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Abstract

To understand the complex interactions among an-
imals within an ecosystem, biologists need to be able
to track their location and social interactions. There
are a variety of factors that make this difficult. We
propose using adaptive, embedded networked sensing
technologies to develop an efficient means for wildlife
monitoring. This paper surveys our research; we
demonstrate how a self-organizing system can effi-
ciently conduct real-time acoustic source detection and
localization using distributed embedded devices.

1 Introduction

It is now well-recognized that artificial life systems
can make useful contributions to a wide variety of
problems in biology [8]. Typically, these contributions
have come from the study of complex adaptive sys-
tems, simpler versions of natural life. Such abstrac-
tions permit isolation and control of features of inter-
est [3]. In this paper we describe a novel application
of adaptive systems for biology: looking at natural
systems with the purpose of describing their structure
and behavior.

The presence of human observers in the field is both
time consuming and disruptive to the habitat under
observation. An automated system would be desired.
However, deployment of unattended recording stations
is also fraught with difficulty. Among the current limi-
tations are limited recording capacity and energy, and
limited ability to able to adapt to rapidly changing
environments.
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We illustrate that sensor network technology can be
used as an efficient and powerful data collection sys-
tem that can be easily used by biologists with little
programming experience. Beyond simply recording of
raw data, these tools have the potential to perform au-
tonomous wildlife monitoring by being programmed to
detect and react in a proper way to pre-specified condi-
tions, with almost no human intervention. In addition,
they form a network that enables remote management
of the system, system health assessment, re-tasking,
real-time triggering of additional sensing modalities,
and visualization of real-time data from the field.

The distributed structure of these systems allows us
to deploy them to cover wide territories and to capture
data from different modalities in response to events in
real time, e.g., capturing image data only animals are
active. Distributed signal processing algorithms are
also a promising approach to data reduction. Spatial
filtering techniques based on beam-forming using a dis-
tributed collection of small arrays, can often identify
target species in situations where many species and
individuals are present. Also, we will illustrate how
self-organizing and adaptive methods can be used to
develop robust and efficient methods to detect and lo-
calize acoustic sources.

2 Tools and methods

This section describes the embedded platform we
used for our experiments, and then we will briefly de-
scribe different contexts where adaptive methods have
been employed.



2.1 CENS nodes

For our experiments we have developed a network of
Acoustic Embedded Networked Sensing Boxes (Acous-
tic ENSBox) as a prototype for wildlife monitoring
system [5, 6, 7]. Each system is a small embedded
computer running Linux, self-contained in a water-
proof case, with an external four microphone array
and 802.11b wireless communication (Figure 1).

Figure 1: Left: Acoustic ENSBOX, the embedded de-
vice we used for our experiments. Right: close-up of
the microphone array.

In comparison to other wireless sensor systems such
as the Crossbow Mote, the Acoustic ENSBox has the
computational, storage, and network resources to pro-
cess audio data in real time and to implement dis-
tributed algorithms, including high precision 3D loca-
tion and orientation self-calibration.

This combination of high processing power and
communication with a small form factor makes the
ENSBox platform particularly well-suited to explore
novel solutions for animal vocalization analysis and
accurate acoustic source localization through collabo-
ration of multiple arrays.

2.2 Self-configuration

Collections of arrays enable localization by combin-
ing bearing estimates and time-difference of arrivals.
However, none of this potential can be realized with-
out the ability to rapidly deploy the sensor arrays
and to determine their precise location and orienta-
tion. There are many positioning techniques, includ-
ing those based on GPS, magnetic compass, sensor

correlation, and time-of-flight measurements of radio
and acoustic signals, however many of these alterna-
tives are not a good fit for these applications. For
example, GPS reception is often poor in locations of
interest such as forests and canyons, and even with
good reception GPS requires differential corrections
to meet the stringent precision requirements for these
applications.

The Acoustic ENSBox self-localization is based on
measuring time-of-flight and direction of arrival of
acoustic signals. This solution has many advantages,
including high precision and high resilience to noise.
Initially, each node emits a chirp in turn, while all
other nodes estimate the range R based on time of
flight and bearing θ using local time differences of
arrival. Then, a centralized algorithm combines the
(R, θ) estimates for every node, and a non-linear least
squares algorithm is used to compute the relative map
(X, Y, Z,Θ) of the network. Finally, the relative map
is fit to surveyed locations to obtain a map in absolute
coordinates. This capability eliminates the need to
survey the array locations, a process that often takes
hours to complete and that is generally extremely chal-
lenging to accomplish accurately.

2.3 Adaptive detection

We have developed a detection module that can de-
tect animal vocalizations from background noise, by
continuous adaptation to the current noise level. A
generic statistically optimum approach to solve this
problem is based on the constant false alarm rate
(CFAR) method that allows to identify high energy
segments in continuous streams of audio data.

