distributions
at other participants and assuming that participants are, in general, rarely overloaded. We
first consider the fixed-price runtime game.

In the fixed-price game, BPM’s implementation is a simple and natural strategy. A
participant offers load to its partners when its marginal cost is above the contracted price
and it accepts load offers when its marginal cost is below that price. Intuitively, this strategy
is optimal for a buyer when the latter tries to shed load through its least expensive contracts
first. This strategy is also optimal for a seller when participants are, in general, lightly

5The best-response strategy is the strategy that maximizes the expected utility of a participant given the
(expected) strategies adopted by other participants
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loaded, because refusing a load offer is equivalent to losing an opportunity to improve utility
over the current time-period, di without a good chance that a more profitable opportunity
will present itself during the same time period. It is possible to formalize the above reasoning
into a argument under our simplifying, yet reasonable assumptions about players and their
load distributions. We now present this formalization.

In the fixed-price contract game, with only two participants, accepting or offering load
when doing so improves the expected utility is a dominant strategy. It is the strategy that
leads to the highest expected utility, independent of what the other participant does. For
multiple participants and contracts, even though participants can only accept or offer load
at the contracted price, the strategy space is richer. Participants may, for instance, try
to optimize their utility by accepting too much load with the hope of passing it on at a
lower price. Participants can also postpone accepting or offering load with the hope of
performing a more profitable movement later. The first strategy violates our assumption
that participants never accept load movements that lower their utility. We show that
the second strategy does not improve utility when load distributions are memoryless and
participants are generally lightly load. More specifically, we show the following theorem:

Theorem 1 Suppose load distributions are independent and memoryless, and the pre-
defined contract order sorts contracts by increasing contract price. In the fixed-price
contract game, offering load through any contract that improves utility and accepting all
offers that improve utility is a Bayesian-Nash equilibrium; i.e., it is the best-response
strategy against the expected strategies adopted by other participants.

Precondition: For each participant, the actual load for the current time period, di, equals
the expected load for that time period. Participants must be generally lightly loaded, pro-
ducing load offers with a sufficiently small probability to ensure that expected gains from an
expected load offer are small. These expected gains should be smaller than potential gains
from an actual load movement of a single task through any other contract.

Proof. We prove the above property by showing that other strategies do not produce a
higher expected utility. Two other strategies are possible: performing load movements that
potentially decrease utility, or refusing load movements that potentially increase utility.

Because we assumed that a participant never performs a load movement that decreases
its expected utility, the only other possible strategy is to delay offering or accepting load
in the hope of performing a more beneficial movement later. We show that delaying a load
movement does not improve expected utility at a buyer nor a seller. We start by examining
the strategy of a buyer.

First, it is clear that offering load when doing so improves expected utility is a better
strategy than processing load locally. Assuming a buyer tries its contracts by increasing
contract price, the optimal strategy for a buyer is to always try to move load through the
first profitable contract. If the partner refuses the load, however, given that prices are fixed,
the buyer has two choices: try the next, potentially more expensive contract or wait for load
to decrease at the first partner. Because BPM requires that participants retry an offer no
sooner than d time-units after the previous one, the buyer has the choice to move load for
current time interval di using a potentially more expensive contract or keep processing load
until time interval di+1. If the price of the more expensive contract is below the current unit
marginal cost, using the more expensive contract increases utility compared with processing
the load locally. Hence, the best strategy for the buyer is to try all its contracts in turn
rather than delaying a load movement.
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We now examine the strategies of the seller. When a seller receives a load offer that
improves its utility, it can either accept the load for a time-period d (i.e., for the current
interval di) or reject it in the hope that an offer will come through a more expensive contract
within that same time-period. More precisely, the offer should be rejected if the expected
utility increase from a probable offer is greater than the expected utility increase from the
given offer. A seller could anticipate a load offer if it knows the load conditions at its
partners. Because load distributions are memoryless, the seller cannot deduce these condi-
tions from earlier conditions it may have observed. Because BPM prevents a buyer from
making more than one offer within an interval di, the seller could not have observed the
current conditions without already having received an offer from this partner. The seller
thus cannot anticipate the load conditions at its partners. Because we assume (in the pre-
condition of the theorem) that participants are generally lightly loaded such that potential
gains from expected load offers are below potential gains from concrete load movements,
the best strategy for the seller is to accept the load offer.

A seller could have a partner that offered load in a deterministic manner, independently
of its load level. With such a partner it could be possible for the seller to anticipate load
movements, and reject profitable offers. Because such partner’s strategy is not a best-
response strategy, however, the seller cannot expect the existence of such a partner. By
definition of a Bayesian-Nash equilibrium, the strategy of the seller must be a best-response
to the expected strategies of other nodes.

Therefore, following our intended implementation of accepting and offering load when-
ever doing so improves utility, is the best-response strategy of both buyers and sellers,
assuming that the load distributions at all participants are known to be independent and
memoryless, and assuming that, at any time, the probability of any participant buying
resources is small.

With bounded-price contracts, participants must negotiate the final price at runtime.
In Section 6.6, we proposed a negotiation protocol where a seller either accepts the lowest
price within the range or counter-offers a higher price. We discussed different conditions
when either accepting the lowest price or counter-offering a higher price yields a potentially
greater increase in utility. We now show the following, more specific, property:

Property 2 Suppose the distribution of unit marginal costs at participants is independent
and uniform within range [0, 1], and that each participant has C contracts with a price
range [pL, pH ] such that 0 < pL < pH < 1 and pH − pL << 1.0. In the bounded-price
contract game, it is nearly always optimal for a seller to accept the lowest price when the
unit marginal cost for the offered task is below the price range and to counter-offer with
a price slightly higher than its valuation, when its marginal cost is within the price range.
When the marginal cost exceeds the range, the seller must reject the offer.

We only give a sketch for the argument as we do not compute the exact value for the
factor by which a seller should increase its valuation when its marginal cost falls within the
contracted range. This value depends on the overall load of the system (i.e., it depends on
the actual load distributions).

We first examine the case when a seller’s valuation, S (i.e., average unit marginal cost
for the offered task), is below the price range. We show that the best strategy is to accept
the lowest price. In BPM, a seller does not know about other competitors with certainty
but it expects the buyer to have a set of C contracts. The seller maximizes its utility by
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accepting the lowest price instead of counter-offering a higher price, p2, when the certain
profit, pL−S, is greater than the expected profit, (p2−S)P (p2). A very simple upper bound
for P (p2) is the probability, (1 − pL)C−1, that all other participants have a unit marginal
cost above p1 and simply cannot accept the lowest price, p1. Even with this approximation,
accepting the lowest price is beneficial as soon as:

pL − S > (p2 − S)(1− pL)C−1.

S <
pL − p2(1− pL)C−1

1− (1− pL)C−1
.

(6.19)

Because p2 can be at most pH :

S < pL

(
1− pH

pL
(1− pL)C−1

1− (1− pL)C−1

)
. (6.20)

For example, if the price range is [0.75, 0.8] and C = 5, the seller should accept the
lowest price as long as S < 0.9997pL. Hence, when the price range is small or when the
number of contracts is large, the seller should accept the lowest offered price as long as its
valuation, S is below pL.

We now examine the seller’s strategy when S ∈ [pL, pH ]. As discussed in Section 6.6.2,
in a sealed-bid first-price auction, where C buyers compete for a good, and their valuations
are uniformly distributed within range [0, 1], the strategy to submit a bid that is a fraction of
the valuation by a factor C−1

C is a Nash equilibrium strategy [172]. In a reverse auction, and
with a price range, the factor applied to the discount offered by the seller translates into the
following counter-offer: p2 = pH − βC−1

βC (pH −S), where βC−1 is the number of competing
sellers producing counter-offers within the price range. To determine the strategy of the
seller, we thus need to compute this number of competing sellers. Because a counter-offer
may result in receiving the load only if all competing sellers have a marginal cost above pL,
the seller should always consider that this is the case when producing a counter offer. This
situation is more likely to arise when the total load on the system is high. If all competitors
have a marginal cost above pL, only those with a marginal cost also below pH are actually
competing for the load. Because the price range [pL, pH ] is small, if the total offered load
is high, many participants will have a load above pH . However, each participant has a set
of C contracts that it uses to redistribute any load above pH , increasing the number of
participants with a unit marginal cost below pH . Thus, if a seller’s marginal cost is within
price-range, it should counter-offer a price based on the assumption that β is close to one.

In summary, it is nearly always optimal for a seller to accept the offered price when
its valuation is below pL. For a valuation within [pL, pH ], counter-offering a price slightly
higher than the valuation maximizes expected utility. When the seller’s valuation is above
pH , the seller should reject the offer.

The negotiation that we propose is thus efficient (i.e., participants do not waste much
time or resources on negotiation). Typically, lightly loaded sellers accept the lowest price
directly, for a one-step negotiation. In the rare case when all sellers are overloaded, the
buyer directly accepts the lowest counter-offer. In the even less frequent scenario when
all sellers and the buyer have marginal costs within the range, and their marginal costs
are similar, participants may fail to move load and may have to wait for a time period d
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before trying again. If a seller loses an offer and the same offer comes back, it is likely that
the buyer could not accept the offer and had to wait before retrying. The seller should
then counter-offer a lower value to improve the chances of a successful, mutually beneficial
load movement. By re-adjusting their counter-offers, participants can quickly agree on a
mutually beneficial final price.

Overall, we have shown that it is beneficial for participants to take part in BPM and that
their best strategy (under some simplifying assumptions) is to follow the intended imple-
mentation. We now discuss the algorithmic properties of BPM. To simplify our analysis, we
assume a system with homogeneous nodes and contracts. We study heterogeneous systems
in Chapter 7. Before examining the convergence time and communication overhead, we
first consider the conditions necessary to guarantee convergence to acceptable allocations,
the main goal of BPM.

In BPM, a load transfer takes place only if the marginal cost of the node offering load is
strictly greater than that of the node accepting the load. Because cost functions are convex,
successive allocations strictly decrease the sum of all costs and movements eventually stop
under constant load. If all participants could talk to each other, the final allocation would
always be acceptable and Pareto-optimal, i.e., no agent could improve its utility without
another agent decreasing its own utility. In BPM, however, because participants establish
only a few contracts, and exchange load only with their direct partners, this property does
not hold. Instead, for a given load, BPM limits the maximum difference in load levels
that can exist between participants once the system converges to a final allocation. This
property and the computation of the minimal price range yield the following theorem:

Theorem 2 If nodes, contracts and tasks are homogeneous, and contracts are set according
to Lemma 1, the final allocation under static load is an acceptable allocation for underloaded
systems and a nearly acceptable allocation for overloaded systems.

