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Abstract

Data transmissions in Wireless Local Area Networks (WLANs) often suffer from bit errors
that arise from the notoriously complex and time-varying signal propagation characteristics
of the wireless medium. A number of physical factors such as attenuation and multi-path are
prevalent indoors and can lead to high bit-error rates at the link layer. These in turn lead
to packet losses, low throughput, and higher and more variable packet latencies observed
at higher layers, degrading the performance of many delay-sensitive and traffic-intensive
wireless applications such as games, file-sharing, voice-over-IP, and streaming video.

We use the notion of path diversity to develop an approach that improves data delivery
efficiency and throughput in presence of transmission errors. Path diversity relies on mul-
tiple access points (APs) covering a given area or multiple radios on the user’s device (or
both). The hypothesis underlying this system is as follows: because frame errors are often
path-dependent (e.g., due to multi-path fading), location-dependent (e.g., due to noise),
and statistically independent between different transmitting radios, transmissions are likely
to succeed from at least one of the available transmitters (transmit diversity). Likewise,
multiple radios that all receive versions of the same transmission may together be able to
correctly recover a frame, even when any given individual radio is not (receive diversity).
Using these principles, we design and implement the Multi-Radio Diversity (MRD) system,
which leverages the properties of path diversity at the transmitter and receiver to reduce
frame loss rates in the link-layer, leading to increased throughput and packet delivery effi-
ciency.

We introduce several techniques that make path selection, retransmission, and rate
adaptation work efficiently in a MRD system based on the 802.11 MAC. We used com-
modity PCs and wireless interfaces to build a MRD system and conducted a wide range of
indoor experiments. Our experiments measured throughput gains up to three times over
conventional schemes without consuming much extra wireless bandwidth.

Thesis Supervisor: Hari Balakrishnan
Title: Associate Professor of Computer Science and Engineering
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Chapter 1

Introduction

Wireless local area networks (WLANs) have gained great popularity in homes, offices, shop-
ping malls, and airports, providing tetherless, high-speed connectivity to the Internet. Ac-
cording to In-Stat, between 110 and 140 million 802.11 WLAN chipsets have shipped in
2005 and the annual shipment number is expected to reach 430 million by 2009 [10]. A
growing number of users connect to the Internet using WLANs for emails, instant mes-
saging, file transfers, and web browsing. Increasingly, consumer electronic devices such as
digital photo cameras, and music players are being incorporated with WLAN interfaces to
help them share data across the network. Specialized WLAN communication devices such
as mass storage, portable voice-over-IP (VoIP) phones, video-conferencing stations, gaming
consoles, and television have also emerged. Examples of future WLAN applications may
include telemedicine and virtual reality.

Many of these exciting applications demand fast and reliable network performance.
Current WLAN devices such as 802.11a [14] and 802.11g [16] are capable of delivering data
at high raw bit rates up to 54 Mbits/s. However, the end-to-end performance achieved in
today’s WLANs is often inconsistent and is measured, as we will show in this dissertation,
to be far lower than the highest achievable rate.

Figure 1-1 shows some evidence of this poor and inconsistent performance for an exper-
iment (described in Section 3.6.2) that used a moving transmitter and a stationary receiver
to measure the throughput and the frame loss rates of a conventional 802.11a link. Although
the distance between the two terminals is relatively short (≈6 m), and the dimension of the
area in which the transmitter moves is small (about 1.5 m × 2 m), the measured through-
put fluctuates by almost an order of magnitude between 2 and 18 Mbits/s. The average
throughput (8.25 Mbits/s) shown in this experiment is far from the highest achievable rate
in 802.11a (≈31 Mbits/s, after various overheads are removed).

A significant cause for poor performance is data corruption during transmission over the
wireless medium. Wireless communication channels have notoriously time-varying charac-
teristics, where the quality of received signals changes dramatically even over time durations
lasting just milliseconds. The complex behavior of wireless signal propagation, particularly
indoors, is due to five main causes: noise at the receiver, typically caused by both external
sources and thermal energy in the electronic components at the receiver; attenuation, caused
both by distance from the transmitter and by stationary or moving obstacles shadowing the
signal’s path to the receiver; interference from other transmitters; multipath signal prop-
agation that causes unwanted reflections and distorts reception; and user mobility, which
causes rapid channel variations. These properties lead to transmission errors at the link
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Figure 1-1: An example of poor performance in an 802.11a experiment that involved a
moving transmitter and a stationary receiver. The top graph shows how throughput can
fluctuate by almost an order of magnitude as the transmitter moves within a small 1.5 m ×
2 m area (Figure 3-8). The bottom graph shows the corresponding frame loss rates averaged
over one-second windows.

layer, which in turn results in packet losses, low throughput, and higher and more variable
packet latencies at higher layers.

The goal of this dissertation is to take a fresh approach of developing techniques that uses
multiple radios to help reduce transmission errors and increase the efficiency of delivering
packets in a wireless LAN. Using a wide range of experiments performed on an indoor
802.11a testbed, we show that our system can achieve throughput improvements by up to a
factor of 3× over the conventional system. The rest of this chapter is organized as follows:
Section 1.1 reviews the basic components and structure of a wireless LAN. Section 1.2
motivates our thesis of using multiple radios in wireless LANs to improve performance.
Section 1.3 presents an overview of the system we developed that uses multiple radios to
improve WLAN performance. We summarize our contributions and lay the roadmap for
the rest of the dissertation in Section 1.4.

1.1 Background

Delivering information from one host to another over a computer network is a complex
task. To manage this complexity, network designers have subdivided networking systems
into layers, each of which performs different network functions that are needed to deliver
a piece of information to the intended destination in the intended manner specified by a
network protocol. Layering helps manage complexity because the interface between any two
layers specifies a limited set of services that the lower layer needs to provide to the higher
layer and hides from the higher layer the design and implementation details of the lower
layer. There are numerous good references that give a detailed treatment on the designs of
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Figure 1-2: Left: A five-layer reference model that defines different functions that a network
performs to move information from one host to another. of a set of clients and one or more
interconnected access points. There is no centralized control over routing information so
the client is responsible for initiating association and disassociation to maintain connection
and proper routing within the network. As an example, when a client moves from location
x to y, it dissociates with APj and associates with APj+1

computer networks [74, 22, 88] and on wireless networks [78].

A convenient reference model for the work described in this dissertation is the five-
layer model shown in Figure 1-2(a). Host applications that generate data for network
delivery belong to the application layer. They use a transport layer protocol, such as the
Transport Control Protocol (TCP) or the User Datagram Protocol (UDP), to transfer data
to the application running on the destination host. The transport layer provides a virtual
connection that transfers data between two end applications and hides the details of (1)
fragmenting a byte stream into smaller, discrete units called packets, (2) delivering data to
the intended application (e.g., via port numbers), (3) adapting the data transfer rate to
the time-varying capacity of the path (e.g., via congestion control), and (4) delivering data
reliably to the destination (e.g., via retransmissions).

Protocols at the transport layer use the network layer, e.g., the Internet Protocol (IP), to
forward packets to the destination without having to worry about the details of forwarding
packets through intermediate nodes in a network. The network layer uses the link layer
(also known as the Medium Access Control (MAC) layer) to transmit a packet over a link
between two nodes. The link layer abstracts the details of the underlying technology of a
link (e.g., a wireless link), and the details of how to use a given link most efficiently to
deliver a packet over the link. Finally, the physical layer provides a “bit-pipe” service that
converts the data bits from the link layer to analog signals that are transmitted over the
physical medium. This dissertation examines the properties of the physical layer and uses
these properties to improve the packet delivery efficiency of the WLAN link layer.

Figure 1-2(b) shows the architecture of a WLAN, which consists of a set of wireless
client terminals and one or more access points (APs). APs are interconnected (usually
wired) network elements that relay network layer packets between the client terminal and
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the rest of the network. APs and wireless terminals encapsulate an entire or a fragment
of a network layer packet into link layer transmission units called frames. A single packet
may be transmitted over the wireless medium using several different frames, depending on
the level of fragmentation and the number of retransmission attempts used to transmit the
packet.

At the link layer, the sender transmits a frame by passing it to the physical layer,
which then encodes and modulates the data bits into a radio signal. The receiver reverses
the process of demodulating, decoding the received signal into a link layer frame, and
decapsulating the frame(s) to assemble the original network layer packet.

When a packet destined to a client arrives, the infrastructure needs a way of knowing
which AP it should use to relay the downlink packet to the client over the wireless medium.
Similarly, in the other uplink direction, the client needs to pick among multiple possible
APs. Because each AP in a conventional WLAN operates independently without any central
coordination, the clients become responsible for discovering, selecting, and associating with
an AP in the network. The process of discovering and selecting APs involves scanning a
finite number of radio channels to identify the AP with the best signal quality within its
radio range. The process of association entails switching the client’s radio channel to the
same one used by the targeted AP, and registering with the AP so that it can start relaying
packets for the client. As a client begins to move out of range of an AP (e.g., moving from
location x to y in Figure 1-2(b)), it scans for alternate APs within its range. When the
client finds another AP that gives a good signal quality at the new location, it roams or
performs a handoff to the new AP by issuing a disassociation message to the old AP and
associating with the new one. In current 802.11 WLANs [15], the handoff process usually
takes several tens to hundreds of milliseconds [63].1

Even when a client is associated with an AP that gives good signal quality, frame loss
rates can still be significant due to collisions and transmission errors. Collisions happen
when multiple senders transmit at the same time and their transmissions interfere with each
others’ receptions. Most WLANs adopt a widely used technique called carrier sense multiple
access (CSMA) to alleviate collisions in a network where terminals access the channel in
an uncoordinated manner. In CSMA, a terminal that needs to access the channel first
picks a random backoff delay in which the terminal listens to the channel for a possible
ongoing transmission. If no transmission is detected within the backoff delay, the terminal
begins its transmission. Otherwise, the terminal defers its transmission until the channel
becomes clear to avoid collision. The range of the random backoff delay is bounded by a
backoff window. The size of the backoff window affects the collision rate and the frame’s
transmission delay and is adjusted based on the level of utilization in the channel. WLANs
such as 802.11 conservatively assume that all frame losses are caused by collisions and
indicate a high level of contention. Thus, WLAN terminals increase the backoff window
exponentially on every failed transmission attempt to avoid collisions.

However, not all losses are caused by collisions. Frame losses can often arise from
transmission errors inflicted by the physical causes described earlier. Because detrimental
effects from physical causes are prevalent and degrades communication throughput and
latency, an important requirement in the design of high performance WLAN systems is loss
resilience.

Previous work over the past several decades has led to a number of error correction and

1In comparison, the time required to transmit a 1500 byte frame at a bit-rate of 11 Mbits/s in an 802.11b
network is only about 2 ms.
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loss recovery strategies. The simpliest variant is Automatic-Repeat-reQuest (ARQ) [62],
which applies an error-detection code (e.g., Cyclic Redundancy Codes [88]) on every frame.
The sender retransmits frames with bit-errors detected at the receiver. This technique is
effective as long as the transmitter does not exhaust the retransmission limit, but can be
wasteful because entire frames need to be transmitted even when the receiver only needs to
recover only a few corrupt bits. Also, delay increases with the number of retransmissions.
For WLANs that use CSMA (e.g., 802.11), the delay is further exacerbated by a backoff
window that increases exponentially with every retransmission attempt.

An alternate coding technique is forward error correction (FEC) [61]. In FEC, the
sender encodes data with extra bits above the physical layer to help the receiver decode
the original transmission in presence of errors. Depending on the encoding scheme and
the number of extra bits being encoded, FEC can recover from a limited number of bit
corruptions. To improve loss resilience when the bit-error rate is high, the transmitter can
modulate the data using a lower bit-rate at the physical layer [78, 15]. At low bit-rates,
the transmitter essentially uses more signal energy to encode each bit of data and helps
the physical layer at the receiver to match the incoming signal to the correct data symbol.
The increased robustness of the transmission comes at the expense of reduced throughput.
For efficiency, both FEC and physical layer modulation techniques need to avoid encoding
too many redundant bits or slowing bit-rates excessively for a given channel. There is a
large body of work devoted to the development of FEC or bit-rate selection algorithms that
adapts to varying channel conditions [61, 51, 44, 55, 76, 80, 24]. However, the large channel
variations that are commonly found in the wireless medium pose a significant challenge
in developing efficient and practical adaptive algorithms. Current algorithms still incur
significant overhead and do not work well in many environment where high variations exist,
especially when nodes are moving.

1.2 The Case for Path Diversity

This dissertation develops an approach to improve error resilience against the physical causes
of transmission errors in WLANs using the notion of path diversity. Path diversity relies on
multiple access points (APs) covering a given area or multiple radios on the user’s device or
a combination of both. The hypothesis underlying this system is as follows: because frame
losses are often path-dependent (e.g., due to multi-path fading), location-dependent (e.g.,
due to noise), and statistically independent (e.g., due to thermal noise in the electronics)
between different radios, transmissions are likely to succeed from at least one of the available
transmitters (transmit diversity). Likewise, multiple radios that all receive versions of the
same transmission may together be able to correctly recover a frame, even when any given
individual radio is not (receive diversity). Using these principles, we design and implement
the Multi-Radio Diversity (MRD) system, which leverages the properties of path diversity at
the transmitter and receiver to reduce frame loss rates in the link layer, leading to increased
packet delivery efficiency and throughput for higher layer protocols.

MRD is different from today’s WLAN architecture, in which a client treats each AP
and radio as an independent entity and limits communication to a single path at a time. In
contrast, with MRD, a client treats APs and radios attached to the same infrastructure or
to the same device as collective entities that can help each other to improve frame delivery
rates in the network. Thus, MRD can exploit the physical properties of path diversity and
opportunistically make use of all available radios and APs within range to increase the
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Figure 1-3: Experimental results that show independent loss behavior between all pairwise
combinations of six simultaneous receivers.

efficiency of delivering packets in the network.

1.2.1 Loss Independence

The effectiveness of path diversity critically depends on loss independence: multiple radios
provide little help if losses are highly correlated among them. Indeed, loss independence
may not be valid under certain conditions, such as any interference that arises from an
active source (e.g., a microwave oven) that simultaneously affects multiple APs and radios
within a given area.

We present measurements that show that a good fraction of transmission errors arise
from path-dependent physical effects. In one experiment, a sender broadcast frames to six
(potential) receivers over an 802.11a network. The receivers were located at different places
on the same floor of an office building. The sender sent 500,000 1500-byte User Datagram
Protocol (UDP) packets, each tagged with an unique sequence number, at an offered load
of 30 Mbits/s over a 48 Mbits/s link. We then took each pairwise combination of the six
receivers (a, b) and for each receiver pair, computed the frame loss rate (FLR) at Ra and
Rb, and their simultaneous loss rate (FLR(Ra ∩ Rb)), i.e., the likelihood of both receivers
simultaneously observing a loss of the same transmitted frame.