The algorithm first estimates the statistical distri-
bution of the amount of energy in specific frequency
bands contained in the ambient noise on n consecutive
samples (we assume that noise follows a normal dis-
tribution N(µ, σ2)). Afterwards, the energy present in
the same bands is monitored, and a threshold function
detects when the energy changes significantly from a
statistical point of view, that is when the energy of the
current segment exceeds the threshold defined µ+β ·σ,
where β is a parameter (usually β = 3). However,
noise in real environments usually varies significantly
over time, in which case it is needed to update the
noise distribution as it varies. For this purpose, ex-
ponentially weighted moving average (EWMA) can be
used to update iteratively the mean µ and variance σ
of the noise power as follows:

µt+1 = αµnew + (1− α)µt

σt+1 = ασnew + (1− α)σt



Figure 2: Adaptive detection algorithm. Top: Am-
plitude of the signal of a field recording. Bottom:
Evolution of the energy in the signal is represented
as the thin line. The thick line represents the detec-
tion threshold. When a song is detected, one can see
that the threshold is not changed to avoid influencing
the statistical estimation of background noise.

Where α ∈ [0, 1] is the changing rate. A low value for α
should be used, as we want to avoid to consider spuri-
ous and short sounds as part of the background noise
and use this insignificant events to update the noise
distribution. Figure 2 illustrates the detection process
of seven bird songs recorded in the rain-forest at Monte
Azules Biosphere Natural Reservation in Mexico.

Using a modified and streamlined version of this
algorithm, described in [4], we have also detected yel-
low bellied marmot (Marmota flaviventril) alarm calls
in real-time on a network of fielded ENSBoxes. The
marmot detector computes a 32-point FFT over each
window of samples and computes the magnitude of the
complex sum of the frequency bins corresponding to
the band used by marmot calls (3-6 KHz). This en-
ergy value is then passed into a CFAR detector, with a
hysteresis detection to ensure that the complete call is
acquired. We found that we could improve efficiency
without losing detections by applying the FFT only to
1 out of every 4 32-point windows.

2.4 Collaborative localization

Kung Yao and students have developed a localiza-
tion algorithm that can track multiple sources in real-
time [1]. They developed an approximate maximum-

likelihood (AML) method for the localization of wide-
band acoustic sources. The ML estimation method is
known to be an optimum estimation procedure. The
term approximate refers to the condition that the data
length is finite and consequent edge effects yield a
slight sub-optimality from the ML method. The AML
algorithm has been used to perform localization of sin-
gle and multiple acoustic source(s), even when they
overlap in time and frequency, in the near/far-fields
as well as in open-field and in reverberant scenarios.
For each possible angle of arrival, the signals recorded
by each microphone are recombined using a model of
the array and the coherence of the resulting signal is
obtained for each angle.

Figure 3: Results of the collaborative localization al-
gorithm, presented as a 2D pseudo-likelihood map.
Black lobes represent the likelihood for source AOA.
Individual estimates of the angle of arrival (AOA) for
each node are combined using their location as esti-
mated by the self-calibration process.

In our implementation, every node that detects a
vocalization will also compute a likelihood describing
the likely bearing to the source. These likelihoods are
collected at a central point and combined together into
a 2D pseudo-likelihood map, according to the positions
and orientations computed in the self-calibration step.
This map is formed by projecting each likelihood met-
ric outwards from each node to form the joint approx-
imate likelihood of a source at every point in the 2D
space. Beyond source localization, this information
can also enable further signal enhancement through
beam-forming, in which signals captured from differ-
ent sensors are combined together to amplify the tar-
get signal and attenuate noise.



3 Results and discussion

Self-configuration The automated self-localization
system illustrates many of the same requirements as
our target applications, by being a distributed sensing
application itself. This feature of the Acoustic ENS-
Box solves the problem of fastidious deployment by au-
tomatically determining array orientations to within 1
degree, and array positions to within 9cm in a 40x70m
wooded area. This process can be run periodically, so
that calibration of the system is maintained even when
the location of the sensors is changed.

Adaptive vocalization detection We originally
implemented an offline version of the detection al-
gorithm to automatically isolate tropical bird songs
from hours of recordings on a standard desktop com-
puter. Using the streamlined implementation, we have
been able to reduce half an hour of raw recording to
only 13 seconds of audio, capturing all of the mar-
mot calls as well as a few false positives from other
sources. The CFAR method is known to be statisti-
cally optimum in the sense of for a fixed CFAR, the
probability of event detection is maximized, with the
assumption that the nominal background noise is a
quasi-stationary stochastic process.

Collaborative localization The collaborative lo-
calization algorithm has been used to localize marmot
alarm calls in a field test at the Rocky Mountain Bio-
logical Laboratory (RMBL), in Colorado. The results
of one of the localization tests are shown in Figure 3.
The RMBL tests demonstrated that these algorithms
could reliably locate marmots by their calls to within
1.5 meters, when compared with ground truth based
on human observations, given that collaboration re-
duces the ambiguity of the local estimations computed
by each node.

4 Conclusion

This paper described how adaptive methods can be
used to develop robust and self-organized monitoring
systems. We have been able to detect animal vocaliza-
tions in very noisy environments by using an adaptive
threshold mechanism. This approach can be useful in
several contexts where detection of acoustic activity
is required, as for example, human-robot interaction
with humanoid robots [2]. Also, we explained how
several acoustic sources can be localized using an effi-
cient direction of arrival estimation method, and how
collaboration between sensors can improve the results.
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