Precondition: All participants have cost functions that are monotonically increasing and
convex. Any node can run any task.

For convenience, we repeat Lemma 1 here:

Lemma 1 In a network of homogeneous nodes, tasks, and contracts, to ensure convergence
to acceptable allocations in underloaded systems, the price-range in contracts must be at
least: [FixedPrice−δM−1(tasksetF), FixedPrice], where M is the diameter of the network
of contracts and tasksetF is the set of tasks that satisfies MC(u, tasksetF − u) ≤ load(u) ∗
FixedPrice and MC(u, tasksetF) > load(u) ∗ FixedPrice.

Proof. We separately examine an overloaded and an underloaded system. For an over-
loaded system, we show that if at least one node remains overloaded in the final allocation,
then all nodes operate at or above their lower contract bound, and the system is in nearly
acceptable allocation. For an underloaded system, we show that it is impossible for any
node to have a unit marginal cost above the contracted range in the final load allocation,
making the allocation acceptable.

We first examine the conditions necessary for convergence to stop under static load. In
BPM, because cost functions are monotonically increasing and convex, and because load
moves only in the direction of decreasing marginal costs, convergence follows a gradient
descent. Convergence stops only when it is no longer possible to move any task between
any pair of partners. Suppose a node Ni has a load level taskseti. Ni, cannot move any
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load to any partner if and only if taskseti is below the contracted range, the load at each
partner, Ni+1, is above taskseti − u, or the load at each partner is above the contracted
range.

Using the conditions necessary for convergence to stop, we show that in the final load
allocation in an overloaded system, all nodes have a load level at or above tasksetF −
(M − 1)u, assuming the contract and system conditions from Lemma 1. Suppose, in the
final allocation, a node, N0, exists with a unit marginal cost greater than FixedPrice. By
definition of tasksetF , the load at N0 is at least tasksetF + u (one task above capacity).
Because the system has reached its final load allocation, no additional load movement is
possible, and none of the excess tasks from N0 can move to any of its partners. In this case,
no movement occurs only if each partner N1 of N0 has a load level of at least tasksetF .
If the load level at any N1 was even one task lower, by definition of tasksetF , the partner
could accept at least one excess task from N0 and the allocation would not be final. Similarly,
any partner N2 of N1 must have a load level of at least tasksetF − u. Otherwise, a load
movement would still be possible from N1 to N2. By induction on the path length, any node
Ni, i hops away from N0 must have a load level of at least tasksetF − (i− 1)u, as long as
the load at Ni−1 is within price range. Because the diameter of the contract network is M ,
each node in the system is at most M hops away from N0. The load level at such node, NM

is at least tasksetF − (M − 1)u because the load at their direct partners, one hop closer
to N0, is at least tasksetF − (M − 2)u, and that higher load is still within the price range.
Therefore, all nodes in the system have a load level of at least tasksetF − (M − 1)u, and
by definition, the system is in nearly acceptable allocation.

We now consider an underloaded system and show, by contradiction, that no node can
have a final load above capacity. The argument for overloaded systems shows that, if at
least one node is above its capacity, all nodes operate at or above their capacity at the lower
bound of the contract price-range. By definition, such a load distribution indicates that the
system is overloaded. By contradiction, a node, N0, with a load level above its capacity
cannot exist in an underloaded system.

According to the above theorem and lemma, a small price range suffices to achieve
acceptable allocation for underloaded systems and a nearly acceptable allocation for
overloaded systems. For a network diameter of M , the width of the price range is only:
δM−1(tasksetF). In Chapter 7 we show that in randomly selected configurations, an even
smaller price range enables the system to reach nearly acceptable allocations.

We now examine the computational complexity (i.e., convergence time) and communi-
cation overhead of the bounded-price mechanism. In general, offline-negotiated contracts,
especially fixed-price contracts, make the runtime game much simpler. They lead to a low
computational complexity in most configurations, and a communication overhead signif-
icantly smaller than with auctions. We first examine the computational complexity and
show the following property:

Property 3 Suppose each participant, i, has C contracts at a price corresponding to its
pre-defined capacity, Ti, and the total fixed excess load is K tasks. BPM has a best-case
convergence time of O(1) and a worst-case convergence time of O(KC).

In this property, K, is the sum of the excess load at all participants. An absolute total
of K tasks must be reallocated.
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Figure 6-15: Examples of best-case and worst-case load distributions. Overloaded
nodes are black, nodes loaded to upper price-bound are dark gray, nodes loaded to lower
price-bound are light gray, and nodes with significant spare capacity are white. Arrows
indicate bilateral contracts. In the best case, overloaded nodes move their excess load in
parallel to their first partner. In the worst case, excess load must propagate through a chain
of contracts.

The cost of moving load is proportional to the number of tasks moved and the size of
their state, but we do not consider state size in our complexity analysis. A node selects
the set of tasks to offer or to accept and computes their marginal cost at most once for
each load offer it produces or receives. Marginal cost computations can increase with the
number of offered tasks, but we assume that the increase is negligible (this may not be the
case in all applications). In the best case, overloaded participants simultaneously contact
different lightly loaded nodes, which accept all excess load at the offered price. All offers
and responses proceed in parallel as do the movements of the K tasks, resulting in an
O(1) convergence time. Figure 6-15(a) illustrates the best-case configuration. Auctions are
computationally more complex, and, during convergence, each node is likely to participate
in multiple auctions at the same time, risking overbooking or underutilizing its resources.
Overbooking does not occur with BPM when actual load conditions match expected ones.

In the worst case, fixed-price contracts do not lead to acceptable allocation. With
bounded-price contracts, because convergence follows a gradient descent, the worst-case is
when convergence requires load to propagate through a long chain of nodes. Figure 6-15(b)
illustrates this worst-case configuration. In the example, all excess load is located at one
node, and all other nodes in the system are exactly at capacity, except for one node that has
significant spare capacity. If nodes counter-offer a price for one task, each load movement
reallocates exactly one task. In each iteration, half the nodes in the chain offer a task and
the other half accepts a task. Because a total of K tasks must move, the convergence time
is thus 2K, independent of the depth of the chain. Additionally, because each node has C
contracts, it must contact all C partners in turn every time it negotiates a final price within
range. The worst-case convergence time is thus O(KC).

With auctions, the worst-case convergence time is a little lower because nodes commu-
nicate with their C partners in parallel and nodes can also potentially move more tasks
at each iteration. The depth of the chain, however, bounds the number of tasks moving
together. The size of these groups also decreases as the system gets closer to an even load
distribution.

The bounded-price mechanism has thus a lower complexity than auctions in the best
case, and does not necessarily perform much worse in the worst case. The best-case and
worst-case complexities are extreme examples, though. In general, with bounded-price
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contracts, load may neither be absorbed by direct neighbors nor has to propagate through
a single chain. Rather, load propagates on parallel paths created by the contract network.
We can thus expect convergence times to decrease quickly with each additional contract that
nodes establish. We investigate these situations in Chapter 7, confirming these hypotheses.

We now examine the communication overhead of our approach and compare to that
imposed by auctions. We show the following property:

Property 4 Suppose each participant, i, has C contracts at a price corresponding to its pre-
defined capacity, Ti, and the total fixed excess load is K tasks. To converge, BPM imposes
a best-case communication overhead of O(1) and a worst-case overhead of O(MKC), where
M is the diameter of the contract network.

With our mechanism, most load movements require just three messages: an offer, a
response, and a load movement. Load movement messages impose the greatest overhead
when tasks move with their state. We do not consider this overhead here. Offer and response
messages are small: they only contain lists of tasks, statistics about resource utilization,
and prices. We consider that the per-message overhead is constant.

The best-case communication overhead for the bounded-price mechanism is thus O(1).
In contrast, an approach based on auctions has a best-case per-movement communication
overhead of O(C). Because with auctions the system converges to uniform load distribu-
tions, the overall overhead can grow to be much larger than O(C). If participants must
move K tasks through a chain of M nodes, the worst-case overhead of BPM may be as
high as O(MKC). The overhead could decrease to O(M(K + C)) if overloaded nodes told
their partners to stop sending them offers after the first failed offer. With auctions, nodes
always send each offer to their C partners, but they can potentially move more tasks at
once through a chain.

Compared with auctions, BPM thus significantly reduces both communication overhead
and computational complexity in the best case. In the worst-case, both techniques can
have a high complexity and overhead. BPM can potentially do a little worse. One of the
main advantages or BPM, however, is the overall smaller number of load movements. Load
moves only when a participant’s load exceeds a contract price while some of its partners
have spare capacity, or a participant’s load falls below a contract price while some of its
partners are overloaded. Load variations away from contract boundaries do not cause load
movements, as we discuss further in the next chapter.

6.9 Summary

In this chapter, we presented BPM and some of its properties. The basic idea of BPM
is for participants to establish bilateral contracts offline. These contracts specify a small
range of prices that participants must pay each other at runtime for processing each other’s
load. Contracts can also specify a load movement duration, which determines the minimum
amount of time before either partner can cancel an earlier load movement. We showed that
the best strategy for a participant (under some conditions) is to follow our intended imple-
mentation of offering and accepting load when doing so improves its utility, and that a small
price range ensures that a homogeneous system always converges to either an acceptable
or a nearly acceptable allocation. In the next chapter, we complete BPM’s analysis with
simulations, describe its implementation in Borealis, and show results from experiments
with our prototype.
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Chapter 7

Load Management: Evaluation

In the previous chapter, we presented BPM and some of its properties. In this chapter, we
complete the analysis and evaluation, showing simulation results, implementation details,
and a few experiments on a real workload.

Simulating random networks of contracts and random initial load allocations, where the
load at each node is drawn from the same skewed distribution, we find that BPM works well
in heterogeneous environments, where nodes with different capacities establish contracts at
different prices. We find that a small number of contracts per node suffices to ensure the
final allocation is nearly acceptable for both underloaded and overloaded heterogeneous
systems. Interestingly, even though they do not always lead to an acceptable allocation,
we find that fixed-price contracts often lead to good load distributions. A small number
of fixed-price contracts per node enables these nodes to reallocate most excess load and
use most of the capacity available in the system. Additionally, fixed-price contracts lead
to extremely rapid convergence to a final load allocation. With price-ranges, convergence
can sometimes take a long time, but 95% of its benefits occur approximately within the
first 15% of convergence time in the simulated configurations. Under dynamic load, we
show that even with small price ranges, BPM absorbs a large fraction of load variations.
Finally, we show that BPM works well on load variations that may appear in a real network
monitoring application.