Figure 1-3 plots the individual FLR for Ra (circle) and Rb (triangle) vs. the simulta-
neous FLR for the Ra and Rb pair.2 The plot shows that the individual FLR values are
greater than the simultaneous FLR, which suggests that losses are not completely corre-
lated between any two receivers. As a result, path diversity may be used to reduce losses
compared to a system that uses only a single path.

To test for loss independence, we plot the product of the individual FLRs (star) vs. the
simultaneous FLR. The plot shows that the product values lie roughly on the y = x line,

2Circles and triangles that lie on the same x-axis value belong to one Ra and Rb receiver-pair. There are
`

6

2

´

= 15 receiver pairs in all.
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Figure 1-4: With receive diversity, the WLAN infrastructure can improve performance by
using multiple APs to receive transmissions from any given client. The infrastructure uses a
central controller to filter redundant receptions and to handle retransmissions and in-order
packet delivery.

indicating that FLR(Ra)FLR(Rb) ≈ FLR(Ra∩Rb). That is, losses are largely independent
at each receiver in this experiment. Another similar wireless measurement study observes
loss independence between simultaneous receivers too [89]. We show more evidence of loss
independence at the bit-level, and also for transmissions between two alternating transmit-
ters later in Chapter 4.

1.3 Using Path Diversity in WLANs: An Overview

We just presented some empirical evidence that shows that path diversity exists between
receivers and Chapter 4 will present evidence that supports path diversity exists between
transmitters as well. The properties of path diversity are different between the receiving
and the transmitting end of the communication but diversity at either or at both ends may
be used to help reduce losses in the wireless link. We outline the challenges and our methods
of actually making use of them below.

1.3.1 Receive Diversity

In receive diversity, different APs with overlapping coverage, listening on the same radio
frequency, provide alternate communication paths for each frame transmission from a given
WLAN client (Figure 1-4), while multiple wireless cards on the WLAN client achieve the
same result for transmissions to the client. A central controller collects all received ver-
sions of the same transmission, and forwards one of those that has been received correctly.3

3Thus, APs in MRD no longer relay packets. Instead, they relay link layer frames to a central controller,
which performs the frame decapsulation task that was originally performed at the AP in the conventional
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Although loss resilience may improve as the number of available receivers increases, trans-
missions can still fail when none of the received versions of the transmission are correct.
Such failures lead to lost packet transmissions, and packet loss rates of even a few per-
cent can severely degrade the throughput of transport protocols such as TCP. While it is
impossible to guarantee reliable transmissions in the wireless medium, our system incorpo-
rates three receive diversity techniques to reduce packet losses efficiently in the presence of
transmission failures:

1. Frame combining: MRD attempts to “combine” the different erroneously received
versions of the transmitted frame to recover the correct version of the frame. This
approach to frame combining is reminiscent of an old, well-studied idea called “re-
transmissions with memory” [83, 30], where retransmissions of erroneous frames are
combined with the original transmission in an attempt to recover the correct version
of the data. The computational complexity of this technique is exponential in the
number of bit values that are different between the different received versions of the
transmitted frame. Our contributions are an generalizing this idea to incorporate
the spatial dimension, and making it computationally feasible by using a practical
block-based heuristic.

2. Retransmission using request for acknowledgments: MRD can often recover a corrupt
frame without requiring a retransmission from the client, but frame combining will not
always succeed. MRD uses a lightweight retransmission scheme running in between the
network layer and the WLAN link layer to further improve error recovery. To prevent
adverse interactions caused by the retransmission schemes at two different layers,
MRD turns off link layer retransmissions but retains the link layer feedback mechanism
for controlling wireless channel contention (congestion). Because some frames can
only be recovered after frame combining, MRD uses a feedback protocol between the
sender and the central controller where frame combining is performed. This protocol
is designed to have low overhead, using a Request for ACK (RFA) technique rather
than traditional acknowledgments (ACKs) or negative acknowledgments (NACKs),
and ensures in-order packet delivery for the higher networking layers.

3. MRD-aware rate adaptation: Neither frame combining nor retransmissions can suf-
ficiently cope with communication channels that deteriorates severely. In such en-
vironments, the transmitter must use a more robust, but lower bit-rate, modulation
scheme to maintain communication. Current bit-rate selection algorithms behave
sub-optimally under MRD because they do not use information observed at all of the
AP and radio receivers that are within range of the sender. We modified an existing
bit-rate selection algorithm to adapt bit-rates according to the feedback information
from the RFA protocol.

The combination of these techniques forms the MRD-Receive Diversity (MRD-RD) sub-
system. A noteworthy aspect of MRD-RD is that it achieves significant improvements in loss
rates—especially in highly variable channel conditions that traditional retransmission and
bit-rate selection schemes have difficulty coping with—while consuming only a small amount
of additional bandwidth. Chapter 3 describes the design and implementation of MRD-RD.
We study the performance of MRD-RD using a wide-range of experiments including both

WLAN.
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Figure 1-5: With transmit diversity, the WLAN infrastructure can improve performance by
using the central controller to track link conditions at each AP and select a good AP for
each frame transmission.

stationary and moving wireless receiver nodes on an indoor 802.11a testbed. We find that
it can achieve throughput gains of up to 3× over single-path communication schemes that
employ a standard 802.11 bit-rate selection algorithm.

1.3.2 Transmit Diversity

As we will show in Chapter 4, frame losses often occur in bursts within a single transmission
path, and many of these bursts are of long lengths on the order of tens of frames. Such
long burst lengths imply that the conditional probability of losing a frame given that the
previous one had been lost is often significantly larger than the average frame loss rate.
At the same time, losses are not highly correlated along different transmission paths. As a
result, a good choice of transmission points (among a set of APs, as shown in Figure 1-5)
or among multiple wireless interfaces installed on a client device) can significantly improve
performance.

Our goal is to avoid frame losses by selecting transmission paths adaptively for every
transmission. Transmit diversity is especially useful for scenarios when only one radio is
used for reception (due to physical or energy limitations on the client’s device or the range
of the transmission does not reach multiple radios). To implement a practical transmit
diversity scheme in WLANs, we had to overcome the following challenges:

1. High path switching cost: To adapt to short-term variations in the channel, the process
of switching transmission paths to and from a client needs to occur within milliseconds.
Current WLANs cannot support this because routing depends on association between
an AP and a client. The process of association usually entails AP scanning and a
sequence of message exchanges used to authenticate and register routing information
for a client. To avoid the high path switching overhead, our system uses a central
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controller to manage routing so that switching paths no longer requires negotiation
between the APs and the client.

2. Rapid channel variations: The state of the channel can change drastically within tens
of milliseconds, which makes it difficult to predict the best transmission path at any
given moment. Furthermore, the path switching algorithm needs to obtain channel
measurements in order to select paths adaptively. However, obtaining precise channel
measurements from all of the available transmission points is impractical because it
entails sending probes from each of them. Thus, a practical path selection algorithm
must deal with both high channel variations and limited channel information.

We developed MRD-Transmit Diversity (MRD-TD), a multi-radio diversity WLAN sub-
system that decouples the process of associating a client with an AP from the process of de-
livering data frames to the client to facilitate low-overhead path switching, and incorporates
a practical fine-grained path selection heuristic that effectively reduces burst losses in en-
vironments with high channel variations. MRD-TD runs in conjunction with a longer-term
primary-AP selection mechanism, usually a card-specific proprietary mechanism, and can
also be used with techniques for coping with high frame loss rates such as packet fragmenta-
tion [90], varying packet size [69], forward error correction (FEC), bit-rate adaptation [44],
and other mechanisms for improving performance in multi-rate WLANs [80, 87].

We conducted experiments on a 802.11b testbed with two APs and a laptop receiver
at three different indoor locations, measuring loss rates for two scenarios: one with the
laptop receiver moving while the experiment was being conducted, and another with the
laptop staying stationary. Our results show that the prototype MRD-TD system reduces
the average frame loss rates by as much as 26% compared to a fixed-path scheme that uses
the best available path when receiver is in motion. MRD-TD also improves the transmis-
sion delay distribution by avoiding long burst losses. Chapter 4 describes the design and
implementation of MRD-TD and presents the results of several experiments.

1.3.3 Receive+Transmit Diversity

We combine the previous two sub-systems into a single system to provide diversity gains in
both communication directions. For clients that have only a single radio, a MRD WLAN
can use MRD-RD to perform frame combining in the uplink direction (from the client to the
APs), and MRD-TD to perform path selection among the APs in the downlink direction.

For clients that have multiple wireless interfaces, we can run both MRD-RD and MRD-
TD to provide both receive and transmit diversity gains in the same direction of traffic.
For example, in the downlink direction, MRD can provide receive diversity gains using
multiple receive radios installed on the client and provide diversity gains from multiple APs
in the infrastructure. We present the design and implementation of an integrated MRD-
Transmit/Receive Diversity (MRD-TRD) system and evaluate its performance gains over
the individual sub-systems. Our experiments show that the combined MRD-TRD scheme
provides up to 34% and 12% throughput gain over schemes over MRD-TD and MRD-RD,
respectively.

1.4 Summary of Contributions and Roadmap

This dissertation presents four main contributions:
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1. Design and implementation of MRD: We show how to incorporate and integrate
transmit and receive diversity techniques in WLANs, and introduce a number of
supporting mechanisms mentioned above to increase its efficiency. A salient feature
of our design is that it works above the physical layer. This allows the system to be
implemented on existing commodity hardware.

2. Frame combining: We study the bit-error characteristics of wireless transmissions
and developed an algorithm for block-based frame combining. The algorithm takes
advantage of the common observed behavior in wireless communication—that errors
tend to occur in bursts—in order to reduce the complexity and overhead of accom-
plishing its tasks.

3. Fine-grained path selection: We study the frame loss characteristics of wireless
transmissions and developed a heuristic for fine-grained path selection. Like frame
combining, the algorithm takes advantage of burst frame loss patterns in order to
reduce its overhead and complexity.

4. Evaluation: We conducted a wide range of experiments to evaluate MRD on a 802.11-
based testbed. We validated our hypothesis that path diversity improves loss resilience
in WLANs, showing throughput gains up to 3× over the conventional system.

The remainder of this dissertation is organized as follows: Chapter 2 presents related
work on various strategies of combating against bit-errors in the wireless medium. Chap-
ters 3 and 4 begin by examining the empirical effects of receive and transmit diversity
respectively. Then they describe the design, implementation of the MRD-RD and MRD-
TD sub-systems, and present experimental results. Chapter 5 builds upon the previous two
chapters, and evaluates the performance of the integrated MRD system with both receive
and transmit diversity. We conclude in Chapter 6 with a summary of the dissertation and
directions for future work.
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Chapter 2

Related Work

Our work addresses the problem of improving the efficiency of delivering packets in wireless
networks. This chapter provides a survey of other techniques that were designed to address
the same problem and describes how each is related to MRD.

2.1 Error Control

One of the simplest error control methods is Automatic-Repeat-reQuest (ARQ), which
applies error-detection codes to every frame and retransmits frames when bit-errors are de-
tected at the immediate receiver terminal. To facilitate retransmissions, most WLAN link
layers use a stop-and-wait protocol, which blocks transmission until the transmitter receives
an ACK control frame from the receiver to acknowledge the successful receipt of a transmis-
sion or until a timeout occurs [59]. When a timeout happens, the transmitter retransmits
the previous frame and waits for an ACK. The process repeats until the transmitter receives
an ACK for the transmission or the transmitter reaches a retransmission limit and drops
the packet. The ACK control frame in the stop-and-wait protocol is synchronous because
the time for its transmission is always reserved, occurring soon after the transmission of the
data frame.

MRD also uses synchronous ACKs from the link layer but does not retransmit the
forward frame immediately if the corresponding link layer ACK is missing. Instead, MRD
extends error control beyond the immediate receiver terminal, and sends a request-for-
acknowledgment to solicit reception reports from a central controller used to collect multiple
versions of the same transmission from multiple radios or APs in the network. A MRD
sender then decides whether to retransmit a given frame based on the final reception status
observed at the central controller, after the transmission gets a chance to recover from frame
combining.

Error-correction codes are a different class of techniques. In forward error correction
(FEC) [61], the sender inserts extra bits in the data stream to help the receiver recover the
original data in the presence of a limited number of bit corruptions. Hybrid ARQ is an
extension of this technique, which combines FEC and retransmissions to recover unsuccessful
transmissions [59, 33]. Typically, FEC schemes are expressed by a coding rate k/n, which
encodes k bits (k 6 n) of data with an n-bit codeword. A lower coding rate usually allows
FEC to correct a greater number of corrupt bits because the number of redundant bits, n-k,
will be larger.

MRD uses frame combining, which performs error correction using only the received data
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bits without requiring extra information from the physical layer or encoding extra bits from
the sender. The idea is first proposed in [83] and then further analyzed in [30, 35]. To the
best of our knowledge, we are the first to develop, implement and experimentally evaluate
a block-based scheme for practical frame combining in wireless LANs. Roughly concurrent
with our work, the authors in [38] develop a scheme called Simple Packet Combining for
sensor networks and provide experimental results conducted on a low-speed radio testbed
based on the TinyOS/Crossbow Mica2dot [5] platform.

There are various other forms of combining such as Chase combining [32] and collabo-
rative decoding [19]. These soft-combining schemes are generally complex and require the
receivers to exchange soft decision estimates of each data symbol, which is not accessible
from any commercially available wireless device today.

2.2 Bit-rate Adaptation

Digital modulation is a physical layer process that maps n data bits into one of 2n symbols,
where each symbol corresponds to a distinct analog waveform that the sender transmits over
the wireless medium. The received signal is usually some distorted version of the transmitted
waveform because of attenuation, multi-path, noise and interference. During demodulation,
the receiver decides which of the finite number of waveform (symbols) provides the closest
match with the received signal and recovers the original data bits by reversing the bits-to-
symbols mapping. Bit errors arise if the received signal is matched to an incorrect symbol.

The 802.11 physical layer transmits at a constant symbol rate but provides a set of
different bit-rates. In 802.11b, there are four different bit-rates: 1 Mbit/s, 2 Mbits/s, and
5.5 Mbits/s, and 11 Mbits/s. In 802.11a, there are eight: 6 Mbits/s, 9 Mbits/s, 12 Mbits/s,
18 Mbits/s, 24 Mbits/s, 36 Mbits/s, 48 Mbits/s, and 54 Mbits/s. The bit-rates are defined
by how many bits are mapped into each symbol. The 802.11a/g physical layers use FEC
so their bit-rates also depends on the FEC coding rates defined for each level. In general,
a high bit-rate requires mapping more bits per symbol and/or a higher FEC coding rate.
Mapping more bits per symbol requires the receiver to match the received signals to a larger
symbol set and increases the probability of error in presence of distortion. A higher coding
rate weakens FEC’s ability to correct corrupt bits. Thus, there is an inherent tradeoff
between bit-rates and error rates. It is inefficient to always use a low bit-rate. Not only
does throughput drop for a given link, the sender also consumes more air time in the wireless
medium to transmit a frame of a given size and effectively reduce the throughput for all
other wireless terminals that share the same medium [87].