In Section 7.1, we present and discuss all simulation results. In Sections 7.2 and 7.3,
we present the implementation of BPM in Borealis and show results from experiments with
our prototype implementation on a real workload. Finally, we discuss some limitations of
BPM before concluding with the main lessons learned in Section 7.4.

7.1 Simulations

In this section, we present the simulation results. We first describe our simulator and the
system configurations that we simulate (Sections 7.1.1 and 7.1.2). We show that BPM
enables a system to converge to good load distributions (Section 7.1.3), reallocating most
load quickly, even when nodes produce counter-offers higher than their valuations (Sec-
tion 7.1.4). Finally, we show that BPM efficiently absorbs a large fraction of load variations,
even when nodes are allowed to cancel those load movements that are no longer profitable
(Section 7.1.5).
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min # of contracts at any node 1 2 3 4 5 6 7 8 9 10
max # of contracts at any node 13 14 15 16 16 17 18 18 18 18
avg diameter of contract topology 20 11 8 7 6 5 5 5 4 4
min diameter of contract topology 17 10 8 7 6 5 5 5 4 4
max diameter of contract topology 22 14 9 7 6 6 5 5 5 5

Table 7.1: Properties of the ten simulated topologies.

7.1.1 Simulator Implementation

We use the CSIM discrete event simulator [113] as our simulation engine. CSIM enables us
to model each node as an autonomous process and takes care of scheduling these simulated
processes.

Each node implements the load shedding algorithm from Figure 6-4. We force nodes
to sleep for a time-period, D = 1 simulated second, after every successful load movement
or if no load movement is possible. Inserting a delay between load movements is necessary
in practice to let load stabilize before computing the new load conditions. Each node
also implements the algorithm for accepting load from Figure 6-5 with the difference that
we implement each load offer and response with a method call. Therefore, a load offer,
response, and possibly the resulting load movement occur instantaneously in our simulator.
This idealization is not likely to affect our results because, in practice, the delay to exchange
messages and move load are significantly shorter than the time-period D.

For price-range contracts, we also need to simulate price negotiations. Each node im-
plements the price-negotiation algorithm from Section 6.6.2. Hence, when it receives a load
offer, a node either accepts the load or subset of the load, rejects the offer, or responds with
a counter-offer. Unless indicated otherwise, the counter-offer is equal to the valuation for
one task. We simulate and discuss higher counter-offers at the end of Section 7.1.4. Be-
cause counter-offers are binding, when a node issues a counter-offer, it temporarily reserves
resources for the expected load. Upon receiving a counter-offer, the buyer sends the original
offer to another partner. If all partners respond with a counter-offer, the buyer moves load,
if possible, to the partner with the lowest counter-offer, and tells other partners they are
no longer bound by their counter-offers. We require buyers to wait for a short time-period,
d = 0.025D, after each counter-offer, such that with 10 contracts, the total negotiation
lasts at most a quarter of the interval. These short delays, d, enable us to better simulate
interleaved price negotiations, where multiple nodes try to shed load to the same partners
at the same time. If no load movement is possible, a node must wait for time D before
retrying to offer load at the minimum price.

7.1.2 Topologies Simulated

We simulate a system of 995 participants that we connect with bilateral contracts to form
various randomly-generated contract topologies. We simulate topologies with varying min-
imum number of contracts per node. To create a topology, each node first establishes a
bilateral contract with an already connected node. Nodes that still have too-few contracts
randomly select additional partners. With this algorithm, the difference between the mini-
mum and maximum numbers of contracts that nodes have is small, as shown in Table 7.1.
For instance, no node has more than 18 contracts when the minimum number of contracts
per node is 10. The table also shows the diameters of the simulated topologies. For each
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Contracts Price Selection
Uniform Fixed Node capacity 100 tasks. Contract price at 100 tasks.
Uniform Range Node capacity 100 tasks. Price-range corresponds to [95,100]

tasks.
Heterogeneous Fixed Node capacities uniformly distributed in the range [80,120]

tasks. Each contract at price corresponding to the lower of the
two partner capacities.

Heterogeneous Range Node capacities uniformly distributed in the range [80,120]
tasks. Same contracts as in fixed-price heterogeneous variant
but extended to a 5-task range: [Fixed-5,Fixed].

Table 7.2: Simulated variants of BPM.

minimum number of contracts, we generate 10 different topologies. The table shows the av-
erage, minimum, and maximum diameters across the 10 topologies. The first few contracts
drastically shrink the diameter of the contract topology from 20 to 8. Additional contracts
decrease the diameter much more slowly.

We simulate both uniform and heterogeneous systems. In a uniform system, all nodes
have the same capacity. We set this capacity to be 100 tasks (or 100%). To create het-
erogeneity, we distribute node capacities uniformly in the range [80, 120]. This choice is
arbitrary, but it enables the difference between node capacities to reach up to 50%. We
enable load movements at the granularity of one task (or 1% of total capacity). In our sim-
ulator, we abstract away the exact cost functions and marginal costs. We express contract
prices directly in terms of load levels. If a contract price is equal to 100, a load movement
occurs as soon as the buyer’s load is at or above 101 and the seller’s load is at or below 99.

We study and compare the convergence properties of four variants of our mechanism.
Table 7.2 summarizes the parameters of these four variants:

1. In the Uniform Fixed variant, all nodes have the same capacity and the same fixed-
price contracts. We set contract prices to be equal to node capacities.

2. In the Uniform Range variant, all nodes have the same capacities again, but we
extend their fixed-price contracts to cover a 5-task range (i.e., contracts cover the
range [95, 100]). We use 5-task ranges because such ranges correspond to the second
smallest contract-topology diameter that we simulate.

3. In the Heterogeneous Fixed variant, node capacities and contract prices vary within
[80, 100]. When two nodes with different capacities establish a bilateral contract, they
use as price the smaller of their capacities. For example, if a node with capacity 84
establishes a contract with a node whose capacity is 110, the contract price is 84.

4. In the Heterogeneous Range variant, node capacities and contract prices also vary
within [80, 100]. When nodes with different capacities establish a bilateral contract,
they use as the higher bound for the price-range, the smaller of their capacities. The
width of the range is always 5 tasks. For example, if nodes with capacity 84 and 110
establish a contract, the contract covers the range [79, 84].

7.1.3 Convergence to Acceptable Allocations

We study load allocation properties for heterogeneous systems and compare the results to
those achieved in a system of uniform nodes and contracts. We find that even a small
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Configuration Load level k T α

Light load 50% total capacity 1 300 0.01
Heavy load 75% total capacity 1 300 -0.22
Light overload 125% total capacity 1 300 -0.70
Heavy overload 150% total capacity 1 300 -1.00

Table 7.3: Probability distributions used in initial load allocations. The distribu-
tion is: F (x) = (1− (k

x)α)( 1
1−( k

T
)α

). [k, T ] is the range of initial load values. α is the shape

parameter. Nodes start with at least one task and at most a load three times their capacity.

number of fixed-price contracts enables a potentially heterogeneous system to converge
to nearly acceptable allocations for all load levels simulated. Small price-ranges help the
system reach good load distributions with fewer contracts per node.

We simulate each of the four variants of BPM and each of the ten topologies under four
different load conditions: 1) light load, where the overall load corresponds to 50% of system
capacity, 2) heavy load, where the overall load corresponds to 75% of system capacity, 3)
light overload, where the overall load corresponds to 125% of system capacity, and 4) heavy
overload, where the overall load corresponds to 150% of system capacity. To create each
load condition, we draw the load at each node from the same family of distributions as in
the previous chapter. Table 7.3 summarizes the exact distributions used for each load level.

Starting from the skewed load assignments, we let nodes move load between each other.
Once all load movements stop, we examine how far the final allocation is from being accept-
able. Figure 7-1 shows the results. For the two underloaded configurations, the figure shows
the fraction of all tasks that remain above the capacity of some nodes. These tasks should
still be reallocated but the system is unable to do so. For the two overloaded configurations,
the figure shows the fraction of total capacity that remains unused. This capacity should be
used but the system is unable to use it. In all four graphs, the column with zero minimum
number of contracts shows the initial conditions before any load movements take place. For
example, in the light load scenario, the initial allocation is such that 30% of all tasks need
to be moved for the system to reach an acceptable allocation. In the light overload scenario
about 26% percent of the total available capacity is not being used initially.

Overall, as the number of contracts increases, the quality of the final allocation improves
for all variants and all load configurations: nodes manage to reallocate a larger amount of
excess load or exploit a larger amount of available capacity. The improvement is especially
significant for the first two to four contracts that nodes establish. With approximately 10
contracts per node, the system converges to nearly acceptable allocations for all simulated
configurations, i.e., all types of contracts and all load levels.

With uniform price-range contracts, the system reaches an acceptable allocation with as
few as two contracts per node for both underloaded configurations (Figure 7-1(a) and (b)).
This result is significant because the theoretical analysis from Section 6.6 predicts that up
to six contracts per node will be needed. With six contracts, the diameter of the topology
is equal to the price-range, which is the necessary condition to ensure acceptable allocation.
With random topologies, however, with a price range equal to only half the diameter, the
system reaches an acceptable allocation, for all ten topologies simulated.

For overloaded systems (Figure 7-1(c) and (d)), with uniform price-range contracts,
BPM only ensures nearly acceptable allocations, i.e., some nodes may operate slightly below
their capacities. The results show that with just two contracts per node, less than 0.5% of
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Figure 7-1: Convergence to acceptable allocation for different total load levels
and different numbers of contracts per node. Figures (a) and (b) show the fraction
of total load that has failed to be reallocated in underloaded systems. Figures (c) and
(d) show the fraction of total capacity that has failed to be used in overloaded systems.
Histograms show average values. Error bars show minimum and maximum values from the
10 simulations.

total capacity remains unused. Hence, with just two contracts per node, our approach is able
to exploit 99.5% of total system capacity. Interestingly, with a few additional contracts, the
system even reaches acceptable allocation. For heavy overload, 8 contracts suffice to ensure
acceptable allocation in all simulated topologies. For a smaller overload, a minimum of 10
contracts is necessary for some configurations to start reaching an acceptable allocation.

Interestingly, fixed-price contracts also lead to good load distributions. In a lightly
loaded system, with only two contracts per node, the system reallocates on average all load
except only 5% of tasks. As few as 5 contracts suffice to bring this value below 1% for all
simulated configurations. This result shows that fixed-price contracts are highly efficient
in handling load spikes in a generally lightly loaded system. Even when the load is high,
fixed-price contracts perform quite well. At 75% total load, with only 8 contracts per node,
all configurations reallocate all but 2% of excess tasks. For overloaded systems, with as
few as 4 contracts per node, the system is always able to exploit over 95% of available
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capacity. Results are even better for heavily overloaded systems, where 5 contracts per
node enable the system to exploit over 99% of total capacity. Hence fixed-price contracts
are also effective at handling an overloaded system.

We find that our approach works well in heterogeneous systems as well (such config-
urations are likely to be more common in practice). As shown in Figure 7-1, although a
heterogeneous system does not always achieve acceptable allocations or requires a larger
number of contracts to do so, few contracts suffice to achieve nearly acceptable allocations.

More specifically, we find that heterogeneous fixed-price contracts lead to slightly better
load distributions than uniform fixed-price contracts in underloaded systems with small
numbers of contracts. For up to 7 contracts per node, the heterogeneous system reallocates
up to 2% more tasks than the uniform one in both underloaded configurations. Indeed, het-
erogeneous contracts make it possible for load to move further away from its point of origin,
by following a chain of contracts at decreasing prices, enabling the system to achieve better
load distributions. Heterogeneity, however, causes inefficiency as load movements between
partners are limited by the lower of their two capacities. This inefficiency becomes apparent
with larger numbers of contracts, when uniform prices start to outperform heterogeneous
ones. Inefficiency due to heterogeneity make it especially difficult for BPM to exploit all
available capacity in an overloaded system. Uniform fixed-price contracts outperform het-
erogeneous ones with much fewer contracts in overloaded system. Overall, however, the
performance of the uniform and heterogeneous settings is comparable in all configurations.

Similar dynamics control the performance of a system with heterogeneous range con-
tracts. The performance is good in general. With as few as two contracts per node, the
system reallocates all but 5% of load in the underloaded settings and use over 95% of avail-
able capacity in overloaded settings. However, it takes at least six contracts per node for the
system to always achieve acceptable allocation when lightly loaded. The system achieves
only nearly acceptable allocation under heavier load or overload.

7.1.4 Convergence Speed

We now study the time it takes for convergence to occur in uniform and heterogeneous
systems under different load conditions. We show that, as expected, with uniform fixed-
price contracts all load movements occur almost simultaneously as soon as the simulation
starts, leading to an extremely fast convergence. Convergence takes longer with price ranges
because it takes time for load to propagate through chains of nodes. Most tasks, however,
are reallocated rapidly as soon as the simulation starts. Subsequent movements provide
decreasingly smaller benefits. In the uniform systems, speed also increases rapidly with the
number of contracts per node because load can propagate in parallel in many directions.
With price-range contracts, we find that counter-offers higher than valuations do not hurt
convergence speed as soon as nodes have more than two contracts each.

Figure 7-2 shows concrete examples of convergence. These examples are from the 75%
load level configuration and a minimum of three contracts per node. We chose a configura-
tion with few contracts to show the effects of moving load through chains of nodes. Only
uniform range contracts lead to acceptable allocation in this configuration. The results show
the total number of tasks moved at every time period, the total number of load movements,
and also the total number of tasks that remain to be reallocated. The exact values are not
important as they depend on the system settings. The overall trends are the important
result. Simulations stop 10 seconds after the last load movement.

For all variants, most load movements occur within the first few seconds of the simulation
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Figure 7-2: Examples of convergence dynamics. The left y-axis is cut-off at 500.
Initial load movement values are significantly greater than 500. In all cases, the first few
movements provide the most benefits. Later movements push smaller amounts of load
through chains of nodes.

and each one of those early load movements reallocates a large number of tasks: i.e., the
number of tasks moved is significantly greater than the total number of load movements,
indicating that each movement involves many tasks. Early load movements also provide
most of the benefits of the overall convergence as shown by the sharp decrease in the total
number of tasks that still need reallocation. This fast convergence is partly explained by
the ability of BPM to balance load between any pair of nodes in a single iteration and partly
by its ability to balance load simultaneously at many locations in the network.

With uniform fixed-price contracts, convergence quickly stops, because load can only
move one hop away from its origin. All load movements thus occur within the first few
seconds. Heterogeneous fixed prices allow some additional movements as tasks propagate
through chains of contracts with decreasing prices. Nevertheless, load movements also
quickly stop.

In the uniform configuration, with price-range contracts, convergence goes through two
distinct phases. The first phase lasts only a few seconds. In these first few seconds, over-
loaded nodes move large groups of tasks to their direct partners. Many movements occur,
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Figure 7-3: Convergence speed in lightly loaded and heavily overloaded systems.
With fixed prices, convergence time is always short, even negligible for the uniform system.
With price ranges, converges takes longer but 95% of its benefits occur within approximately
the first 15% of convergence time or less.

each involving many tasks. The number of tasks that needs reallocation decreases sharply.
In the second phase, nodes slowly push the remaining excess load through chains of nodes.
The graphs show a long tail of load movements that provide small incremental improve-
ments to the total number of tasks to reallocate. The number of tasks moved at each time
unit is equal to the number of load movements, indicating each movement reallocates a
single task. This behavior is consistent with propagating load through chains of nodes.

Heterogeneity creates chains of contracts at decreasing prices. Heterogeneity thus re-
duces the number of tasks moved early on because contract prices are lower than in the
uniform environment. Subsequent load movement, however, continue to move groups of
tasks rather than one task at the time. This phenomenon occurs because the differences in
contract prices are greater in the heterogeneous environment. In the uniform case, nodes
can modify prices only within the small contracted range.

Figure 7-3 shows the final convergence time for multiple simulated configurations. The
figure shows both the time of full convergence and the significantly shorter time to get
within 5% of the final load distribution. With uniform fixed-price contracts, the conver-
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Figure 7-4: Effect on convergence time of counter-offers above valuation. There
is almost no impact as soon as nodes have three or more contracts each.

gence is so short, it is barely visible on the graphs. Convergence always stops within five
seconds of the beginning of the simulation. Price-range contracts lead to a longer conver-
gence. In the uniform case, convergence time decreases quickly with each extra contract
per node because load can propagate in parallel in many directions. Heterogeneous envi-
ronments have a slower convergence than their uniform counterparts. Interestingly, when
heterogeneous contracts are fixed, convergence time remains approximately constant with
the number of contracts. Indeed, instead of simply speeding up convergence, each addi-
tional contract enables these system to converge to an allocation closer to acceptable. With
price-range contracts, convergence time decreases quickly with the first few contracts per
node. Additional contracts do not improve convergence speed much.

In the previous experiments, when negotiating the final price within the contracted
range, nodes were always counter-offering their true valuation for one additional task. We
now examine the effects of counter-offers above valuations. We modify our simulator as
follows. When a node receives an offer while its load level is within the contracted range,
it counter offers a price equal to its valuation plus a configurable number x of tasks. If a
counter-offer does not result in a load movement, the node counter-offers its exact valuation
on the second attempt. Counter-offers above valuations may thus affect convergence time
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but they have the same properties in terms of final load distribution. Except when the
counter-offer equals the maximum price within the range, all counter-offers are for a single
task. Because counter-offers are binding, when producing a counter-offer, a node reserves
resources for the potential new task(s). Figure 7-4 shows the results for a uniform system,
where nodes counter offer either their valuation or their valuation plus one or two tasks.
One or two task differences are significant as the price range covers only a five task interval.
Interestingly, except for configurations with one or two contracts per node, counter-offering
a price higher than the valuation neither hurts nor helps convergence speed. Indeed, even
though counter-offers are higher, nodes still move only one task at the time most of the
time. A higher counter-offer causes a load movement to fail only when the buyer’s valuation
is within a task or two from that of the seller, which occurs rarely with multiple sellers.

7.1.5 Stability under Changing Load

We now examine how BPM handles changing load conditions. Overall, we find that BPM
efficiently absorbs a large fraction of load variations, even when nodes are allowed to cancel
those load movements that are no longer profitable. Stability is similar with fixed prices
and with small price ranges because the probability that the load of a node falls within
range is small when the price-range is small.

To simulate variable load, we add two processes to each simulated node: one process
that periodically increases load and one process that periodically decreases load. The time
intervals between adding or removing tasks follow exponential distributions. To simulate
increasingly large load variations, we decrease the mean of the distributions. Because the
simulator can only handle a maximum of 1000 processes, we decrease the size of the simu-
lated system to 330 nodes. We simulate a topology where each node has at least 10 contracts
because such a large number of contracts enables a larger numbers of load movements. The
simulated topology has a diameter of four.

Starting from a skewed load assignment, we let the system converge to acceptable al-
location, which occurs rapidly with 10 contracts per node. At time t = 50 seconds, we
start to simulate small load variations using a mean of 50 seconds: every node receives a
new task on average every 50 seconds. Because there are 330 nodes in the system, there
are on average 6.6 new tasks in the system every second. We use the same distribution
for removing load, so on average 6.6 tasks leave the system every second. The total load
on the system thus remains approximately constant. At time t = 300 seconds, we increase
load variations by reducing the mean to 10 seconds. Finally, at time t = 600 seconds, we
further reduce the mean to 1 second. Figure 7-5 shows the results. Each graph has three
curves. The top-most curve shows the variations in the overall offered load, which is the
total number of tasks added or removed from the system. The bottom two curves show
the total number of tasks reallocated when contracts are fixed or cover a price-range of
five tasks. A bad property of the mechanism would be for small load variations to lead
to excessive reallocations. Our simulations show that the system handles load variations
well. For all load conditions, the system absorbs most load variations without reallocations.
Interestingly, fixed and price-range contracts lead to a similar number of load reallocations,
while we would expect fixed prices to cause fewer load movements. Because the price range
is small, the probability that a node falls exactly within the range is small as well. The
overall effect of price-range is thus negligible.