There is a large body of work devoted to the development of bit-rate selection (or rate
adaptation) algorithms. The goal for these algorithms is to select the highest sustainable
bit-rate for a given channel condition. Most algorithms use loss [51, 55] (absence of link layer
ACKs) or active sampling [24] to estimate channel conditions, while others select bit-rates
on measured signal strength at the receiver [44, 76, 80]. The large channel variations that are
commonly found in the wireless medium pose a significant challenge in developing efficient
and practical adaptive algorithms. Current algorithms still incur significant overhead and do
not work well in many environment where high variations exist, especially in the case when
nodes are moving. None of the existing algorithms work unchanged in the MRD system,
where multiple receivers exists and transmission terminals can change on a frame-by-frame
basis. We successfully adapted one of the algorithms (implemented in [3]) to work in MRD.
The modified algorithm helped MRD produce up to 3× throughput improvement, despite
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the high channel variations within the individual links between a given pair of transmit and
receive radios.

2.3 Other Link layer Error Control Techniques

Some measurement studies have found that frame loss rates have some correlation with
the size of the frame. While reducing frames can effectively reduce loss rates, especially in
the presence of interference from external sources such as a microwave ovens [90], it also
reduces throughput because the overhead of the header becomes proportionately larger as
the frame becomes smaller. Algorithms that attempt to balance this tradeoff are presented
in [69, 64, 65].

The authors of [49] presents interesting techniques to correct errors contained within
link layer headers. The technique takes advantage of the observation that header contents
are highly structured and change infrequently. As a result, a receiver can correct errors
based on consistency checks and on Hamming distance tests against header information
received in the past.

2.4 Micro-Diversity Techniques

Diversity transmissions and receptions are common techniques used to mitigate the effects
of fading, and interference in wireless systems. Almost all WLAN devices contain more
than one antenna; antenna selection is based frame loss rates. Recently, the IEEE incorpo-
rated a more advanced antenna diversity technique called Multiple-Input Multiple-Output
(MIMO) [70] into the physical layer specifications of the next generation WLAN devices
known as 802.11n [93]. Alongside of 802.11n are “smart antennas,” which are already be-
ing integrated into new 802.11a/b/g products [12, 11]. Smart antennas can be used to
steer transmission signals in a particular direction to mitigate multi-path effects and reduce
interference.

In general, this class of techniques, known as microdiversity, is tightly integrated with
the physical layer and mostly helps in mitigating path-dependent effect localized at the
transmitting or receiving terminal. In contrast, MRD is a solution that may be readily
deployed today in any 802.11 system by just changing the software. Furthermore, MRD
WLANs operate above the physical layer and may be used to collect data frames received
by radios distributed across different access points at different locations to realize diversity
gains at the macro level, which can yield significant performance improvement as shown
in Section 3.6.2. Thus, we believe MRD and MIMO compliment one another: a WLAN
operator can build a MRD WLAN using 802.11n hardware to exploit micro-diversity while
using MRD to exploit path (macro) diversity over the wide-area.

Cellular phone networks also employ antenna diversity techniques, which exploit spatial
diversity of strategically placed transmitters or antennas to mitigate the effects of multipath
and shadowing [36, 78].

2.5 Macro-Diversity Techniques

Code Division Multiple Access (CDMA) cellular phone networks have long used “macro-
diversity” to improve performance and to provide seamless handoff between base sta-
tions [45, 78, 94]. This idea is later applied to combine frames received from adjacent
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access points to improve uplink WLAN performance in the same way as MRD. The authors
of [57] present simulated results based on a capture model but ignore protocol level issues
such as ARQ. The contributions of [58, 29, 91] focus on simulation results and theoretical
performance analysis, with [91] presenting results in the context of a WLAN based on Blue-
tooth [26] radios. In contrast, our contributions lie in the design of a macrodiversity system
that works well in CSMA-based WLANs and in conducting a performance study of a fully
implemented receiver macrodiversity system on a real testbed.

In Site Selection Transmit Diversity (SSTD) [40] which evolved into Fast Cell Selection
in the High Speed Downlink Packet Access (HSDPA) architecture of the third generation
cellular phone systems [6], the client continuously measures the pilot signals emitted by the
surrounding base stations and signals the network to perform a soft-handoff to the base
station that transmits a pilot with the highest received signal strength. The soft-handoff
can happen on a frame-by-frame basis. The idea is similar to MRD-TD except that it relies
on the receiver to make switching decisions. The architecture works well in cellular phone
networks because medium access is synchronized by the base station. In WLANs such as
802.11b, medium access is randomized and distributed. Thus, feedback information may
not be received by the distribution system in a timely fashion for an effective fine-grained
switching to occur.

Macro-diversity can introduce duplicate and out-of-order receptions and increase the
complexity of retransmission and in-order packet forwarding mechanisms. While we have
not found any references that fully explains how the cellular network copes with retrans-
mission and in-order packet delivery during a soft-handoff, the 3rd Generation Partnership
Project (3GPP) has published a technical report that describes the complexity of the prob-
lem and suggests how the High Speed Uplink Packet Access (HSUPA) system might use
two layers of ARQ to improve link reliability during a soft-handoff [2]. In their proposal, a
client, after an uplink transmission, can obtain a MAC layer ACK signal from multiple base
stations on orthogonally time-scheduled or coded channels. The client performs a MAC
layer retransmission if none of the base stations respond with an ACK. The retransmitted
frames are soft-combined within each base-station with any previous erroneous reception of
the same frame. If a frame’s retransmission limit has been exhausted at the MAC layer,
the Radio Link Control protocol can optionally retransmit the frame. Successful receptions
are forwarded to a Radio Network Controller, which implements a ordering buffer to reject
duplicates generated by different base-stations and to ensure in-order packet delivery.

In contrast, MRD cannot rely on multiple WLAN access points to provide simultane-
ous ACK signaling because WLAN MAC protocols do not allow arbitrary scheduling of
ACK transmissions. While WLANs do provide multiple channels using orthogonal radio
frequencies, WLAN radios are designed to be simple and can be tuned to listen on only one
channel at a time. Thus, to coordinate retransmissions among multiple receivers, MRD uses
a request-for-acknowledgment protocol that operates above the link layer. MRD also com-
bines frames received by multiple access points. Thus, successful error recovery is possible
without retransmission in MRD.

2.6 Multi-user Diversity

Multi-user diversity [53] and medium-access diversity [48] also exploit the fact that losses at
different receivers occur independently. In both techniques, a sender has a queue of packets
destined for different receivers (clients) and attempts to improve network performance by
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scheduling transmissions to the receiver that has the best channel condition in a given
moment. In contrast to MRD, the technique requires explicit receiver selection and channel
quality feedback from each receiver. These requirements are necessary if the receivers are
not inter-connected by a high bandwidth back-channel that MRD relies upon.

2.7 Cooperative Diversity

Instead of relying on a physical antenna array to provide diversity gains, cooperative di-
versity uses multiple wireless terminals distributed over an area to form a virtual antenna
array for communication. The theoretical foundations of cooperative and spatial diversity
is explained in [56] and by [37], which recently lead to the development of practical systems
based on the same idea. ExOR [25] is a multi-hop routing system that allows multiple nodes
along a routing path to receive a given transmission. Thus, a transmission can opportunis-
tically skip hops along a path if the transmission successfully reaches a distant downstream
node. Using this scheme, ExOR can reduce the total number of transmissions required to
deliver a packet from a given source and destination.

ExOR is similar to MRD in that it takes advantage of the broadcast nature of the wireless
medium and opportunistic receptions among multiple receivers to improve performance.
However, the realized benefits of each system is quite different. MRD uses multiple receivers
to reduce overall losses in the network while ExOR uses multiple receivers to improve
each transmission’s progress toward the destination. Recent work has improved ExOR
to incorporate frame combining [38] and network coding [52] techniques to improve frame
delivery rate and to improve capacity by compressing transmissions from two different paths
that cross at a common relay.

2.8 Multi-radio architectures

The idea of coordinating multiple radios in WLANs has recently received considerable
attention. The authors in [21, 20, 31] propose to embed multiple radios on a single device to
improve energy and mobility management, enhance capacity utilization, and avoid channel
failures. Some companies have even begun commercializing multi-radio access points [13].

A distributed radio bridge architecture that exploits path diversity in WLANs is pro-
posed in [57]. MRD differs from distributed radio bridges in several important ways. The
architecture of distributed radio bridges assumes that all radios in the system communicate
in the same frequency. No explicit handoff is required (thus, simplifying mobility) and mul-
tiple radio bridges may participate in forwarding packets between the wired and wireless
medium (thus, achieving path diversity). In comparison, MRD is a hybrid of the tradi-
tional cellular architecture and the radio bridge architecture. Frequency reuse is achieved
by assigning different frequencies to each primary AP’s and diversity is achieved through
using secondary APs. Moreover, in the radio bridge architecture, one or more radio bridges
are randomly chosen for each downlink frame transmission whereas MRD selects a single
transmission site based on loss history.

There have been a few proposals to increase throughput by using multiple interfaces
simultaneously in cell phone networks [84, 79, 75, 77]. Each interface may be configured to a
different channel, or may use a different wireless technology so that packets may be streamed
through all of them in parallel. While MRD can be modified to integrate such techniques,
the focus of our work aims to improve performance by improving the efficiency of packet
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delivery without consuming much extra wireless bandwidth. The source of improvement
comes from reduced losses and the length of loss bursts. We have measurements that show
how MRD can sometimes provide more gains than bandwidth aggregation (Section 3.7.2).

2.9 Measurement Studies

There are a large number of prior WLAN measurement studies in indoor environments. The
authors of [63] study the handoff performance of 802.11b-based wireless LANs and measure
delays that range from 2 to 400 ms. Other researchers have examined loss, delay, and
throughput performance in various indoor settings [34, 92, 89, 39, 41, 73]. [1] is an excellent
reference for many published wireless measurement results. To the best of our knowledge,
we are the first to characterize the loss correlation between different transmission paths in a
WLAN and to experimentally evaluate the performance gain of fine-grained path selection
and frame combining in WLANs. Furthermore, our work adds to the considerable evidence
in the literature that transmission losses in the wireless medium often occur in bursts. The
measurements in this dissertation were conducted using a high-rate broadcast packet stream,
which allows us to sample channel conditions and evaluate the effects of path diversity for
802.11b networks in considerable detail.

The design of MRD-TD is motivated by our previous measurement study that showed
how fine-grained path selection can help reduce bursty losses and thus reduce one-way
packet latency in indoor mobile environments [66]. The results show that interactive video
applications that have low-latency requirements can significantly benefit from such tech-
niques.
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Chapter 3

MRD-RD: The Receive Diversity
Sub-system

This chapter introduces the Multi-Radio Diversity system architecture and describes MRD-
RD, the sub-system that uses receive diversity to improve loss resilience at the receiving
end of the communication. MRD-RD uses a central controller to collect all individual frame
receptions among multiple radios over a high speed interconnect and can forward the correct
version of the transmitted packet even when it is received erroneously at each receiver. The
method of combining erroneous received versions of a frame is called frame combining.

MRD-RD’s frame combining algorithm divides each frame into blocks. For each block,
the algorithm assumes that at least one of the received copies of a frame (including any
possible retransmissions) contains the correct bit values for that block. The algorithm then
attempts to reconstruct the correct frame by trying every version received for each block.
The process succeeds if a particular block combination passes the checksum embedded in
the data frame, and fails once the search exhausts all possible block choices for each block.
The computational complexity of this algorithm is exponential in the number of blocks
for which different versions were received, which depends on the number of blocks in each
frame. In this chapter, we show how to pick the block size and evaluate its performance
using theoretical analysis and real-world experiments. This approach to frame combining
is reminiscent of an old, well-studied idea called “retransmissions with memory” [83, 30],
where retransmissions of erroneous frames are combined with the original transmission in
an attempt to recover the correct version of the data. Our contribution is to generalize this
idea using a block-based technique to incorporate the spatial dimension as well.

MRD-RD can often recover a corrupt frame without requiring a retransmission from
the client, but frame combining will not always succeed. MRD-RD uses a lightweight re-
transmission scheme running above the WLAN link layer to further improve error recovery.
The sender buffers all frames that have not yet been acknowledged (or given up on), and
retransmits any frame that it believes has not been successfully received at the MRD-RD
combiner (after frame combining). To prevent adverse interactions caused by the retrans-
mission schemes at two different layers, MRD turns off link layer retransmissions but retains
the link layer feedback mechanism for congestion control. Because some frames can only
be recovered after frame combining, MRD-RD uses a feedback protocol between the sender
and the central controller that is performing the frame combining operation. This protocol
is designed to have low overhead, using a request for ACK (RFA) technique rather than
traditional acknowledgments (ACKs) or negative acknowledgments (NACKs). With RFA,
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the sender explicitly requests an ACK from the central controller for certain frames, and
decides whether and when to retransmit frames based on this feedback.

The rest of the chapter is organized as follows: Sections 3.1 through 3.4 describes the
MRD-RD architecture, the frame combining algorithm and its theoretical analysis, the
RFA scheme, and modifications to a bit-rate selection algorithm implemented on standard
802.11 devices. Section 3.6 presents the results of several experiments conducted over an
in-building 802.11a-based testbed at MIT’s Computer Science and Artificial Intelligence
Laboratory. A noteworthy aspect of MRD-RD is that it achieves significant improvements
in loss rates while consuming only a small amount of additional bandwidth. Experiments
that experienced a high channel variability (e.g., a mobile WLAN client that moved over
a relatively small area of about three square meters) show throughput improvements of up
to three times compared to contemporary 802.11a with “autorate adaptation” [3]. Most of
the work in this chapter also appears in [67].

3.1 Multi-Radio Diversity Architecture - Receive Diversity

(central controller)

…

WLAN Backbone

Rest of Network

WLAN Infrastructure

RDS

WLAN Client

RDC

AP1 AP2 APi

forward
frames

forward
frames

Figure 3-1: MRD-RD system architecture.

For ease of exposition, we describe the MRD-RD architecture in the context of uplink
transmissions from the client to the WLAN infrastructure. The same architecture can be
used when the MRD radios are co-located on the same device (either in a single AP or on
the WLAN client) for downlink transmissions. We develop an alternate architecture that
supports transmit diversity in Chapter 4, and an unifying architecture that integrates both
transmit and receive diversity in Chapter 5;

Figure 3-1 shows the MRD-RD system architecture. Each AP in the WLAN infrastruc-
ture offers a different physical communication path between the client and the rest of the
network. We configure the APs to listen on the same radio frequency so they can each
receive a copy of the client’s uplink transmission. The AP forwards all frames—including
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those that are corrupted—to a central controller called the Receive Diversity Combiner
(RDC), which filters redundant data frames received by multiple radios and invokes the
frame combining procedure when needed. The RDC maintains a packet buffer to deliver
packets in-order to the rest of the network.