In the previous experiments, once a node moves some of its tasks to a partner, it moves
these tasks forever. Load moves back only if it becomes profitable for both partners to use

164



 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0  200  400  600  800  1000

Lo
ad

 v
ar

ia
tio

ns
/T

as
k 

re
-a

llo
ca

tio
ns

Time (seconds)

Offered load
Range contracts
Fixed contracts

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0  200  400  600  800  1000

Lo
ad

 v
ar

ia
tio

ns
/T

as
k 

re
-a

llo
ca

tio
ns

Time (seconds)

Offered load
Range contracts
Fixed contracts

(a) Light load (b) Heavy load

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0  200  400  600  800  1000

Lo
ad

 v
ar

ia
tio

ns
/T

as
k 

re
-a

llo
ca

tio
ns

Time (seconds)

Offered load
Range contracts
Fixed contracts

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0  200  400  600  800  1000

Lo
ad

 v
ar

ia
tio

ns
/T

as
k 

re
-a

llo
ca

tio
ns

Time (seconds)

Offered load
Range contracts
Fixed contracts

(c) Light overload (d) Heavy overload

Figure 7-5: Stability under variable load. BPM and its fixed-price variant absorb
most load variations without reallocations. The system size is 330 nodes.

their contracts and move load in the other direction. In our approach, however, load moves
only for a time-period D. Once the time-period expires, either party can cancel a load
movement if they no longer find it profitable. Moving load for a limited time-period can
lead to greater instability. To measure the effect of moving load for a limited time-period,
we start from an acceptable allocation (we bound the initial load to interval [1, 100]) and
either a light load (50% load) or a heavy load (75% load). We then apply the same load
variations as in the previous simulations. We set the minimum load movement duration,
D, to 1 second. Figure 7-6 shows the results. As expected, limiting the minimum load
movement duration increases the number of load reallocations. Nevertheless, BPM still
successfully absorbs most load variations without reallocations.

In this section, we explored, through simulations, some properties of BPM. We showed
that in randomly-generated topologies, a few price-range contracts per node suffice for the
system to ensure convergence to acceptable allocations, independent of the overall load level.
We also showed that fixed-price contracts and heterogeneous contracts lead to nearly ac-
ceptable allocations with only a handful of contracts per node. We showed that convergence
to the final load distribution occurs rapidly, especially with fixed-price contracts, and that
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Figure 7-6: Stability under variable load and limited load movement durations.
Limiting load movement durations increases the number of load movements but most load
variations are still absorbed by the system. The system size is 330 nodes.

in all cases most of the benefits of convergence occur quickly. Finally, we showed that BPM
handles variable load conditions well, masking most load variations without causing load
movements. In the next section, we focus on the actual implementation of the mechanism
in Borealis.

7.2 Implementation

In this section, we describe the implementation of BPM in Borealis v0.2. This early version
of Borealis is the Medusa system with just a few extra features.

We could implement our load management protocols at two different levels: between
processing nodes or between groups of nodes belonging to the same participant. Our ap-
proach can work in both configurations. We decided to experiment with the simpler case,
i.e., load management at the granularity of individual nodes. We thus consider each node
to be a separate participant, and present the implementation of our approach inside each
Borealis node.

As discussed in Chapter 3, we add a Load Manager module to each Borealis node.
This module encapsulates all the logic of BPM. For convenience, Figure 7-7 repeats the
software architecture of a Borealis node from Figure 3-5. Load Managers on different nodes
communicate with each other to make load movement decisions. To move load, the Load
Manager at the source node instructs the Admin module of the local Query Processor to
perform the load movement and update the Global Catalog. The local Query Processor
gathers statistics about local load conditions. The Load Manager uses these statistics as
input to BPM. We now present the Load Manager module in more detail, describing first
the configuration information necessary for the Load Manager and then the actual protocol
implementation. We conclude this section with a discussion of the limitations of our current
implementation.
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Figure 7-7: Software architecture of a Borealis node.

7.2.1 Static Configuration

The Load Manager needs three pieces of information defined offline: a set of contracts with
other nodes, a cost function to compute the marginal costs for processing tasks locally, and
a partition of the query diagram into fragments, which define the units of load movements.

Contracts between nodes are configured statically in a file. Each node reads a file called
medusa config.xml, where it finds information about its partners and the prices of their
contracts. It would be an easy next step to pass this configuration information dynamically
through the Global Catalog. Most importantly, contracts between nodes are defined offline,
and each node must be given a set of contracts.

Each node uses the same cost function. Given ρcpu, the total CPU utilization, and ρbw,
the current output bandwidth utilization, the total cost is computed as:

ρcpu

1− ρcpu
+

ρbw

1− ρbw
. (7.1)

This cost function is the total number of tuples being processed or awaiting processing
using an M/M/1 approximation for the queuing model. We chose this function as a simple
technique for computing load levels and marginal costs using only course grained information
about CPU and bandwidth utilization. The cost function is currently hard-coded, but it
would be interesting to allow the cost function to be more easily configurable.

In Borealis, when users add operators to the query diagram, they can group these
operators into queries. A query is thus a fragment of the overall query diagram. Our load
management mechanism uses queries as load movement units. With this approach, the user
can decide on the most appropriate way to group operators for load movement purposes.
The Load Manager does not make these decisions.

The above static information suffices for the Load Manager to run BPM. We now de-
scribe the Load Manager’s runtime operations.

7.2.2 Load Management Protocol Implementation

The runtime operations consists of gathering and processing statistics about local load
conditions, producing load offers when appropriate, and processing load offers received
from partners.

To make load movement decisions, the Load Manager needs up-to-date information
about the local load conditions. The Query Processor computes this information. More
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specifically, for each locally running query, the Query Processor measures the data rates
on the query input and output streams. We compute average rates using an exponentially
weighted moving average. Given an average input rate, the Query Processor computes the
approximate CPU utilization by multiplying the input rate by a pre-defined constant. The
Query Processor computes bandwidth utilization by dividing the aggregate output rate by
a pre-defined constant, as well. These statistics are quite crude and work only for simple
query diagrams where the CPU utilization grows with the input rate. New versions of
Borealis have significantly improved statistics capabilities.

Given statistics about local load conditions, the load management protocol implemen-
tation is quite straightforward. The Load Manager periodically requests statistics from the
Query Processor and recomputes the local load conditions. The period is a configurable
parameter: longer periods help absorb short load spikes but delay load movements after
load conditions change. Given the current load level, the Load Manager sends out load
offers and examines the load offers received in the last interval.

To produce load offers, the Load Manager sorts contracts such that failed or unresponsive
partners are sorted last, preceded by partners who rejected the last load offer, preceded
themselves by all other partners sorted on contract price. Examining each contract in turn,
the Load Manager computes the maximum number of queries that it should offer to its
partner. As soon as it finds a profitable load offer, the Load Manager sends the offer and
stops examining other contracts to ensure that the most profitable load movements are
performed. Later, the Load Manager handles responses to load offers asynchronously, and
moves operators as soon as they are accepted.

To process load offers received from other nodes, the Load Manager examines offers by
decreasing price and decides for each one how many queries to accept, accepting as many
queries as possible, and as many offers as possible. If no boxes can be accepted, an offer is
explicitly rejected.

Currently, the Load Manager does not optimize the set of queries that it offers or
accepts. These queries already correspond to pre-defined load fragments, and the goal
is only to achieve an acceptable allocation. When offering or accepting tasks, the Load
Manager compares their marginal costs to the contract price plus or minus a small value.
We use this technique to avoid oscillations when the load level is close to the contract price.
This safety is necessary because our statistics and load levels are not accurate and change
with time.

The Load Manager thus basically follows the intended implementation for the fixed-price
variant of BPM.

7.2.3 Load Movements

When two Load Managers agree to move load from one node to the other, the source Load
Manager sends a load movement request to the local Admin of the Query Processor. The
load movement then proceeds as follows:

1. Load movement preparation at the source node: The Query Processor at the source
node suspends the operators that must be moved, optionally copies their states into
temporary buffers, and starts buffering their inputs.

2. Remote instantiation:
(a) The Query Processor at the source node sends the query diagram fragment to

the Query Processor at the destination node, transmitting the list of boxes,
optionally their states, and the list of downstream clients.
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(b) The destination node instantiates the new boxes locally and initializes their states
from the copied versions.

(c) The destination node updates its input stream subscriptions. It also updates its
list of downstream clients, opens connections to these clients, and starts process-
ing the new boxes.

(d) The destination node notifies the global catalog about the new location of the
boxes and streams.

3. Clean-up:
(a) Once the boxes are safely running at the destination node, the source node deletes

the boxes from its local processing engine and stops buffering their inputs.
(b) The source node adjusts its own subscriptions and list of clients.

Newer versions of Borealis follow a slightly different load movement algorithm. For
instance, the source node updates the global catalog and pre-computes all changes in con-
nections between nodes. Also, in older versions of Borealis, the Admin module is separate
from the Query Processor module.

7.2.4 Implementation Limitations

Our implementation has several limitations, which we now enumerate. First, the prototype
still uses the old crude statistics for computing local load conditions. Second, the imple-
mentation supports only fixed-price contracts. Third, once load moves, it currently moves
forever. Load Managers do not keep track of where there tasks are running and whether
it may be profitable to move some load back. Finally, our implementation ignores the cost
of moving load and moves load without state to ensure smoother and faster movements.
Borealis has the capability to move load with state. It would be interesting to take that
cost into consideration and keep the state as we move load.

7.3 Prototype Experiments

We demonstrate how our approach can work in practice by running a network monitoring
query on real input data. We deploy the query in a simple federated system composed of
three Borealis nodes, which have contracts with each other. We show that the bounded-price
mechanism effectively reallocates the excess load that naturally occurs in this application.
We also show that the system can scale incrementally. We overload the three node system
then add a fourth node at runtime, showing that the system uses the extra capacity to reach
an acceptable allocation once again.

The network monitoring query is that from Figure 1-3 but without the final Join oper-
ator. We run the query on network connection traces collected at MIT (1 hour trace from
June 12, 2003) and at an ISP in Utah (1 day trace from April 4, 2003). To reduce the
possible granularity of load movements, we partition the Utah log into four traces that are
streamed in parallel, and the MIT log into three traces that are streamed in parallel. To
increase the magnitude of the load, we play the Utah trace with a 20× speed-up and the
MIT trace with an 8× speed-up.

Figure 7-8 illustrates our experimental setup. Node 0 initially processes all partitions of
the Utah and MIT traces. Nodes 1 and 2 process 2/3 and 1/3 of the MIT trace, respectively.
Node 0 runs on a desktop with a Pentium(R) 4, 1.5 GHz and 1 GB of memory. Nodes 1
and 2 run on a Pentium III TabletPC with 1.33 GHz and 1 GB of memory. The nodes
communicate over a 100 Mbps Ethernet. All clients are initially on the same machines as
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Figure 7-8: Experimental setup.

the nodes running their queries. All Borealis nodes have fixed-price contracts with each
other and are configured to take or offer load every 10 seconds.

Figure 7-9 shows the results obtained. Initially, the load at each node is approximately
constant. At approximately 650 seconds, the load on the Utah trace starts increasing and
causes Node 0 to shed load to Node 1 twice. After the second movement, load increases
slightly but Node 1 refuses additional load making Node 0 move some operators to Node
2. The resulting load allocation is not uniform but it is acceptable. At around 800 seconds,
Node 1 experiences a load spike, caused by an increase in load on the MIT trace. The spike
is long enough to cause a load movement from Node 1 to Node 2, making all nodes operate
within capacity again. Interestingly, after the movement, the load on Node 1 decreases. This
decrease does not cause further reallocations because the allocation remains acceptable.

Figure 7-10 shows screenshots from an application that periodically queries Borealis
nodes to get information about their current load conditions and about the recent load
movements they performed. The initial setup in this experiment is the same as above: three
nodes with identical contracts with each other. Figure 7-10(a) shows a similar scenario to
the first few movements from Figure 7-9. In Figure 7-10(b), however, we overload the
system such that it operates in a nearly acceptable allocation. Node 0 operates at capacity.
Node 1 is overloaded. Node 2 operates just below the contract price. We add a fourth node,
Node 3, to the system. This node has a contract only with Node 2 but this contract is at a
lower price than the other three contracts. The figure shows how Node 2 moves some load
to Node 3 thus freeing capacity to accept the excess load from Node 1. Node 2 then moves
this excess load to Node 3 because it is cheaper to pay Node 3 rather than process the load
locally. The system reaches an acceptable allocation, once again. This second experiment
shows that our approach can scale incrementally: nodes can be added to the system at
runtime.

7.4 Limitations and Extensions

We now discuss the limitations of our approach and possible extensions to address these
limitations.
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Figure 7-9: Load at three Borealis nodes running the network monitoring query
over network connection traces.

7.4.1 No Resource Reservation

The main limitation of our approach is its focus on handling overload conditions once they
occur. When a participant experiences overload, it can use its contracts to decrease its pro-
cessing cost and pay its partner for the processing. This approach works well for situations
when load spikes are unpredictable. However, if a participant plans to experience a large
load in the future, it cannot reserve resources at its partners or ask them when they expect
their load to be lowest. Other systems investigate the problem of resource reservation [62].
It could be interesting to analyze how to extend our contract-based mechanism to support
resource reservation.

7.4.2 Different Types of Cost functions

A second important limitation of our approach is its restriction to systems where partici-
pants can model their processing costs with monotonically increasing convex functions. Such
functions are appropriate for resources that queue requests as load increases, for example
CPU and network bandwidth. Other resources, such as memory, do not follow a convex cost
function. As long as the total load is below the memory size, all memory accesses are fast.
Once pages need to be swapped to disk, memory access costs increase by a large, constant
value. The cost follows a step-function. In this scenario, a fixed price contract can still
be used. A participant that is swapping pages to disk can benefit from paying a partner
rather than incurring the penalty of going to disk. Bounded-price contracts, however, do
not improve load distribution with step cost functions.
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(a) As load increases, nodes use their contracts to shed excess load and reach an acceptable
allocation.

(b) As a new node joins an overloaded system, nodes use the new capacity to reach an
acceptable allocation.

Figure 7-10: Screenshots from an application that monitors the state of a Bo-
realis system. The application polls and displays the load at each node and the recent
load movements they performed.
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In general, it would be interesting to investigate various types of cost functions and
determine the most appropriate types of contracts for these more diverse environments.
For instance, we could model the energy utilization of a server as a concave cost functions.
For every X clients, a participant needs to purchase one server at a fixed cost (step-function).
The server then uses a given amount of power that increases only slightly with the workload
(concave function).

7.4.3 System Provisioning

Discussing cost functions raises a second interesting limitation of our approach. We assume
that each participant owns a fixed set of resources and that the average load at a participant
is fixed. It would be interesting, however, to extend our model to include the cost of
purchasing additional resources as the average load at a participant increases, because the
participant is gaining clients. A participant could handle small load increases by setting
up additional contracts. Eventually, it might be more cost-effective to purchase additional
resources and cancel (or simply fail to renew) a fraction of the contracts.

7.4.4 Computing Marginal Costs

Another challenge with our approach is the requirement that participant compute, at least
approximately, the marginal costs of processing tasks and convert these values into prices.
To setup a contract, a participant must determine its desired load level. It must then
compute the per-unit marginal cost at that load level. It must finally negotiate a contract
at the given price. These computations can become complex when many resources come
into play simultaneously. We can, of course, automate most of these computations but it
would be interesting to develop a tool to help participants understand the values they select
and the mapping from marginal costs to prices.

7.4.5 Optimizing Contract Prices

In our analysis, we provide heuristics for participants to establish a good set of contracts.
Our analysis assumes that participant loads follow some well-known distributions. Addition-
ally, once participants set-up contracts, we assume they keep these contracts, even though
our approach does not require this. In future work, it would be interesting to develop a de-
cision support system for contract re-negotiations. Starting from some set of contracts, the
system could monitor the local load and the runtime contract utilization. After some time
period, the system could indicate whether additional contracts may be profitable, whether
reducing the price of a contract could result in greater savings or whether increasing a con-
tract price might help purchase more resources. Such a system would reduce the importance
of initial contract negotiations.

7.4.6 Complex Contracts

We focused our analysis on contract prices, assuming that the unit load-movement-duration
is some fixed value, d. It would be interesting, however, to study the impact of different
contract durations on runtime load movements and on the optimal set of contracts to
negotiate. For example, a participant may want to establish contracts with different unit
durations to absorb different load spikes.
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Figure 7-11: Borealis federation.

Similarly, in our analysis and experiments, we assume that all contracts are equivalent
and that a participant can use any contract at runtime. Because contracts are set offline,
they can include numerous additional clauses: security, availability, or performance guaran-
tees, appropriate course of actions when failures occur, etc. A participant may also prefer
to move certain tasks to specific partners. Such clauses and constraints make contracts
different from one another and may even affect their values. Contract differences may in
turn affect runtime load movements.

7.4.7 Enforcing Contracts

Our approach does not include any specific technique to enforce contracts at runtime. For
example, we do not control that a participant provides sufficient resources for a partner’s
tasks. Such techniques exist for Web Services and data centers (see Section 2.8) but it would
be interesting to investigate this problem in the area of stream processing, in particular.
Indeed, in an SPE, a participant could sample input and output streams or submit dummy
queries for control purposes.

7.4.8 Larger-Scale Federated-Operation Experiments

Finally, we have experimented with BPM implemented at the granularity of individual
processing nodes. BPM can also work at the granularity of groups of nodes. We now
describe how Borealis and BPM can be deployed in a federated environment.

We envision that in a federated deployment, each participant runs a complete Borealis
system with its global catalog, processing nodes, clients, and data sources. Figure 7-11
illustrates a federated deployment. Because participants are autonomous entities, they may
not want to give each other open access to their systems. Therefore, rather than communi-
cating directly with each other’s global catalogs or processing nodes, participants tunnel all
communication through special components called inter-participant communicators. Within
each domain, these components appear as ordinary clients. For participants to collaborate,
their inter-participant communicators must know about each other.
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The simplest type of collaboration is for one participant to provide a stream to a partner.
Because the global catalog at a participant contains information only about streams that
exist locally, for a stream to cross administrative boundaries, it must be defined in both
domains. Once defined in both domains, a stream can cross administrative bounds by
going through the inter-participant communicators. The inter-participant communicator in
the source domain, PS , subscribes to the stream and forward tuples to the inter-participant
communicator in the sink domain, PD. The latter renames the stream as necessary and takes
the role of a data source for the stream within PD. Both inter-participant communicators
must know the mapping between streams in the two domains.

A more complex collaboration occurs when one participant temporarily performs some
processing on behalf of a partner. To move load between administrative domains, partici-
pants use remote definitions in addition to the simpler remote instantiation used within a
participant. A remote definition specifies how an operator in one domain maps on to an
operator in another domain. Inter-participant communicators must know this mapping for
each one of their partners. Remote definitions are performed offline. At runtime, when a
path of operators in the query diagram needs to be moved to another domain, all that’s
required is for the local inter-participant communicator to request that its remote partner
instantiate the corresponding operators in its domain. The inter-participant communicators
then work together to divert the appropriately named inputs to the new domain. Remote
definitions thus allow participants to move load with relatively low overhead compared to
full-blown process migration.

Given the above techniques to facilitate collaborations, it would be interesting to exper-
iment with BPM implemented within inter-participant communicators.

7.5 Summary

In this chapter, we presented the evaluation of BPM and its implementation in Borealis.
We showed that BPM leads to good load distribution even in heterogeneous environments.
In a 995-node network, with approximately 10 contracts per node, the system achieves
allocations close to acceptable for all simulated configurations: overload, light load, fixed-
price contracts, and heterogeneous contracts. In a uniform system, a price-range equal
to only half the network diameter (and half the minimum theoretical value) suffices to
ensure acceptable allocation in an underloaded system and a nearly acceptable allocation
in an overloaded system. Fixed-price contracts also lead to good load distributions. They
do not lead to acceptable allocation in all configurations, but with randomly generated
topologies, just five fixed-price contracts per node suffice for a 995-node system to use
over 95% of available capacity when overloaded, and, when underloaded, ensure that over
95% of task are properly allocated. In summary, uniform price-range contracts are highly
effective at ensuring acceptable allocation. Fixed prices and heterogeneity lead to some
wasted resources, making it more difficult for the system to reach acceptable allocations,
but BPM easily ensures allocations within a few percent of acceptable. We also showed that
convergence to acceptable or nearly acceptable allocation occurs quickly, especially with
fixed-price contracts, and that BPM successfully masks a large fraction of load variations;
even when load varies significantly (e.g., on average one new tasks and one removed task
per time-unit per node), load movements reallocate a number of tasks below 6% of the
variation in offered load. Finally, we showed that BPM works well in sample applications
processing real data.