At the WLAN client sender, the Receive Diversity Sender (RDS) handles data transmis-
sions and retransmissions. The RDS operates in between the link layer and the IP network
layer. It keeps track of unacknowledged transmissions and schedules their retransmissions
when it believes that the RDC has failed to receive a clean copy of the transmitted frame
from any of the APs and has failed to correct their errors via frame combining. The RDS
uses the request-for-ACK (RFA) protocol to obtain the results of the frame combining
procedure from the RDC.

The MRD-RD architecture does not preclude cellular frequency reuse in WLANs. Fre-
quency reuse is a common method to increase network capacity, which requires APs in
neighboring cells to operate in different radio frequencies. In MRD-RD, the APs that are
not explicitly associated with the client need only listen for uplink transmissions passively.
Thus, one strategy to achieve frequency reuse is to install passive radios in addition to the
regular, active radio at each AP.1 The client associates with the active radio at each AP,
which serves the regular function of transmitting management and control frames to the
WLAN client, while the passive radios are configured to listen on the neighboring APs’
radio frequencies. Because the passive radios never transmit a frame, they do not create
any interference in the network. If installing multiple radios on a single AP is not possible,
an operator can install additional passive access points in the network. As the costs of
APs continue to decline, this approach is a viable way to add path diversity (for uplink
communication) in WLANs.

MRD-RD assumes that there is sufficient bandwidth in the wired backbone to handle
the additional traffic generated by the passive APs. This assumption is reasonable because
the number of APs within reception range of a transmitter is usually low and the speed
of the wired backbone2 is usually one or two orders of magnitude higher than the wireless
link.

MRD-RD does not affect the functions of handoff and security in a WLAN. As in
the conventional wireless LAN, the WLAN client would associate with and perform hand-
offs between different active APs. Existing WLAN security standards such as WEP [15],
802.1x [17], and WPA/802.11i [8] handle encryption/decryption and other security func-
tions in software and are easily implemented in the RDS and the RDC, assuming that the
RDC can establish a secure trust relationship with each MRD radio (AP) over the network.

3.2 Frame Combining

We now describe how MRD-RD recovers error-free versions of corrupted data frames using
frame combining and analyze its performance. One approach is to run a simple linear time
algorithm that attempts to correct bit errors by selecting the majority bit value between
three or more frames [35]. But this approach requires at least three copies of the same
transmitted frame, which may not be available (without a retransmission) if only two MRD

1In fact, companies have begun selling radio chipsets and “radio switches” that can process and decode
transmissions from multiple channels simultaneously (see, e.g., [7, 13]).

2In the downlink direction, the “backbone” is the internal bus interconnecting the wireless interfaces
within a client.
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radios are within receiving range of the sender. Therefore, we develop and analyze a block-
based frame combining scheme that can work even when only two copies are available.

Suppose two copies of the same transmitted frame of size S bits are received at two
different receivers. If any of the data frames passes the link layer cyclic redundancy checksum
(CRC) check, the RDC decodes that as the transmitted frame and forwards it—we term
this step soft selection. Otherwise, the RDC runs the block-based combining algorithm to
recover the packet. Block-based frame combining works by first subdividing both frames
into blocks, and then reconstructing the frame by assembling the blocks selected from each
received frame of the transmitted packet. The process succeeds if a block combination
passes the CRC embedded in the data frame, and fails once the search exhausts all possible
block combinations.

For the two-frame case, the block combining steps are:

1. The input to the algorithm is two frames, f = {A,B}, of size S bits each, divided into

NB blocks X = {Xf
1 , Xf

2 , ..., Xf
NB
}. Let ∆ = |{i|XA

i ⊕XB
i 6= 0}| (i.e., the number of

blocks that do not have matching bit values). All matching blocks from A and B are
retained unmodified.

2. Assemble a combined frame that contains X ′ = {Xf ′

1 , Xf ′

2 , ..., Xf ′

NB
} blocks from either

frame A or B. Each iteration of this step generates a new combined frame by replacing

Xf ′

i with either XA
i or XB

i for each i where XA
i ⊕XB

i 6= 0.

3. If either of the CRC value embedded in frames A or B matches the CRC value com-
puted over X ′, return the combined frame containing X ′. Otherwise, repeat step 2
until all possible combinations of X ′ have been tried. If none of the block combinations
X ′ passes the CRC check, declare a frame combining failure.

There are many ways of dividing a frame into blocks. For simplicity, we divide each
frame such that blocks Xf

1 , Xf
2 , ..., Xf

NB−1 contain B bits and the size of the last block

|Xf
NB
| is 6 B. Thus, NB = dS/Be.

When the block-based frame combining algorithm declares a failure, the RDC can save
the corrupt frames for possible frame combining (using either bit-majority or block-based
combining) with any subsequent retransmissions of the frame. In our current implementa-
tion, the RDC saves only one of the corrupt frames and apply block-based combining to
two corrupt frames at a time. Note also that the algorithm generalizes easily to more than
two concurrent receptions of the same frame.

The block-based frame combining algorithm is simple but its running time is exponential
in ∆, the number of differing blocks. With two copies, it needs up to 2∆ CRC check
operations to identify the correct combination. Since ∆ ≤ NB , one way to bound the
number of CRC checks is to reduce NB by increasing B. Inevitably, the frame combining
failure probability will increase as the likelihood of simultaneous block errors increases with
B. We analyze this trade-off next.

3.2.1 Frame Combining Failure Analysis

We analyze how the frame combining failure probability, pf , varies with NB under a burst
bit-error channel model parameterized by a burst length b. pf is the fraction of frames that
cannot be corrected with combining out of those that could not be corrected by the soft
selection in the first place. To find the overall retransmission probability, we assume that
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Figure 3-2: Figure 3-2(a) shows that the bit-errors are clustered in a regular pattern within
a frame. The number in the legend indicates the number of corrupt frames received at
each node. The conditional probabilities in Figure 3-2(b) suggest that bit-errors occur in
bursts within a frame but bit-errors between frames received at different locations have low
correlation.

each receiver observes independent losses, and multiply pf with the independent frame loss
rates (FLR) at each receiver FLR(Ra) × FLR(Rb) (i.e., the probability that the frame
goes uncorrected by soft selection). We have already validated (albeit in a limited manner)
the loss independence assumption in Section 1.2.1, where we showed evidence of loss inde-
pendence among all pairwise combinations of simultaneous receivers in our experiment. In
Section 3.6, we conduct more exhaustive experiments that show that MRD works well in
practice, indirectly further validating the independence hypothesis.

Using the same experiment as in Section 1.2.1, we validate the assumption that bit-
errors occur in bursts by analyzing the bit-error patterns of over 36,000 corrupt data frames
for a specific pair of receivers R1 and R2. Figure 3-2(a) plots a histogram of the bit-error
locations, which shows that the error distribution is uneven, often clustered within 100-200
bits, spaced between 800-1200 bit positions apart. At the 48 Mbits/s bit-rate, 802.11a
employs QAM-64 modulation at 2/3 coding rate. This burst pattern is also observed in
other node placements on our testbed and also in another 802.11b testbed deployed in an
industrial environment [92].

Next, we examine how bit errors are correlated between different receivers for the same
frame transmission. Let R1i and R2i represent the event that the ith bit of the transmitted
frame is received in error by receivers R1 and R2 respectively. Then, P (R1i+k|R1i) and
P (R2i+k|R2i), for k > 0, represents the “auto-conditional loss probability” that the (i +
k)th bit is corrupt, given that the ith bit is corrupt in the same frame. Similarly, we use
P (R2i+k|R1i) and P (R1i+k|R2i) to represent the “cross-conditional loss probability” that
the (i + k)th bit is corrupt, given that the ith bit is corrupt in the frame received by the
alternate receiver.

Figure 3-2(b) shows the auto-conditional and cross-conditional bit-error probabilities
for all the corrupt frames. The cross-conditional probabilities remain flat even at the bit
level. The cross-conditional bit-error probabilities for k < 100 are much lower than their
counterpart auto-conditional probabilities, which suggests that bit-errors rarely occur simul-
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Figure 3-3: The PMF for the number of bit-errors for two different placements of the receiver
pair.

taneously at nearby locations between two frames received at different physical locations.
In contrast, the auto-conditional error probability at the bit level increases dramatically
at small k (< 100). The increased auto-conditional probability corresponds to the burst
bit-error behavior and is most likely related to the clustered bit-error patterns shown in
Figure 3-2(a).

We believe that the periodic and burst nature of bit-errors observed in our experiments is
due to the orthogonal frequency division multiplexing (OFDM) scheme employed in 802.11a.
In this scheme, 52 separate sub-carriers are used to provide separate wireless pathways for
sending the information in parallel. Four of them are used for control, and each of the
remaining 48 sub-channels carries up to 1 Mbits/s summing to 48 Mbits/s. We believe that
the non-uniformity of the losses is because different parts of a frame are carried by different
channels, and the periodicity of bit-errors arises because the same set of data bits in each
frame are consistently assigned to the same sub-channel. Indeed, QAM-64 implies that
there are 6 bits/symbol on each sub-carrier and hence the bunching of 6× 48 × 2/3 = 192
data bits per OFDM symbol is consistent with this hypothesis. Also, the 800 − 1200 bit
spacing of the peaks may be caused by the time-varying nature of the channel between the
stationary transmitter and receivers.

These experimental observations motivated us to develop an analytic model that allows
us to examine how pf is affected by the bit-error burstiness in the communication channel.
In our model, we assume that bit-errors occur in bursts of b > 1 bits. Moreover, we assume
that these sequences of consecutive b bit-errors are spread uniformly over the frame. Thus,
if there occur d such sequences in a given frame, then it means there are a total of bd
bit-errors in that frame. We neglect the effect of two individual error sequences starting
within b bits of each other.

Let Db,i represent the number of b-bit sequences with errors in a given frame received
at receiver Ri. Then,

P (Db,i = d|Db,i > 0) = η

db
∑

d′=(d−1)b+1

P
(

Di = d′
)

. (3.1)
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where η = (1 − P (Di = 0))−1 and P (Di = d′) is the probability that a frame received by
Ri contains d′ bit-errors.3 We obtain the distribution of number of bit-errors empirically.
Figure 3-3 shows the probability mass function of the number of bit-errors for two broadcast
experiments using different node placements. We found empirically that given that a frame
contains bit-errors, P (Di = d′) decays almost exponentially, i.e., as e−αd where α ≈ 0.01—
0.05.

In our model, we kept the average number of bit-errors per packet fixed (independent
of b) and b controls only the burst size. This model of fixed sized bursts of error implies
that the auto-conditional bit-error probability distribution is a step function with a jump at
b. b. Even though the step function only approximates the real auto-conditional bit-error
probability distribution shown in Figure 3-2(b), it encompasses certain flavors of wireless
channels where losses occur in bursts.

Let us denote the set of blocks with errors at receiver Ri by Ni. Then |N1 ∩N2| repre-
sents the set of blocks that contain simultaneous errors at both R1 and R2.

To derive the frame combining failure probability, pf , we make a simplifying assumption
that ignores the possibility that a sequence can spread over more than one block. This
assumption is reasonable when b� B, which is likely to be the case in reality.

If the sequences of bit-errors are uniformly distributed over the frame, the probability
of getting at least d simultaneous block errors, conditioned on the event that receiver Ri

receives a frame with di trains of burst errors is at most

P (|N1 ∩N2| > d|Db,1 = d1, Db,2 = d2) 6

(NB

d

)(NB+d1−d−1
d1−d

)(NB+d2−d−1
d2−d

)

(

NB+d1−1
d1

)(

NB+d2−1
d2

) , (3.2)

for d < min{d1, d2, NB}. The analogy with a ball placement problem is as follows. We
have d1 red and d2 blue balls to be placed in a total of NB bins randomly. We evaluate
the probability that at least d bins contain both red and blue balls. First, we place d red
balls and d blue balls in a given combination of d bins so that each bin contains exactly one
red and one blue ball. Then we distribute the remaining d1 − d red and d2 − d blue balls
randomly in all possible NB bins. We end up with an upper bound because the expression
counts invalid combinations that place more than dB/be sequences of b-bit errors within a
block, which cannot happen in reality.

Because a frame combining failure occurs when d > 1, the conditional frame combining
failure probability is simply

pf (d1, d2) = P (|N1 ∩N2| > 1|Db,1 = d1, Db,2 = d2) . (3.3)

The upper bound on the unconditional probability of combining failure is

pf 6

bS/bc
∑

d1=1

∑

d2=1

bS/bcpf (d1, d2)

2
∏

i=1

P (Db,i = di|Db,i > 0) . (3.4)

and can be computed using Expressions (3.1) to (3.4). Note that this bound is tight since
the a priori probabilities for the di values exceeding B/b for typical values of b and B are
very small. Thus in the summation in (3.4), the weights associated with the a posteriori

3Note that b may not divide into d′ evenly so the summation in 3.1 includes all d′ for a given Db,i such
that Db,i = dd′/be.
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Figure 3-4: The upper bound on pf as a function of the burst size, b. From top to bottom,
the curves are plotted for the span of values of number of blocks, NB = 2, 4, 6, 8, 10, 12, 14
and 16.

probabilities of invalid events of placing more than dB/be sequences of b-bit errors within a
block are very small.

Figure 3-4 plots the upper bound on pf as a function of the burst size b for several values
of the block size, NB. If the bit-errors are uniform (b = 1), pf remains high (≈ 1) regardless
of NB . However, the auto-conditional probabilities in Figure 3-2(b) suggests that bit-errors
indeed occur in bursts. In this case, we expect pf to decrease with increasing NB. As NB

gets larger, the difference between the two curves for a given b becomes very small, which
suggests that increasing NB beyond a certain point does not yield much improvement. Thus,
we lose little performance by fixing NB to some small value (say, 6-10) in order to bound
complexity. Because pf is a highly convex function of b, we expect the performance of frame
combining to be sensitive with respect to the changes in the burstiness of the bit-errors in
the channel. Moreover, the performance of frame combining will improve as the available
computational power increases.

3.2.2 False Positives

We now comment on the possibility of false positives in the combining process caused by
repeated trials for the CRC to check with distinct frames. In essence, the CRC is an n-bit
parity check field that detects any k < n bit errors and misses detection with probability
2−n when k > n. Thus, if a 32-bit CRC is used, as in 802.11, any number of bit errors
< 32 is detected. Moreover, the probability that any randomly produced frame will check
the CRC is 2−32, which implies that it is almost impossible for a random bit error pattern
to go undetected even if a frame contains more than 31 erroneous bits.