175



176



Chapter 8

Conclusion

In this dissertation, we addressed the problems of fault-tolerance in a distributed SPE and
load management in a distributed federated system. We summarize our contributions and
outline topics for future work.

8.1 Fault-Tolerant Stream Processing

In a distributed SPE, especially one where data sources and processing nodes are spread
across a wide-area network, several types of failures can occur: processing nodes (software
or hardware) can crash, the communication between nodes can be interrupted, and network
failures can even cause the system to partition. All these types of failures can disrupt
stream processing, affecting the correctness of the output results and preventing the system
from producing any results. Previous schemes for fault-tolerant stream processing either do
not address network failures [83] or strictly favor consistency over availability, by requiring
at least one fully connected copy of the query diagram to exist to continue processing at
any time [146]. These schemes do not meet the needs of all stream processing applications
because many applications can make significant progress with approximate results, and
may even value availability more than consistency. Examples of such applications include
network monitoring, network intrusion detection, some financial services applications, and
sensor-based environment monitoring. These applications, however, can still benefit from
knowing whether the most recent results are accurate or not, and from eventually seeing
the correct, final values. We believe that it is important for a failure-handling scheme to
meet the above requirements in a manner sufficiently flexible to support many types of
applications in a single framework.

Main Contribution: We presented the Delay, Process, and Correct (DPC) scheme,
a replication-based approach to fault-tolerant stream processing that meets the above
goals. DPC supports applications with different required trade-offs between availabil-
ity and consistency, by enabling these applications to specify the maximum incremen-
tal processing latency they can tolerate, and by processing any available input tuple
within the required time-bound. Assuming all necessary tuples can be buffered, DPC
also guarantees eventual consistency, i.e., all replicas eventually process the same in-
put tuples in the same order and client applications eventually see the complete and
correct output streams.
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Approach Overview: The main insight of DPC is to let each node (and each replica)
manage its own availability and consistency by monitoring its input streams, sus-
pending or delaying the processing of input tuples as appropriate when failures occur,
and correcting earlier results after failures heal. DPC uses an enhanced stream data
model that distinguishes between stable tuples and tentative tuples, which result from
processing partial inputs and may later be corrected. To ensure consistency at run-
time, DPC uses a data-serializing operator called SUnion. To regain consistency after
failures heal, we investigated techniques based on checkpoint/redo and undo/redo.

Main Results: Through analysis and experiments, we showed that DPC handles both
single failures and multiple concurrent failures. DPC ensures eventual consistency
while maintaining, when possible, a required level of availability, both in a single-
node and a distributed deployment.

We found that reconciling the state of an SPE using checkpoint/redo leads to a faster
reconciliation at a lower cost compared with undo/redo. Furthermore, it is possible
to avoid the overhead of periodic checkpoints and limit recovery to paths affected by
failures, by having operators checkpoint and reinitialize their states in response to the
first tentative tuple or undo tuple they process.

When buffers are bounded, DPC is particularly well suited for “convergent-capable”
query diagrams (i.e., boxes-and-arrows diagrams of operators interconnected with
streams whose state always converges to the same state after processing sufficiently
many tuples). With convergent-capable diagrams, DPC ensures that the system even-
tually converges back to a consistent state and the most recent tentative tuples are
corrected, independent of failure duration.

As part of DPC, we investigated techniques to reduce the number of tentative tuples
produced by an SPE without breaking a given availability requirement and ensuring
eventual consistency. We found that the best strategy is for any SUnion that first
detects a failure to block for the maximum incremental processing latency. If the
failure persists, SUnions should process new tuples without delay because later delays
are not helpful. With this approach, it is possible to mask failures up to the maximum
incremental processing latency without introducing inconsistency, independent of the
size of the distributed SPE. To maintain a required availability, when failures last a
long time, we showed that it is necessary for nodes to process tentative tuples both
during failures and stabilization, and we showed how DPC enables nodes to do so.

In summary, we showed that it is possible to build a single system for fault-tolerant dis-
tributed stream processing that can cope with a variety of system and network failures and
support applications with different required trade-offs between availability and consistency.

8.2 Load Management in Federated Systems

In a distributed and federated system, individual participants own and administer subsets
of resources. Federated SPEs are one example of such systems, but other federated systems
exist, including Grid computing [3, 29, 61, 164], peer-to-peer systems [38, 45, 97, 120, 137,
153, 174], and systems based on Web services [48, 94]. In these environments, individual
participants could acquire sufficient resources for peak operation and to handle flash-crowds.
Alternatively, participants can collaborate to handle their excess load. The challenge in
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enabling such collaborations is that autonomous participants aim at maximizing their own
utility rather than the utility of the whole system.

Main Contribution: Because previous approaches based on computational economies [3,
29, 154, 175] have failed to gain widespread adoption, while bilateral contracts com-
monly regulate collaborations between autonomous parties [53, 42, 94, 81, 138, 171,
176, 178], we proposed a contract-based approach to load management in federated
environments. Our approach, called Bounded-Price Mechanism (BPM), advo-
cates the use of private pairwise contracts, negotiated offline between participants, to
regulate and constrain runtime load movements. Unlike other work on load manage-
ment with selfish participants, the goal of BPM is not to achieve optimal load balance
but simply to ensure that participants operate within a pre-defined capacity.

Approach Overview: In BPM, participants interact with each other on two different
timescales. Offline, participants negotiate private pairwise contracts. Each contract
specifies a small range of prices that one participant will pay its partner for processing
load at runtime. A contract also specifies a unit load-movement duration. At runtime,
participants use their contracts to move load to their partners when doing so improves
their utility. Partners dynamically negotiate the final price within the contracted range
and the amount of load that should move.

Main Results: Through analysis and simulations, we showed that when contracts specify
tightly bounded prices for load, and participants use their contracts in a way that
maximizes their utility, the load allocation in the system always converges to an
acceptable (or a nearly acceptable) allocation. Even in a large and heterogeneous
system, a small number of contracts per participant suffices to ensure nearly acceptable
allocations for both overloaded and underloaded systems. Interestingly, even though
they do not always lead to an acceptable allocation, we find that fixed-price contracts
often lead to good load distributions, where most excess load is reallocated and most
capacity is used.

We also showed that, most of the time, participants agree on the final price without
negotiating, and the bulk of convergence to a final load distribution occurs quickly,
especially with fixed-price contracts.

Finally, because prices are almost fixed, BPM can effectively mask a large fraction of
load variations as these variations frequently occur away from contract boundaries.

In summary, contracts enable participants to develop or leverage preferential, long-term
relationships with each other. Such relationships, coupled with pre-negotiated bounded
prices provide predictability and stability at runtime. They also facilitate service customiza-
tion and price discrimination. Our approach is thus more practical and more lightweight
than previous proposals, while still leading to good load distributions. We posit that it
should also be more acceptable in practice.

8.3 Software Availability

Prototype implementations of DPC and BPM are part of the Borealis distributed stream
processing engine. BPM is available on line as part of borealis-0.2. DPC will be avail-
able with the next Borealis release. All software is available on our project website:
http://nms.lcs.mit.edu/projects/borealis/.
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8.4 Open Issues

Our study of fault-tolerance with DPC and load management with BPM opens several areas
of future work. In Sections 5.8 and 7.4, we presented several specific research directions for
fault-tolerance and load management, respectively. We now summarize only a few of the
most important open problems.

One of the main open issues with DPC is its lack of precision information. Currently,
DPC only labels tuples as either tentative or stable. It would be interesting to enhance op-
erators with the capability to read precision information off their input tuples and compute
that same information for their output tuples, especially when some of their input streams
are missing. Precision information may also help determine when failures affect only subsets
of output results. Rather than labeling all outputs as tentative, some outputs may have
a high precision while others may be less accurate. Second, it may also be interesting to
enhance the system with support for integrity constraints on streams. Because different
failures affect different parts of the system, it may sometimes be meaningless to correlate
or merge certain tentative streams. It would be interesting to enable applications to define
integrity constraints describing the conditions when streams still carry useful information
and when they can be combined. The system could use these constraints to ensure the
quality of the output data, but also, perhaps, as part of the upstream neighbor switching
algorithm. A third interesting problem would be to extend DPC to support even more types
of failures, such as Byzantine failures where a possibly malicious node produces erroneous
results, or the simultaneous crash failure of all replicas of one or more processing nodes.

One of the main open issues with BPM is its focus on reacting to overload as it occurs
rather than enabling participants to reserve resources ahead of time. Moving existing load
makes it easier for participants to maximize resource utilization. This model, however, is not
suitable to all types of applications. Some applications, such as running a large experiment
on a shared distributed computing platform, would waste large amounts of resources if
clients had to start these applications in order to check if sufficient resources were available
for them. Extending contracts to enable some form of resource reservation would extend
the scope of BPM. A second important problem is to explore the possibility for participants
to use different types of cost functions that are not necessarily monotonically increasing and
convex. For some types of resources step functions or concave functions may better model
processing costs. Furthermore, as the overall offered load varies with time, participants
may also acquire or dispose of resources causing their cost functions to change with time.
It would be interesting to study how the contract-based approach could be extended for
these different types of cost models.

Finally, in this dissertation, we investigated the problems of fault-tolerance and load
management in isolation. These two problems, however, are tightly connected. Indeed,
after a failure heals, a participant must reprocess earlier data to ensure eventual consistency.
Extra state-reconciliation tasks can significantly increase a participant’s load, and it may
become profitable to offload a subset of these tasks to a trusted partner. Because processing
restarts from a checkpoint, moving a state-reconciliation task may even be less costly than
moving a running task. An interesting problem is how to integrate the existence of these
transient replicas into the DPC protocol and how to extend BPM’s contracts to support
these new types of tasks with somewhat flexible resource requirements but strict availability
requirements. In general, in a federated system, participants can use each other not only
to handle excess load but also for fault-tolerance and replication. It would be interesting to
investigate a structure of contracts that would promote these types of collaborations.
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Appendix A

Computing Output Stream States

We present an algorithm to compute individual output stream states from input stream
states in a query diagram. The Consistency Manager should run this algorithm. The
states of input streams, stored in InState, come from monitoring all replicas of all upstream
neighbors (Algorithm from Figure 4-10).

Figure A-1 shows the detailed algorithm. By default, all output streams are in the
STABLE state. An output stream is in UP FAILURE state as soon as one of its contributing
input streams experiences a failure. The failure is total (FAILURE state) rather than partial
(UP FAILURE state) if the output stream is (1) downstream from a blocking operator with
a missing input stream or (2) it is downstream from a non-blocking operator with all inputs
missing. Finally, if a node is in the STABILIZATION state, all output streams that were
previously experiencing a failure are in STABILIZATION state as well. With some state
reconciliation techniques, all output streams are in the STABILIZATION state during state
reconciliation.

The algorithm uses the states of streams produced by all replicas not just the current
upstream neighbor. It assumes the node will switch between replicas as per algorithm in
Table 4.3.
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PROCEDURE COMPUTESTATE:
Inputs:

QueryDiagram: description of the query diagram fragment running at the node.
InputStreams: set of all input streams to the node.
OutputStreams: set of all output streams produced by the node.
Replicas: upstream neighbors and their replicas.
∀s ∈ InputStreams, Replicas[s] = {r1, r2, ...rn} | ∀i ∈ [1, n], ri ∈ Nodes produces s.

NodeState: state of the node. NodeState ∈ {STABLE, UP FAILURE, STABILIZATION}.
InState: states of streams produced by different nodes.
∀s ∈ InputStreams,∀r ∈ Replicas[s],
InState[r][s] = x | x ∈ States is the state of stream s produced by r.

Both Input and Output:
OutState: states of output streams of this node
∀o ∈ OutputStreams, OutState[o] = x | x ∈ States is the state of o.

// First, identify streams in STABILIZATION state
01. foreach o in OutputStreams
02. if NodeState = STABILIZATION and OutState[o] ∈ {UP FAILURE, FAILURE, STABILIZATION}
03. OutState[o]← STABILIZATION
04. else // Reset the current state of the output stream before recomputing it
05. OutState[o]← STABLE

// Second, identify streams affected by upstream failures
06. foreach s in InputStreams
07. if (∀r ∈ Replicas[s], InState[r][s] 6= STABLE)
08. if there exists a path between s and an output stream o in QueryDiagram

// First condition that may block the output stream: a blocking operator with
// at least one missing input

09. if path goes through a blocking operator and
(∀r ∈ Replicas[s], InState[r][s] 6∈ {STABLE, UP FAILURE)}

10. OutState[o]← FAILURE

// Second condition that may block the output stream: an operator with
// all its inputs missing

11. else if path goes through operator downstream from a set S of inputs such that
(S ⊆ InputStreams) and (∀s′ ∈ S,∀r ∈ Replicas[s′], InState[r][s′] 6∈ {STABLE, UP FAILURE}

12. OutState[o]← FAILURE

// Otherwise, the output can produce tentative tuples
13. else
14. OutState[o]← UP FAILURE

Figure A-1: Algorithm for computing the states of output streams. Nodes denotes
the set of all processing nodes in the system. States = {STABLE, UP FAILURE, FAILURE,
STABILIZATION}. The states of output streams are stored in OutState. All data structures
are local to each node.
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Appendix B

Undo/Redo

To avoid the CPU overhead of checkpointing and to recover at a finer granularity by rolling
back only the state on paths affected by the failure, another approach for an SPE to rec-
oncile its state is to undo the processing of tentative tuples and redo that of their stable
counterparts. In this appendix, we present the state-reconciliation technique based on undo
and redo.

B.1 State Reconciliation

To support undo/redo reconciliation, all operators should implement an “undo” method,
where they remove a tuple from their state and, if necessary, bring back into the state some
previously evicted tuples. Supporting undo in operators may not be straightforward. For
example, suppose an operator computes an average over a window of size 10 with advance
10, and receives the following input:

(2, 10.5) (5, 11.2) (8, 13.4) | (11, 9.7) (14, 9.2) (17, 10.8) | (21, 10.4), (24, 9.9), ...

Assuming the first attribute specifies the window, the aggregate will compute an aver-
age over windows [0,10), [10,20), [20,30), etc. We use the symbol “|” to indicate window
boundaries on the input stream. After processing tuple (17, 10.8), the state of the aggregate
holds tuples (11, 9.7), (14, 9.2), and (17, 10.8)— all tuples in the current window [10, 20).
Upon receiving tuple (21, 10.4), the aggregate closes window [10, 20), outputs the result
tuple (10, 9.9), and opens window [20, 30). The new state contains only tuple (21, 10.4).
To undo tuple (21, 10.4), the aggregate must not only undo the output tuple (10, 9.9),
but it must also reopen window [10,20), and bring back tuples (11, 9.7), (14, 9.2), and (17,
10.8). Supporting an “undo” method may thus be complex to implement and would require
significant modifications to all operators.

Instead, we propose that operators undo by rebuilding the state that existed right before
they processed the tuples that must now be undone. For example, to undo tuple (21, 10.4),
the aggregate should clear its state and reprocess all tuples since (11, 9.7). To determine how
far back in history to restart processing from, operators maintain a set of stream markers
for each input tuple. The stream markers for a tuple p in operator u are the identifiers of the
oldest tuples on each input stream that contribute to the operator’s state before u processes
p. In the above example, the stream marker for tuple (21, 10.4) is (11, 9.7), the oldest tuple
in the operator’s state before the operator processes (21, 10.4). To undo all tuples since (and
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Figure B-1: Locations where tuples are buffered with undo/redo. All stateful
operators (and some stateless operators) with at least one tentative input stream must
buffer tuples that accumulate during a failure. Operators that buffer tuples are outlined.

including) p, u looks up the stream markers for p, scans its input buffers until it finds the
marked tuples, and reprocesses its input buffers since then, stopping right before processing
p again. In the example, to undo tuple (21, 10.4), the operator reprocesses all tuples since
(11, 9.7). A stream marker is typically the beginning of a window of computation. Stream
markers do not hold any state. They are pointers to some location in the input buffer.
To produce the appropriate undo tuple, operators must also store, with each set of stream
markers, the last tuple they produced

In the worst case, determining the stream markers may require a linear scan of all tuples
in the operator’s state. To reduce the runtime overhead, rather than compute stream mark-
ers for every tuple, operators can set stream markers periodically. Periodic stream markers
increase reconciliation time, however, as reprocessing restarts from imprecise markers. Op-
erators that keep their state in aggregate form must explicitly remember the first tuple on
each input stream that begins the current aggregate computation(s).

Undo/redo also requires a new tuple type. To trigger undo/redo-based state reconcili-
ation, the Consistency Manager injects a tuple of type UNDO REDO START on one input
stream of each affected input SUnion operator.

B.2 Buffer Management

To support undo/redo, all stateful operators must store the input tuples they receive in an
undo buffer. Since only tentative tuples can be undone, as long as an operator processes
stable tuples it can truncate its undo buffer, keeping only enough tuples to rebuild its current
state. During failures all stateful operators affected by the failure must accumulate input
tuples in an undo buffer. As discussed in Section 5.5, many stateless operators (e.g., Filter)
also need an undo buffer because they must remember when they produced each output
tuple in order to produce the appropriate UNDO tuple. Only operators that produce exactly
one output tuple for each input tuple (e.g., Map) need not keep an undo buffer, because
they can process their input UNDO tuple to produce an output UNDO tuple. Figure B-1
illustrates which operators buffer data with undo/redo.

Forcing nodes to correct all tentative tuples enables great savings in buffer space. Indeed,
if all tentative tuples are always corrected, only SUnions with at least one tentative input
stream buffer tuples on their stable inputs. Stateful operators only buffer those tuples that
will enable them to rebuild their pre-failure states. (Figure B-2).
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Figure B-2: Locations where tuples are buffered with undo/redo when all ten-
tative tuples are always corrected. SUnions with at least one tentative input stream
must buffer, during failures, tuples on their stable inputs. Other stateful operators keep just
enough tuples to rebuild their pre-failure state (not represented). Operators that buffer tu-
ples are outlined.

B.3 Failures during Recovery

We now discuss how undo/redo handles failures during recovery. We show that undo/redo
can also meet the following property:

Property 6 Handle failures during failures and recovery: Stabilization never causes stable
output tuples to be dropped, duplicated, or undone.

Condition: Nodes buffer tuples and remove them from buffers as described in Section 4.9.
All buffers are sufficiently large (respectively failures are sufficiently short) to ensure no
tuples are dropped due to lack of space.

First, we examine a simple failure scenario. When a failure occurs and tentative tuples
propagate through a query diagram, as soon as an operator receives a tentative tuple, it
starts labeling its output tuples as tentative. Therefore, undoing tentative tuples during
reconciliation can never cause a stable output to be undone.

Second, we examine the case of undo tuples propagating simultaneously on multiple
steams. If multiple streams failed, and multiple undo tuples propagate through the query
diagram during stabilization, an operator with multiple inputs could receive the undo tuples
in any order. However, operators with multiple inputs are always preceded by SUnions.
SUnions must receive corrections on all their input streams before producing an undo and
corrections in turn. The downstream operator thus receives a single undo followed by
corrections.

Third, we examine the case of a stream that fails, recovers, and fails again. Because
SUnions produce undo tuples followed by the stable versions of tuples processed during the
first failure. Any tentative input tuples caused by a new upstream failure will accumulate
in SUnions after the stable corrections. Therefore, the new tentative tuples will be pushed
into the query diagram and processed by operators after the undo and stable tuples. Thus
any new failure will follow the reconciliation, without affecting it.

Finally, we examine the case where a failure occurs during reconciliation on a previously
stable input. While an undo tuple propagates on a stream, if a different input stream be-
comes tentative, and both streams merge at an SUnion (streams always merge at SUnions),
the SUnion could see the new tentative tuples before the undo tuple. In this case, when
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the operator finally processes the undo tuple, it rebuilds the state it had before the first
failure and processes all tuples that it processed during that failure before going back to
processing the new tentative tuples. Basically, the undo and corrections will apply to older
buckets than the new tentative tuples. The SUnions thus produces an undo tuple followed
by stable tuples that correct the first failure, followed by the tentative tuples from the new
failure. Once again, the new failure appears to occur after stabilization.

If a new failure occurs before the node had time to catch up and produce a REC DONE
tuple, SOutput forces a REC DONE tuple between the last stable and first tentative tuples
that it sees.

Hence, with undo/redo recovery, failures can occur during failures or reconciliation and
the system still guarantees that stable tuples are not undone, dropped, nor duplicated.
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