Now, with frame combining, even though a single check leading to a false positive is
highly unlikely, if we try it repeatedly many times, we may end up getting a false positive.
Indeed, if the number of differing blocks in two frames is ∆, the number of swaps (and the
number of tests for the CRC to check) is 2∆. For independently produced 2∆ frames, the
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false positive probability is

P (false positive) = 1−
(

1− 2−32
)2∆

≈ 1− exp
(

−2∆−32
)

.

Thus, if E
[

2∆
]

is close to 232, it is likely that the combining procedure leads to false
positives. Even if the available computational power can perform 232 CRC tests, we pick
a block size that is sufficiently large (i.e., NB is sufficiently small) so that, even in the
worst case, we do not perform too many CRC checks. Hence, we guarantee by design that
2∆ � 232 and keep the false positive probability sufficiently small. Our implementation
uses NB = 6. Furthermore, most higher layer protocols such as UDP and TCP uses an
extra 32-bit CRC to provide an end-to-end data integrity check. Thus, the probability of
forwarding to the application an erroneous packet with a false CRC is minuscule in practice.

3.3 Retransmissions with RFA

MRD-RD disables link layer retransmissions to allow the RDC to recover packets that the
active radios receive in error. The RDS retransmits frames that the RDC fails to recover
with soft selection or frame combining (i.e., a frame recovery failure). To facilitate these
retransmissions, the RDS uses the request-for-acknowledgment (RFA) protocol to obtain
the status (success or failure) of each frame transmission.

3.3.1 Design of RFA

RFA operates in between the link layer and the network layer, but uses the link layer syn-
chronous ACKs that is implemented in most WLANs such as 802.11. A synchronous ACK
is a link layer control packet that is sent by the active radio (see Section 3.1) immediately
after it successfully receives a data frame. After each frame transmission, the RDS checks
the link layer transmission status. A success implies that the active radio has received the
transmission correctly, so the RDS can proceed to transmit the next available packet. A
failure implies either a corrupt link layer ACK or a corrupt data transmission. In the former
case, the RDC simply forwards the correctly received data packet or buffers it in the order-
ing buffer (explained below in Section 3.3.3). In the latter case, the RDC may recover the
frame loss using soft selection or frame combining. If the recovery is unsuccessful, the RDC
saves the corrupt frames for possible frame combining with any subsequent retransmissions
of the frame.

In either case, the RDC always knows the final status of each frame transmission. Thus,
when the RDS fails to receive a link layer ACK, it issues a “request-for-ACK” frame to the
RDC to obtain an MRD acknowledgment (MRD-ACK), which contains the authoritative
status of the transmission. The RDS needs to explicitly issue an RFA because only the
RDS knows which frames are ACKed by the link layer.4 To save overhead, the RDS signals
a RFA by setting a flag in the frame header of subsequent data transmissions. We explain
the implementation details of RFA in Section 3.5.2.

The RDS buffers the frame that fails to receive a link layer ACK for later retransmission
and schedules the next available frame for transmission. The subsequent transmissions keep
the wireless channel utilized while the RDS waits for the frame recovery results from the

4In our implementation, the MRDC also uses the RFA signal to help it flush the ordering buffer.
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RDC, which can take many milliseconds. To limit the size of the retransmission buffer,
the RDS may transmit up to N different frames from the first unacknowledged one. The
RDS removes a frame from the retransmission buffer after K unsuccessful retransmission
attempts. The RDS schedules a retransmission if the MRD-ACK indicates a frame recovery
failure. If the RDS never receives an ACK from the RDC, the RDS will schedule all
outstanding unacknowledged packets for retransmission after a timeout, Ts. Our current
implementation uses a static timeout value of 90 ms.

There are two reasons why we chose to use the link layer ACK, instead of eliminating
it and letting RDS and RDC handle retransmissions using a standard automatic repeat
request (ARQ) protocol that operates strictly above the link layer. First, the synchronous
ACKs are necessary for carrier-sense multiple access (CSMA) to operate properly. CSMA
uses a randomized backoff window and relies on the absence of the synchronous ACK packet
to detect contention and adjust the backoff window after each frame transmission. Because
we allow transmissions to continue while the RDS waits for an MRD-ACK from the RDC,
it is important to preserve the underlying CSMA channel access mechanism.5

Second, the wireless medium is already reserved for the transmission of synchronous
ACKs in 802.11. They are designed (by means of a smaller data-to-ACK frame spacing
time) to not collide with data transmissions from another nearby source. In contrast,
the acknowledgments from the RDC are asynchronous and must therefore contend for the
channel and suffer potential collisions. Thus, it is a good idea to avoid sending asynchronous
ACKs as much as possible, especially during times when the channel quality is good and
link layer losses are low.

3.3.2 Delaying Acknowledgments

To reduce the number of MRD-ACKs sent to the sender, the RDC delays the return of
an MRD-ACK frame by up to D frame-transmission times, where 0 < D < N . D should
be greater than 0 because the RDC needs time to gather corrupt frame copies from the
MRD radios and perform frame combining. A smaller D value would cause the system to
incur higher overhead as the RDC would send MRD-ACKs more often. A higher D reduces
overhead, but can cause larger transmission delay when the frame requires retransmission.
In practice, the added delay is of little concern to higher layer transport protocols and most
multimedia applications because D is usually set to a few frame transmission times, on
the order of a few milliseconds. If D > 1, the RDC could process multiple frames before
returning an MRD-ACK to the RDS. We expand the MRD-ACK packet with a bit-vector to
indicate the final status of several packets at once, instead of spreading the acknowledgment
across several different MRD-ACK frames.

3.3.3 In-order packet delivery

The RDC maintains a ordering buffer to ensure that packets are forwarded in-order to the
rest of the network. When a frame requires retransmission, the RDC inserts all subsequently
transmitted frames into the ordering buffer until the missing frame has been successfully
recovered or has been given up on.

5It is conceivable to use some other channel access schemes besides CSMA (e.g., time division multiple
access (TDMA)). Doing that would require introducing a major modification to the medium access control
(MAC) layer of 802.11.
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There are many applications, such as audio and video streaming, which are sensitive to
packet delays but do not require in-order packet delivery. To cater to these applications,
we can mark specific frames for out-of-order delivery. Such frames can avoid being delayed
inside the ordering buffer. The implementation used to carry our experiments in this chapter
does not include this feature; it has been incorporated in our most-current implementation
presented in Chapter 5 (see Section 5.2.4).

3.4 Rate Adaptation in MRD-RD

Rate adaptation (or “autorate”) works well when the communication channel severely de-
teriorates and should be used in MRD-RD when soft selection and frame combining can
no longer recover frame losses effectively. Traditional autorate algorithms try to maximize
throughput by using loss or signal strength information observed by a single receiver. Cur-
rent autorate algorithms behave sub-optimally under MRD-RD because they do not use
information observed at all of the diversity radios that are within range of the sender.

The interaction between rate adaptation and MRD-RD error control is an interesting
open topic. Here, we present some simple modifications to an existing rate adaptation
algorithm. Although these modifications may not necessarily yield an optimal algorithm
for MRD-RD, we found them to work well in our experiments.

Our testbed implementation is based on 802.11 interfaces that use the Atheros 5212
chipset, which are driven by the Multiband Atheros Driver6 for WiFi (MADWiFi) [3]. The
MADWiFi driver implements an autorate algorithm that adjusts bit-rates based on the
observed link layer frame loss rate. Due to the popularity of MADWiFi, the MADWiFi
autorate algorithm is becoming a de facto benchmark. Its performance has been studied
extensively in [24] and [55] and is shown to outperform the Auto Rate Fallback (ARF) algo-
rithm that is implemented in many 802.11 interfaces on the market. We use the MADWiFi
autorate algorithm as the basis of discussion, but the general ideas in this section can be
applied to many other loss-based autorate algorithms.

Figure 3-5 provides a pseudo-code of the MADWiFi autorate algorithm. In our notation,
bitrate is an integer with a range [0..MAX BITRATE], which represents the set of discrete
bit-rates available to the sender. There eight discrete bit-rates in 802.11a (6, 9, 12, 18, 24,
36, 48, 54 Mbits/s).

The MADWiFi algorithm starts by calling Init() and invokes TxCallback() to update
the numtx and numtxok counters after each frame transmission. The algorithm invokes
RateAdjust() once every T seconds. If the frame delivery rate is above 90% for at least
S number of successive periods, increase the bit-rate. If it falls below a minimum delivery
threshold D, decrease the bit-rate.

The original algorithm adjusts the numtxok counter based on link layer feedback. This
approach can lead to an understated numtxok value in MRD-RD because the RDC can
recover many frame transmissions using soft selection or frame combining. To fix this
problem, we add the routine listed in Figure 3-6 to the MADWiFi autorate algorithm.

The RDS invokes MRDCallback() whenever it receives an MRD-ACK. numacked is
the number of frames (unacknowledged by the link layer) reported in the MRD-ACK that
have a successful delivery status at the RDC and is added to numtxok. Thus, MRDCall-
back helps the autorate algorithm maintain a correct estimate for numtxok as long as it
receives some MRD-ACKs. Even if an MRD-ACK frame is dropped for some reason, the

6pci: v.0.8.6.1, hal: v.0.9.12.5, wlan: v.0.7.3.2.
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Init()
stable← 0
numtx← 0
numtxok ← 0

TxCallback()
numtx← numtx + 1
if (txsuccess)

numtxok ← numtxok + 1

RateAdjust()
if ((numtx > 0 and numtxok == 0) or

(numtx > 10 and numtxok/numtx < D))
if (bitrate > 0)

bitrate← bitrate− 1
Init()

elseif (numtx > 10 and numtxok/numtx > 0.90)
stable← stable + 1
if (stable > S and bitrate < MAX BITRATE)

bitrate← bitrate + 1
Init()

else
stable← stable + 1

Figure 3-5: Pseudo-code of the MADWiFi autorate algorithm.

MRDCallback()
numtxok ←

numtxok + min(numacked, numtx− numtxok)

Figure 3-6: A procedure that helps autorate maintain a better estimate of numtxok in
MRD-RD.

numtxok can still be adjusted to the correct value by the subsequent MRD-ACKs because
the MRD-ACKs cumulate the ACK bit vector for any unacknowledged packet. But because
numtxok can be adjusted only upon receiving an MRD-ACK packet, long delays between
MRD-ACK receptions can still cause an understatement in the numtxok value. This is not
usually a problem in practice because 1) MRD-ACKs are always transmitted at the lowest
(most robust) bit-rate to minimize loss, and 2) we set a low delay threshold (16 ms in our
implementation) for transmitting MRD-ACKs.

Another problem with the original MADWiFi algorithm is that the default minimum
delivery threshold D is fixed at 50%, which, as noted in [24], is inefficient for maximiz-
ing throughput in 802.11a/g. Let Dr and Rr be the expected delivery rate and effective
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r 0 1 2 3 4 5 6 7

Bit-rate (Mbits/s) 6 9 12 18 24 36 48 56

Dr - 59 77 71 79 74 82 93

Table 3.1: The break-even frame delivery rates between bit-rate r and r−1 for transmitting
1500 B frames.

Scheme Mean (Mbits/s) Median (Mbits/s)

Slow R1 4.95 4.68

Fast R1 8.25 7.07

Slow MRD-R1 19.29 19.85

Fast MRD-R1 18.76 19.06

Table 3.2: The mean and median throughput of one second non-overlapping window samples
across all five trials in each experiment.

throughput7 using bit-rate r. Then, the throughput achieved by the lower bit-rate is the
same as the current bit-rate if Dr−1 ×Rr−1 = Dr ×Rr.

Rr−1 and Rr are known values and in general, Dr−1 > Dr because lower bit-rates are
more robust against loss. To minimize loss, we set Dr−1 = 1. Thus, the ideal minimum
delivery threshold for bit-rate r is Dr = Rr−1/Rr, the ratio of the effective throughput at
the lower and higher rates.8

In 802.11a, the typical value for Rr−1/Rr varies from 0.6 to 0.8. Thus, fixing D = 0.5 is
too low and causes the transmitter to maintain the current bit-rate even though its delivery
rate is well below the break even point. We modified the MADWiFi algorithm to lower
bit-rates according to the proper break-even ratios shown in Table 3.1.

Finally, the default values for T and S (T = 1 second and S = 10) cause the MADWiFi
algorithm react too slowly to rapid changes in the channel. Instead, we set lower values
T = 0.50 and S = 2 to improve its responsiveness. We ran an experiment with a high
channel variability (by using mobile transmitter, described in Section 3.6.1) to compare the
performance of the algorithm using different parameter values. Table 3.2 shows that the
modified parameter values (Fast) helped increase throughput by about 67% over the default
parameter values (Slow) for the single radio experiments using R1.

Intriguingly, the performance difference between Slow MRD and Fast MRD is negligible,
suggesting that MRD-RD is relatively insensitive to the particular parameter values chosen
for rate adaptation. Being able to perform consistently under different parameter values is
useful, because determining the optimal parameter values for any kind of adaptive algorithm
is often difficult in practice.

7The effective throughput is lower than the bit-rate because of link layer overhead.
8The actual ratios are computed using the transmission time required to transmit a frame of a given size.

The transmission time needs to account for the overhead from the preamble, the link layer ACK frames, and
inter-frame delays.
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3.5 Implementation

This section describes the implementation of the MRD-RD system and the RFA protocol
in detail.

3.5.1 System Implementation

We implemented the MRD-RD system using commodity contemporary Pentium class PCs
running Linux Kernel 2.4.20 and 802.11a/b/g wireless interfaces (Netgear WAG311 PCI-
card on the PC and Proxim 8480 PC-Card on the laptop) based on the Atheros 5212 chipset.
We modified the MADWiFi driver to implement the RDS component for 802.11a/b/g
WLAN clients.

As described before, the primary function of the RDS is to schedule retransmissions. To
handle retransmissions within the driver software, we disable the wireless interface from re-
transmitting packets by setting the retry limit to zero. During our experimental evaluation,
we discovered that doing so caused the distribution of frame inter-transmission times to
peak at the nominal packet transmission time, despite many transmission losses. In other
words, setting a zero retry limit also disabled exponential backoff in the 802.11 interface. It
turns out this is the behavior mandated by the original 802.11 standard [15]: the contention
window should reset to the lowest value after a packet reaches its retransmission limit.

Consequently, our current MRD-RD implementation does not include CSMA exponen-
tial backoff. However, future releases [9] of the MADWiFi driver [3] will include software
support for 802.11e [46], which includes a software API to allow the driver to modify the
contention window size. Meanwhile, we have disabled exponential backoff in all of our
experiments to make fair performance comparison between the 802.11 standard and our
MRD-enhanced 802.11 system.

We used desktop PCs equipped with 802.11 wireless interfaces as access points. One
AP acts as the active radio and is configured to run in the MADWiFi’s “AP Master” mode.
The passive radios are configured to run in MADWiFi’s “Monitor” mode. On each of the
APs, we run a user-level daemon to capture data frames from the wireless interface and
forward them over a wired backbone (100 Mbps Ethernet in our experiments) to the RDC
running on another PC.

For increased efficiency, the AP daemon performs the CTX header checksum (see the
next section) and drops frames that cannot be used for frame combining (i.e., those frames
with a corrupt header). Because the RFA protocol does not require the client to acknowledge
the receipt of an MRD-ACK, the AP daemon prepends the target client’s MAC address in
the MRD-ACK payload and transmits each MRD-ACK as a broadcast frame. Broadcasts
saves the transmission of link layer ACK frames in unicast and the benefit is much larger
than the cost of expanding the size of the MRD-ACK payload. In our actual implementation,
the AP daemon writes the target client’s 6-byte MAC address in the source address field
of the 802.11 header, thus saving us from expanding the MRD-ACK payload at all. We
transmit the MRD-ACK packet at the lowest data rate (6 Mbps for 802.11a/g and 1 Mbps
for 802.11b) for robust delivery.

Because the CRC computation is the bottleneck of the frame combining process, it is
important to make it as efficient as possible. The RDC currently implements a widely-used
8-bit table lookup algorithm to compute the 32-bit CRC checksum of a combined frame.
Although the algorithm is simple, it is rather inefficient to process the entire frame to
compute a new CRC value when the bit values for only a small portion of the frame changes
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during each iteration of the frame combining algorithm. Although not implemented, there
are incremental CRC algorithms that can reduce the running time of repeated CRC checks
by over an order of magnitude [27, 81]. The computation savings can be used by the frame
combining algorithm to improve frame combining success rate through using smaller block
sizes.

We implemented the RDC as a user-level daemon running on a 1.5 GHz Pentium 4 PC.
Implementing the RDC as a user-space daemon facilities debugging and running diagnostics.
It forwards clean or corrected packets to the tunneling driver so that the Linux kernel can
forward the packet using iptables.

3.5.2 Implementation of RFA

PAYLOADMAC CTX

1 Byte
CTRL SEQ

1 Byte 1 Byte
USEQ CHECKSUM

4 Bytes

NTX
4 bits

RFA

(a) CTX Header in the transmitted data frame

SEQMAGIC TX STATE
N bits2 Bytes 1 Byte

(b) MRD-ACK Packet

Figure 3-7: MRD-ACK control information.

Figure 3-7(a) shows the headers used by RFA. For every data frame transmission, the
RDS inserts a 7-byte Combiner Transmit (CTX) header that prepends the payload of the
MAC layer frame. The CTX header contains a ctrl field, which uses 4 bits to indicate the
number of attempted transmissions (ntx) for the current data frame, 1 rfa bit to indicate
that the sender has pending unacknowledged frames and is requesting for acknowledgment,
and 3 unused bits reserved for future options as discussed in Section 5.2.4. The 1-byte seq
field labels the sequence number of the data frame, while useq labels the oldest transmitted
data frame in the RDS buffer that has not been acknowledged by the RDC. When frame
useq exceeds its retransmission limit, the RDS advances useq to the seq number of the
next unacknowledged frame in the retransmission buffer (if any). This allows the RDC to
detect frames that exhausted its retransmission limit and flush the blocked frames from the
ordering buffer.

The RDC uses the source address in the MAC header and the seq value in the CTX
header to identify the frames that belong to the same network layer packet. When the RDC
receives at least 2 corrupt data frames that correspond to the same packet, it attempts
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frame combining on the payload part of the data frame. Since it is important that the RDC
correctly identifies the frames that belong to the same packet, RFA uses a 4-byte CRC to
protect the MAC and CTX header. If either the MAC or the CTX header is corrupted, the
RDC drops the entire frame.

The MRD-ACK packet contains a 2-byte “magic” value that is used to distinguish the
MRD-ACK packet from other downlink data payload,9 a 1-byte sequence number, and
an N -bit bit vector to indicate the success or failures of up to N consecutive frames. The
sequence number is the seq value of the first data frame in the bit vector being acknowledged.
The RDS uses the link layer data frame checksum to detect errors in the MRD-ACK packet.

The size of the MRD-ACK payload is small (25 bytes in our implementation). Thus,
its overhead is dominated by the preamble and header associated with the 802.11 frame.
We can potentially decrease overhead further by piggybacking MRD-ACK packets on data
frames being transmitted in the same direction.

Our RFA implementation allows the RDC to delay ACK transmissions in terms of the
number of successive transmissions made by the RDS. Thus, RDC can delay an ACK either
by a timeout of length equal to a duration of D packet transmissions or by counting D packet
transmissions from the RDS. Note that retransmitted frames are counted as a transmission
while extra frames that are simultaneously received by different MRD radios should not
be counted. Because both types of frames have identical seq values, the RDC uses the ntx
value to distinguish the retransmitted frames.

The RDC sends MRD-ACKs to the RDS via the active radio (i.e., the AP with which
the WLAN client is associated for RDS running in the WLAN clients). The RDC may
also independently use fine-grained path selection (Chapter 5) to choose the most reliable
diversity radio for transmitting the MRD-ACK packet to the WLAN client.

3.6 Evaluation

We conducted several experiments to evaluate the performance of MRD-RD under different
conditions. We divide the presentation of the results into two categories, HIVAR and
LOVAR, based on whether the WLAN client was experiencing a high or low degree of
channel variability during the experiment. To create a high channel variability environment
in HIVAR, we use a client transmitter that is set in motion during the experiment, while
we use a stationary transmitter in LOVAR. We describe the general setup for HIVAR and
LOVAR experiments next.

3.6.1 Setup

We chose to conduct experiments in 802.11a mode to avoid interfering traffic from the
production 802.11 WLAN in our lab. In all our experiments, we configure one of the AP
receivers (R1 or R2) to be an active AP running in Master mode. We configure the other
AP receiver to run passively in Monitor mode. We configure the client sender C to run in
802.11 Managed mode. We run the RDS on the WLAN client to evaluate the performance
for upstream traffic.

In all of the experiments, we set a maximum retransmission limit of 7 (one initial
transmission plus up to seven retransmissions). The MRD-RD experiments used a MRD-

9Instead of using “magic”, we should label the MRD-ACK with a unique value in the Ethernet type

field [85]. We used the magic value in our implementation to facilitate logging using standard tools like
tcpdump [4] during our experiments.
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ACK delay of D = 8 packet transmissions, a sender buffer size of N = 64 packets, and
a retransmission timeout of Ts = 90 ms. We pick B = 256 bytes (∴ NB = 6), such that
the maximum processing time to search through 2NB block combinations is less than S/r,
where S is the transmitted frame size and r is the bit-rate. Bounding B in this way helps
prevent the processing queue at the RDC from building up.

In each experiment, the WLAN client sends 100,000 1472-byte UDP packets as fast as
possible to saturate the wireless channel. We repeat each experiment for five trials. To help
ensure each trial begins with fresh states, we re-load the wireless interface driver in between
trials. On the first transmission of each packet, we insert a timestamp into the frame’s
payload. The timestamp remains unchanged on frame retransmissions. The timestamp
allows us to measure and compare the packet delivery delay between MRD-RD and the
communication schemes that use single-radio terminals (single-radio). Also, the payload of
the packet contains a known bit pattern so that we can post-process the trace to analyze
the probability of frame combining failure pf as a function of different block sizes B.

Each MRD-RD experiment involves two sub-experiments: in the first set (MRD-R1), we
configure R1 to be the active AP with which the client associates and R2 to be the passive
AP. In the second set (MRD-R2), R2 is active and associates with the client. We compared
the performance using different active APs because the RDS schedules retransmissions based
on the link layer feedback from the active AP.

As mentioned in Section 3.5, performing software-based retransmissions in the driver
effectively disables exponential backoff in the wireless interfaces’ firmware. To make a fair
performance comparison between communication schemes, we used software-based retrans-
missions (and thus, disabling exponential backoff) in all of our experiments, including the
single-radio schemes. We discuss how disabling exponential backoff might affect our evalu-
ation results in Section 3.7.

Because wireless communication is sensitive to the physical environment, we do not
claim that the results of the experiments presented here are exhaustive and representative
of all situations. Our main objectives are to conduct a set of experiments to illustrate
the performance gains that MRD-RD can achieve in the implemented system under a real
environment with different degrees of channel variability, and to analyze the properties of
the MRD-RD system in depth.

We present the results of our HIVAR and LOVAR experiments below. The HIVAR
experiments used the modified autorate algorithm as described in Section 3.4, but the
LOVAR experiments were conducted before we implemented the modifications. Thus, the
LOVAR experiments use the standard MADWiFi autorate algorithm, which could have
reduced the performance of MRD-RD for those experiments.

3.6.2 High Channel Variability (HIVAR) Experiments

We compare the performance of single-radio schemes against MRD-RD when the client
experiences a high degree of channel variability. Figure 3-8 illustrates the location of our
APs and client in our HIVAR experiments.

Throughput

We define throughput to be the sum of the payload bits from unique frames received divided
by the time elapsed between the first and last frame receptions. Note that the throughput
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~28 m

R1

R2

C

Figure 3-8: Setup for the HIVAR experiments. R1 and R2 are stationary receivers. C is a
laptop transmitter client that was carried by a walking person who covered a 1.5 m × 2 m
area during the experiments.

metric accounts for the overhead of the CTX header, MRD-ACK transmissions, and all the
processing delay associated with MRD-RD.
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Figure 3-9: HIVAR Throughput Analysis. Left: Throughput of single-radio and MRD-
RD experiments; throughput of each trial is represented by a bar within an experiment
set. Right: Distribution of throughput averaged over non-overlapping one-second window
samples.

Figure 3-9(a) shows the goodput of each trial of our experiment. The average throughput
over five trials for the single-radio experiments R1 and R2 were 8.25 Mbits/s and 6.42
Mbits/s, which are far below 802.11a’s theoretical maximum UDP throughput of 31 Mbits/s.
The high channel variability caused by mobility and distance in our HIVAR experiments has
significantly reduced throughput for the single-radio experiments. Despite the harsh channel
conditions, MRD-R1 and MRD-R2 maintained an average throughput of 18.7 Mbits/s and
18.36 Mbits/s respectively, which constitute improvements of 2.27× and 2.23× over R1 (and
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even more over R2). The gains of MRD indirectly confirms that path diversity exists in our
experiment.

Moreover, the throughput of both MRD experiments are higher than the sum of the
throughput values from both single-radio experiments. Hence, the results suggest that
MRD could achieve a higher throughput than a scheme that aggregated the bandwidth of
two radios to transmit data over orthogonal radio frequencies. Another words, our results
show that MRD can outperform a system that uses roughly twice the wireless bandwidth
as MRD!

We plot the throughput distribution of the one-second non-overlapping window samples
in Figure 3-9(b). For R1 and R2, 80% of the samples are between 4-10 Mbits/s and fewer
than 10% of the samples achieved a throughput more than 15 Mbits/s. In contrast, MRD-
RD achieves a throughput greater than 15 Mbits/s for more than 85% of the samples. These
results suggest that even if we allow the WLAN client for the non-MRD schemes to perform
handoffs every second, the average throughput will remain well below 15 Mbits/s.

Both MRD-R1 and MRD-R2 achieved similar throughput results. This suggests that
the performance of MRD-RD is relatively insensitive to the choice of active AP, even when
there is a significant difference in link quality between the two APs.

Source of Improvement

The large throughput improvement comes from the reduction in frame loss rate achieved
by MRD-RD. Table 3-10(a) summarizes the statistics of the raw frame loss rate (FLR)
observed at the active AP in each sub-experiment and the ratio of the lost frames that
were recovered (frame recovery rate, FRR) by MRD-RD. The active APs in both sub-
experiments suffered a raw FLR of about 35% and 39% but MRD-RD was able to recover
50% and 57% of them, respectively.

The HIVAR experiments used the modified autorate algorithm as described in Sec-
tion 3.4. Because MRD-RD was able to conceal a large number of losses from the rate
adaptation algorithm, the sender was able to maintain a high bit-rate throughout both sub-
experiments, as depicted in Figure 3-10(b), where over 90% of the frames were transmitted
at a bit-rate of 24 Mbits/s or higher. In contrast, the single-radio schemes suffers a high loss
rate at the high bit-rates. Consequently, these schemes operate at low bit-rates. Actually,
the selected bit-rates in R1 and R2 are spread across several of the low bit-rates due to the
high degree of channel variability experienced by the client.

These results highlight the importance of MRDCallback(). If the procedure were not
added to the autorate algorithm in MRD-RD, the link layer frame losses observed at the
active AP would have been exposed to the autorate algorithm, causing RDS to operate at
the same low bit-rates as R1 and R2 in Figure 3-10(b).

We decompose the recovered frames into frames recovered by soft selection (FRRSS)
and block-based combining (FRRFC). Thus, FRR = FRRSS +FRRFC . Our results show
that 85% and 90% of the gains in MRD-R1 and MRD-R2 were achieved by soft selection
(i.e., those frames that were received correctly by the passive AP but not by the active one).

There are two possible explanations for the relatively small fraction of frames recovered
by frame combining: i) there were few opportunities for running the packet combining either
because most of the transmissions were already corrected by soft selection or because the
RDC did not collect enough valid corrupt frames (due to corrupt headers, etc.) to perform
the combining; or ii) there were many frame combining attempts but most of them failed
to recover the correct frame.
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Experiment FLR FRR FRRSS FRRFC

MRD-R1 0.345 0.497 0.423 0.073

MRD-R2 0.391 0.573 0.515 0.058

(a) Frame loss/recovery rates.
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Figure 3-10: HIVAR source of improvement analysis. Top: Frame loss (FLR) and frame re-
covery rates (FRR) averaged over 5 trials of the high channel variability experiments. FRR
is decomposed into two sources of recovery: soft selection (FRRSS) and frame combining
(FRRFC). Bottom: Distribution of selected bit-rate for each transmission.
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Figure 3-11: Trace-driven simulation of pf and ∆ for various values of NB in the HIVAR
MRD-R1 experiments.

We analyzed the number of successful and failed frame combining attempts. The total
number of frame combining attempts was high, constituting 34% and 26% of the total
number of frames that were not successfully received by the active AP in MRD-R1 and
MRD-R2. Although there were many opportunities for error recovery with frame combining,
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about 80% of those attempts failed to correct the errors in the transmitted frame in both
sub-experiments.

One cause for the high failure rate is the low number of block subdivisions in a frame
in our implementation (NB = 6). We post-processed the data trace of our experiments to
analyze how pf varies with other values for NB and plot the results in Figure 3-11(a).10

The plot shows that pf drops as NB increases, which is consistent with the analytic model
for burst bit-error channels that we developed in Section 3.2. For example, pf drops from
80% to 60% when NB = 91 (i.e., B = 16 bytes).

As discussed in Section 3.2, increasing NB can potentially increase ∆, the number of
differing blocks between two frames. To avoid overloading the RDC, we may need to abort
the frame combining operations for frames received with a large ∆. Thus, a high ∆ for a
large fraction of combining attempts can offset the performance gain from increasing NB .
Figure 3-11(b) plots the distribution of the number of unmatched blocks (∆succ) for the
successfully combined frames at various NB . For NB 6 91, the 75th percentile ∆succ value
are much smaller than NB (e.g., for NB = 91, the 75th percentile of ∆succ is 10).11 This
suggests that we could improve the performance of frame combining by re-running our
experiments with a larger NB value.

Finally, the relatively low overhead of RFA allows MRD-RD to achieve high gains.
The number of MRD-ACKs transmitted constitute fewer than 7.5% of the total number of
transmitted packets and fewer than 0.1% of the total number of transmitted bytes. The
overhead of inserting an extra 7-byte CTX header to the 1500-byte packet payload is also
negligible.

Frame Losses and Bit-rates

We analyze how FLR varies with bit-rates to gain further insight and to explain why the
single-radio experiments performed so poorly against MRD. Our results shows that a large
fraction of frame losses were frames that were never received at the individual receivers,
and that the rate of which such losses occur remain the same at every transmission bit-rate.
Thus, reducing the bit-rate did not improve the delivery rate or the throughput for the
single-radio reception schemes.

Figure 3-12(a) shows that the average FLR of the HIVAR single-radio and MRD ex-
periments at different bit-rates. As one might expect, the FLR decreases substantially as
the bit-rate decreases from 54 Mbits/s to 36 Mbits/s in all of the experiments. The MRD
experiments never had to use any bit-rates lower than 18 Mbits/s because 1−FLR never fell
below the break-even frame delivery rates within any 500 ms window (the rate adaptation
update interval) at 18 Mbits/s (Section 3.4).

In contrast, the average FLR for R1 and R2 remain high, ranging from 16% to 28%

10Recall that pf excludes those frames that are successfully delivered by soft selection (Section 3.2.1).
While the majority of frame combining attempts were performed for corrupt frames that were simultane-
ously received by the APs, a significant fraction of the frame combining attempts were performed with
retransmitted frames. For simplicity, we excluded the retransmitted frames in our post processing analy-
sis. Nonetheless, our results should remain representative because the retransmitted frames should have an
independent bit error behavior similar to the simultaneously received frames.

11Performing 2∆ = 210 frame combining checksum operations for a 1500-byte packet takes about four
milliseconds on a 3.2 GHz Pentium IV PC. The processing time is rather large and may cause the processing
queue to build up at the RDC. However, it should be possible to reduce the processing time substantially
by using an incremental CRC update algorithm [27, 81] or using specialized hardware to perform the CRC
calculation.
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Figure 3-12: Left: Frame loss rates vs. bit-rates from the HIVAR experiments. Middle:
Frame loss rates vs. bit-rates from the uniform sampling broadcast experiments. Right:
Frame missing rates (i.e., the fraction of lost frames that were never received) vs bit-rates.

even at low bit-rates between 6 and 24 Mbits/s. At first glance, the results are rather
surprising because one should expect the FLRs to decrease substantially with decreasing
bit-rates. However, the high FLRs at the low bit-rates could have been inflated because
the experiment does not sample the frame loss rates uniformly over a given physical region
for a given bit-rate. Instead, the transmitter adapted the bit-rates as it moved. So, the
transmitter might have used low bit-rates only in a few, specific “bad spots” where the
channel happens to be extremely poor. As a consequence of non-uniform sampling, our
trace could observe a higher-than-expected FLRs at low bit-rates.

To determine whether our results are skewed by non-uniform sampling or whether the
low bit-rates were ineffective in decreasing the FLR in the single-radio schemes, we re-
peated our HIVAR experiment, except that the transmitter in the new set of experiments
transmitted consecutive broadcast frames (i.e., no retransmissions) at different bit-rates,
cycling among all of the eight available bit-rates in 802.11a. It takes about 8 ms to cycle
the broadcast frames through all eight bit-rates. Hence, the transmissions in the new set of
experiments can sample the loss rates uniformly over the transmitter’s movement area for
the different bit-rate. Moreover, because the transmitter rotates bit-rates among consecu-
tive transmissions, the transmissions that used a given bit-rate experience similar channel
variations to the transmissions that used another bit-rate.

Figure 3-12(b) shows the average FLRs for R1 and R2 at each bit-rate from five trials of
the uniform sampling experiment. Similar to our original HIVAR experiments, the FLRs of
our uniform sampling experiments remain high at low bit-rates. There are two possibilities
(or a combination of them) that could lead to our observed results: 1) the channel condition
varied immensely within the transmitter’s movement area and that there were certain bad
spots where the bit-error rates remain high even for low bit-rates and 2) there is another
type of transmission error that was causing high frame loss rates, despite the low bit-error
rates provided by the low bit-rates. In the former case, the receiver would receive many
frames that contain at least one bit-error. In the latter case, the receiver would miss the
entire transmission and would not make an upcall for a frame reception in the protocol
stack.

We analyzed the frame trace of our original HIVAR experiments and counted the number
of frames that were never received by the receiver. Figure 3-12(c) plots the number of miss-
ing frames as a fraction of the total number of frame losses for the single-radio experiments.
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At high bit-rates, the missing frame ratio is 62% and 76% respectively. From 6 Mbits to
24 Mbit/s, the missing frame ratios reach near 100% in both single-radio experiments. The
results suggest that the low bit-rates were able to reduce bit-error rates: a frame almost
never suffers from any bit-errors whenever it is received. On the other hand, the results also
suggest that the receiver is suffering from some other types of errors other than bit-errors
within the payload. In 802.11, each transmission frame is preceded by a special training
sequence of bits called the preamble that allows a receiver to detect the start of an incoming
transmission and synchronized with the transmitter to decode the rest of the frame. While
we cannot identify what caused the receiver to drop entire frames at low bit-rates, it is
likely that the receiver had suffered from some type of preamble detection, perhaps because
of the complex nature of the process [42] and/or random noise in the receiver electronics.

These results confirms the observation made in [24], in which low bit-rates may not
always help reduce frame loss rates as one might expect. The algorithm we used assumes
that low bit-rates reduce frame loss rates, which is not always true in practice (Section 3.6.2).
As a result, the algorithm reacts to losses by lowering the bit-rate. Not only does it fail
to reduce frame losses, but it also decreases throughput as transmissions consumes more
channel time at lower bit-rates.12 However, our results show that MRD is able to overcome
losses and maintain high bit-rates, which suggests that MRD could use both path and radio
diversity to overcome problems that cannot be easily be mitigated by rate adaptation alone.

Performance of co-located radios

We measure the performance of MRD-RD for the case when the active and passive radios
are co-located at the same site with each radio operating in the same radio frequency. This
scenario is roughly equivalent to running MRD-RD in the downlink direction, where the
MRD radios are co-located on the wireless client. We also compare our results with those
obtained with MRD radios that are separated over a large distance, and show the benefits
of realizing diversity gains in the wide-area.

We use the same setup as in Section 3.6.1 and install one additional radio at each access
point R1 and R2. The antennas of the co-located radios are placed at about 50 cm apart
(Figure 3-13(a)). We repeated the HIVAR experiments for the single-radio schemes for the
first radio at R1 (R1.1), and for the second radio at R1 (R1.2). Similarly, we repeated
the single-radio schemes for each of the two radios at R2 (labeled respectively as R2.1 and
R2.2). We ran three HIVAR MRD-RD experiments: MRD1 uses the co-located radios at
R1, with R1.2 being the active radio, MRD2 uses the radios at R2, with R2.2 being active
and MRD3 uses radios R1.2 and R2.2 at R1 and R2 respectively, with R1.2 being the active
radio. The active radios were selected on the basis that they have the better link quality
between the two radios.

Figure 3-13(b) shows the measured throughput of our experiments. Each experiment
is repeated five times with the result of each trial plotted on a different color bar. R1.1

12SampleRate [24] is an algorithm that is designed to overcome this deficiency by sampling the frame
loss rates at all the bit-rates and selecting the bit-rate that most recently maximized throughput. However,
SampleRate’s adaptation interval is long (10 s) and may not be appropriate for highly varying channel
conditions. We advocate modifying the link layer to provide additional feedback to help the transmitter
quickly distinguish between losses that can be mitigated by low bit-rates (i.e., frames that contain bit-errors)
and other types of losses (e.g., preamble synchronization failures). To provide such feedback, the receiver
can return a synchronous ACK whenever it receives a frame, with an extra bit to indicate if the frame’s
received payload contains any bit-errors. The absence of an ACK indicates that the receiver has dropped
the entire frame. A rate adaptation algorithm can then use this feedback to select bit-rates accordingly.
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Figure 3-13: Left: Co-located Radio Node Setup. Middle: Performance comparisons be-
tween co-located MRD-RD radios and widely separated MRD-RD radios. Each colored bar
represents the results of one experiment trial. Right: The same performance comparison
repeated at different transmitter location.

and R2.1 were the same radios that were used in the previous HIVAR experiments, but
we measured a much lower average throughput of 6.3 Mbits/s and 3.3 Mbits/s for R1.1
and R2.1, than throughput of 8.25 Mbits/s and 6.42 Mbits/s measured in the previous
experiments. One possible cause for the difference is that the new set of measurements are
conducted five months later than the previous ones and the furniture and obstacles in the
surrounding environment changed in the meantime. Interestingly, the average throughput
of R1.2 is about 1.66× greater than R1.1, even though the two radios are only 50 cm
apart. These observations show how unpredictable wireless performance can be in an indoor
environment.

Figure 3-13(b) shows that the MRD1, MRD2, and MRD3 schemes achieve average
throughput of 19.6 Mbits/s, 13.9 Mbits/s, and 19.5 Mbits/s respectively, representing an
improvement between 1.88× to 2.9× over their non-MRD counterpart. Even though the
MRD radios are placed in close proximity, MRD1 achieved the best result. Indeed, the
correlation of signal envelopes between two closely-spaced antennas is around a quarter
wavelength [78]. This corresponds to less than a few centimeters at the GHz frequencies.
Thus, two radios that are separated by about 50 cm are quite uncorrelated and would
exhibit high diversity gains.

MRD2 underperforms both MRD1 and MRD3, because both radios at R2 are relatively
far away and receive relatively weaker signals from the laptop transmitter. Thus, MRD2
illustrates a case where co-located radios can diminish the gain of MRD-RD. When the
MRD radios are co-located, they tend to share similar levels of path loss to the transmitter.
Even though the instantaneous losses are uncorrelated, the average loss rates at each radio
becomes increasingly correlated with distance, which eventually cancels out the diversity
gains in MRD-RD.

In contrast, MRD3 achieves almost the same performance as MRD1, even though the
link quality for the passive radio (R2.2) in MRD3 is much lower than the passive radio (R1.1)
in MRD1. One possible explanation for this result is that the wide separation distance
between the MRD radios reduces the average path loss correlation to each receiver; i.e., as
the mobile laptop transmitter moves from one end of the test area to another, the average
received signal strength might become weaker to one of the radio but stronger for another.

56



R1.2 R2.2 MRD−R1 MRD−R2
0

2

4

6

8

10

12

14

16

18

20

22

G
oo

dp
ut

 (
M

bp
s)

Figure 3-14: Measured TCP throughput under various non-MRD-RD and MRD-RD
schemes. Each colored bar represents the results of one experiment trial.

Together, the wide-area MRD radios compliment one another and provide better overall
signal reception coverage for the mobile transmitter.

To test this hypothesis, we shifted the laptop’s movement area by about one meter
towards R2 and repeated our HIVAR experiments. We plot the measured throughput in
Figure 3-13(c). Because the average distance to R2 has reduced, we observe an increased
average throughput of 5.30 Mbits/s and 6.22 Mbits/s for R2.1 and R2.2. In contrast,
R1.1 and R1.2 suffered a large throughput reduction to 3.96 Mbits/s and 4.78 Mbits/s.
The reduction is especially drastic for R1.2, perhaps due to the lack of line-of-sight signal
propagation around the hallway between the laptop and R1 (Figure 3-8).

We observe a similar trend for the MRD1 and MRD2 experiments. Compared to the
previous experiment, MRD1’s throughput reduced to 15.3 Mbits/s while MRD2’s increased
to 14.8 Mbits/s. On the other hand, MRD3 maintains a high throughput and shows only
a small throughput decrease. MRD3 shows a throughput of 18.6 Mbits/s, which is a 3×
improvement over R2.2 and within 95% of the measured throughput in the original test
area. These results suggest that the widely-separated MRD radios can provide better overall
reception coverage and maintain higher throughput than the co-located MRD radios in our
experiments.

TCP Performance

Although our experiments show that MRD-RD achieves high UDP throughput gains, Sec-
tion 3.6.2 discusses how MRD-RD can introduce somewhat greater variation in packet
delivery delay. Such effects could adversely affect TCP’s performance. We conducted ex-
periments to evaluate how well TCP performs on MRD-RD.

We ran the HIVAR experiments, using TCP to transmit 72.4 MB of data from the
mobile laptop and measured the average TCP throughput for two non-MRD schemes, R1.2
and R2.2, and two MRD-RD schemes, MRD-R1 and MRD-R2. In MRD-R1, we configure
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the R1.2 and R2.2 radios to be the active and passive MRD radios respectively. In MRD-R2,
we use the same radios but swap their active and passive roles. Note that our experiments
run MRD-RD only in the uplink direction. The TCP receiver runs on the same machine
as the RDC and uses a single radio (i.e., the active radio) to send TCP acknowledgment
packets (TCP-ACKs) to the laptop.

In all of the TCP experiments, the laptop transmitter moves within the original test area
as illustrated in Figure 3-8. We observe that the single-radio R1.2 and R2.2 experiments
transmitted at an average throughput of 8.10 Mbits/s and 3.67 Mbits/s (Figure 3.6.2). The
results correspond to about 78% of the throughput in the UDP experiments. The decreased
throughput is not surprising given the overhead and congestion-controlled behavior of TCP.

MRD-R1 and MRD-R2 clocked an average throughput of 15.2 Mbits/s and 13.2 Mbits/s
respectively, which translates to a 1.88× and 1.63× improvement over R1.2. Like the
single-radio experiments, MRD-R1 achieves 78% of the throughput of the corresponding
UDP experiment (MRD3). Because MRD-R1 achieves about the same proportion of UDP
throughput as the single-radio TCP experiments, we believe that TCP remains largely
unaffected by the delay variations and other link-level interactions in MRD-RD.

Compared to MRD-R1, MRD-R2 achieves a lower proportion (68%) of MRD3’s through-
put. We have not analyzed our traces to determine the exact cause for the reduced gain but
we found that the channel conditions between the laptop and R2.2 is quite poor. As a re-
sult, the TCP-ACKs could have suffered increased delay and losses in the reverse direction,
affecting the sending rate in the forward direction.

Delay Analysis

Thus far, our analysis has focused on throughput and frame loss rates. A number of
compelling wireless applications such as telephony and video streaming require a relatively
low packet delivery delay not exceeding 100 − 150 ms [54]. We analyze MRD-RD’s delay
performance here.

As described in Section 3.6.1, we insert a timestamp in the payload of a packet’s first
transmission attempt to measure the one-way packet delivery delay. Because it is difficult
to synchronize PC clocks to within a few tens of microseconds,13 we do not measure the
one-way packet delivery delay. Instead, we measure the delay jitter above the minimum
one-way packet delivery time di for packet i, which does not require clock synchronization
between the sender and the receiver. Let si and ri be the start and receive timestamps
associated with packet i for all 0 < i < 100, 000 packets transmitted in an experiment.
Then di = ri − si −mini(ri − si).

We also applied a piecewise linear regression algorithm [72] to remove clock skew between
the sender and the receiver (we measured clock drifts on the order of 50 microseconds
per second). Note that we can compute the one-way packet delivery delay by adding
mini(ri−si), which includes the nominal transmission time and processing delay. In practice,
this number is less than one millisecond. We will ignore this minor adjustment and use the
terms “delay jitter” and “delay” interchangeably.

Figure 3-15 shows the one-way delay distribution for our HIVAR experiments. The
MRD-RD median delay is below 1 ms and has 25% more packets delivered than R1 and
R2. The low median delay is due to its ability to maintain a high bit-rate throughout
the experiments. However, about 35% of the packets in MRD-RD were delivered with a

13We require the fine clock synchronization granularity because the nominal transmission time of 802.11a
at high bit-rates is less than 0.5 milliseconds.
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Figure 3-15: One way delay jitter for HIVAR experiments.

significantly higher delay than R1 and R2. Nonetheless, MRD-RD was able to deliver 95%
of the packets within a delay of 35 ms, which is well below the delay bound of 150 ms that
can be tolerated by telephony and video applications.

We attribute the increased packet delivery delay in MRD-RD to the fact that there were
a significant number of frames that required retransmissions because our rate adaptation
algorithm uses a set of aggressive minimum delivery thresholds to improve throughput
(Section 3.4). In the design of the RDC, we assumed an in-order packet delivery service
and added a ordering buffer at the RDC (Section 3.3.3). Whenever a retransmission is
required, the ordering buffer blocks subsequent packets from being forwarded and increases
the packet delivery delay for all of them.

Another source of delay comes from the losses of MRD-ACKs on the reverse channel,
which delays the trigger to retransmit a packet. Also, the user-space implementation of the
RDC is inefficient as interrupts and user-space buffering can add delays in generating and
sending MRD-ACKs.

3.6.3 Low Channel Variability (LOVAR) Experiments I

We evaluate the performance of MRD-RD in a scenario where the channel variability is
low, using the setup depicted in Figure 3-16. The parameters and methods we use for
the LOVAR experiments are the same as the HIVAR experiments, except that we use a
stationary desktop transmitter instead of a mobile one. The LOVAR experiments presented
in this section are label as “LOVAR I”. LOVAR I were conducted before we introduced our
modifications to the MADWiFi autorate algorithm in Section 3.4. Thus, the autorate
results presented in this section might understate the performance of the MRD-RD system.
Nevertheless, the results of LOVAR I provides an interesting comparison of the system
operating under different situations. In Section 3.6.4, we present the evaluation results of
another set of LOVAR experiments (LOVAR II) that include the autorate enhancements
for MRD.
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Figure 3-16: A diagram that illustrates the relative positions of the transmitter C and the
receivers R1 and R2 in the LOVAR I experiments.
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Figure 3-17: LOVAR I Throughput Analysis. Left: Throughput averaged over 5 trials.
The dashed line marks the maximum achievable UDP throughput (23 and 27 Mbits/s) for
802.11a fixed at 36 Mbits/s and 48 Mbits/s bit-rates. Right: Distribution of throughput
averaged over non-overlapping one-second window samples.

Throughput

Figure 3-17(a) shows the throughput averaged over five trials for the LOVAR I experi-
ments. We ran different experiments using two different fixed bit-rates (36 and 48 Mbits/s)
and using the standard rate adaptation algorithm (Auto) implemented in the MADWiFi
WLAN driver. The figure shows that the MRD-RD schemes at fixed bit-rate of 48 Mbits/s
performed better than all other schemes. The dashed lines marks the maximum 802.11a
UDP throughput for a fixed bit-rate 36 and 48 Mbits/s links, which are 23 and 27 Mbits/s
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Experiment FLR FRR FRRSS FRRFC

MRD-R1 0.359 0.895 0.694 0.200

MRD-R2 0.354 0.958 0.819 0.139

Table 3.3: Frame loss (FLR) and frame recovery rates (FRR) of the low channel variability
experiments. FRR is decomposed into two sources of recovery: soft selection (FRRSS) and
frame combining (FRRFC).

respectively. The MRD-RD throughput is between 94.4% and 96.6% of the maximum UDP
throughput at a bit-rate of 48 Mbits/s. Despite the overhead of transmitting MRD-ACK
packets, MRD-R1 increases throughput over R1 by 54.6% at the fixed bit-rate of 48 Mbits/s,
while MRD-R2 improves throughput over R2 by 20.2% at 48 Mbits/s. Similar to the HIVAR
experiments, both MRD-R1 and MRD-R2 achieved very similar throughput results, again
suggesting that the performance of MRD-RD is relatively insensitive to the choice of active
AP in our experiments.

Under autorate (Auto), the throughput gains by MRD-R1 and MRD-R2 diminish to
3.7% and 8.1% respectively. One possible reason for the diminished gains is that the LO-
VAR I MRD-RD experiments used the unmodified version of the autorate algorithm. The
algorithm ignores information from the MRD-ACK, so it adapts its bit-rate based only on
the observed loss rate of the link layer transmissions to the active AP. Consequently, the
algorithm selects a suboptimal bit-rate. For example, Figure 3-17(b) shows that MRD-R2
(Auto) selected 36 Mbits/s roughly 70% of the time even though our fixed rate experiments
shows that it could achieve a high throughput at 48 Mbits/s.

Another reason for the diminished gain is the low variability of the channel. Although
the frame loss rate was substantial at 48 Mbits/s, there was almost no loss at 36 Mbits/s.
Thus, the throughput for R1 and R2 is lower bounded at the 36 Mbits/s bit-rate and caps
the maximum achievable throughput gain for MRD-RD.

Source of Improvement

We analyze the sources of improvement for the 48 Mbits/s fixed bit-rate LOVAR I experi-
ments and summarized the results in Table 3.3. The active APs in the LOVAR I experiments
observed similar frame loss rates to the ones observed in the HIVAR experiments, but the
FLR is much higher. It ranged between 90%− 96% for LOVAR I compared to 50%− 57%
for HIVAR. There were also a larger number of frames recovered by frame combining in the
LOVAR I experiments.

We found that the total number of frame combining attempts was proportionally sim-
ilar to the HIVAR experiments. 37% and 25% of the total number of frames that were
not successfully received by the active AP in MRD-R1 and MRD-R2. Thus, the increased
number of frame combining recoveries was caused by a large reduction in the frame com-
bining failure rate. Indeed, the frame combining failure rate pf was about 45% in both
sub-experiments, which is a large drop from the 80% in the HIVAR experiments.

Like the HIVAR experiments, the average pf drops dramatically if the frames were
subdivided into smaller blocks. Our simulation shows that pf = 17% for NB = 91 (i.e.,
B = 16 bytes). At the same time, ∆succ (defined in Section 3.6.2) remains low for the
successfully combined frames: the 95th percentile of ∆succ for NB = 91 is 10.
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Figure 3-18: One way delay jitter for the LOVAR I experiments.

Delay Performance

We repeat the delay analysis in Section 3.6.2 for the LOVAR I experiments. Figure 3-18
shows the one-way delay distribution for the fixed and autorate experiments. Compared
to the HIVAR experiments, MRD-RD delivered packets with a lot smaller delay because it
was able to recover almost all corrupt frame transmissions to the active AP. As a result, the
LOVAR I experiments required much fewer frame retransmissions than the HIVAR exper-
iments. Our LOVAR I experiments show that MRD-RD delivered 99% of the successfully
received frames within 20 ms.

Finally, we observe a long tail in the one-way delay distribution (but representing only a
tiny fraction of the transmitted packets) for the single-radio schemes that last up to several
hundred milliseconds. This tail is mostly an artifact of handling retransmissions in the
driver, where kernel interrupts can happen in between retransmissions. We suspect that
the long tails arise from packets that require a large number of retransmissions because
such packets may experience more interrupts from the kernel than packets delivered with
fewer or no retransmissions. The MRD-RD scheme does not have this long tail because it
successfully delivers packet with a lot fewer (re)transmissions.

In summary, we found that MRD-RD produced throughput gains in all experiments, re-
gardless of the channel variability experienced by the client. In our HIVAR experiments,
we found that MRD-RD was able to increase throughput up to three times that of the best
AP when only a single radio is used. In our LOVAR I experiments, MRD-RD, at a fixed
bit-rate of 48 Mbits/s, the throughput improvement is less impressive but still noticeable,
between 9% and 16%.

3.6.4 Low Channel Variability (LOVAR) Experiments II

We ran another set of LOVAR experiments, called LOVAR II, that use stationary nodes and
include the enhanced rate adaptation algorithm for MRD (Section 3.4). The parameters
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(a) Setup.

Config. R1 R2 C

I C D A

II C D∗ A

III C D A∗
IV C B A

V D B A

VI C D B

VII C A B

VIII A D B

IX A B C

X A B D

(b) Node configurations.

Figure 3-19: Left: The positions of the stationary nodes used in the LOVAR II experiments.
Right: The columns R1, R2, C identifies respectively the nodes that were configured as R1,
R2, and the stationary client transmitter in the indicated configurations. Nodes A and D are
equipped with two radios but only one is active in an experiment. The “∗” indicates that the
experiment used the alternate radio instead of the main one. There are ten configurations
in all.

and methods we use for the LOVAR II experiments are the same as LOVAR I, except
that all of the LOVAR II experiments use the enhanced rate adaptation algorithm. The
experiments were conducted throughout various times of the day.

LOVAR II includes ten different experiments with configurations that uses different
combinations of stationary nodes shown in Figure 3-19(a). Table 3-19(b) lists the node
combinations of each of the ten experiment configurations. While four nodes can generate
additional client-and-receivers (R1 and R2) combinations, some configurations were left out
because at least one of the client-receiver paths was completely out-of-range.

Table 3.4 summarizes the measured throughput averaged over five trials in each of the
LOVAR II experiments. The results show that the average throughput gains of MRD over
single-radio schemes are bimodal. The gains range from a factor of 0.99× to a factor of
9.2×, with 8 out of 11 sets of experiments showing MRD gains of less than 1.13×.

We have not been able to draw any substantive conclusions from these results, but we
make two observations that motivate further investigations about our stationary node ex-
periments. First, there seems to be little correlation between the balance of performance
between R1 and R2 and the gain that MRD can achieve when it uses both paths simultane-
ously. As one would expect, paths with comparable performance should provide increased
MRD gains (e.g., Config. VI), while paths with extremely different performance should
provide little or no MRD gain (e.g., Configs. IX and X). However, there were some experi-
ments that provided some MRD gain with extremely uneven paths (e.g., Configs. III-1, IV,
V), some experiments that used paths that were much less uneven (e.g., Configs. VII, VIII)
provided only marginal gains. Also, we repeated the Config. III experiments on a different
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Config. R1 R2 MRD-R1 MRD-R2 Gain

I 1.9 (1.2,3.3) 3.6 (2.9,4.7) 21.6 (21.0,22.1) 19.4 (18.4,20.3) 5.98

II 2.1 (1.6,2.6) 2.0 (1.2,2.8) 18.3 (16.2,20.5) 18.0 (15.9,20.7) 8.72

III-1 20.7 (17.1,21.9) 1.3 (0.7,2.2) 22.7 (21.1,24.2) 23.5 (23.0,24.2) 1.13

III-2 1.4 (1.1,2.0) 2.1 (1.9,2.2) 19.2 (16.7,22.2) 16.7 (15.9,18.6) 9.19

IV 1.5 (0.1,3.1) 25.1 (23.8,25.7) 26.4 (25.9,27.0) 24.3 (23.6,24.8) 1.05

V 2.9 (2.8,2.9) 23.7 (22.9,24.9) 25.8 (24.8,26.3) 24.2 (23.4,24.8) 1.09

VI 19.7 (17.9,21.3) 22.6 (21.2,23.8) 25.2 (24.4,25.6) 24.7 (24.1,25.0) 1.12

VII 18.4 (17.0,20.5) 26.1 (25.5,26.4) 27.4 (26.9,27.7) 26.1 (25.6,26.5) 1.05

VIII 25.8 (25.4,25.9) 20.2 (18.0,22.2) 26.4 (25.9,27.3) 26.9 (25.5,27.7) 1.04

IX 1.9 (1.2,2.9) 22.8 (21.0,24.7) 2.2 (1.9,2.6) 22.6 (20.3,24.3) 0.99

X 2.5 (2.4,2.6) 22.7 (22.3,22.9) 22.8 (22.6,23.1) 22.3 (22.1,22.6) 1.00

Table 3.4: Throughput for the ten stationary configurations in the LOVAR II experiments.
Each entry shows the average (max, min) values of the five trials of each experiment set.
The gain is defined as max(avg(MRD-R1), avg(MRD-R2))/max( avg(R1), avg(R2) ). The
experiments of Config. III were repeated on a different day.

day during our test runs and found that their results have changed significantly between
the runs. Perhaps some objects in the environment have changed positions between the
runs and caused the drastic change in our measurements.

Another aspect of our results that warrants further investigation is the high gain ob-
served in Configurations I, II, and III-2, which are 6.0×, 8.7×, and 9.2× respectively. Ta-
ble 3.4(a) shows the average link layer FLRs at different bit-rates for the single-radio and
MRD schemes. The link layer FLRs14 were measured at each of the individual receivers
R1 and R2 (i.e., nodes C and D) that were used in the Config. I experiments. Similar to
our observations in Section 3.6.2, the low bit-rates did not effectively reduce the FLRs for
the single-radio schemes. At a bit-rate of 24 Mbits/s, the FLRs for the single-radio recep-
tion schemes R1 and R2 are 39% and 77%. In contrast, R2 in the MRD-R1 scheme and
R1 in the MRD-R2 scheme, i.e., the passive MRD radios in the respective MRD schemes,
have FLRs of 2.3% and 2.0% respectively. Because we measured the link layer FLR at the
individual receivers, we do not expect their values to vary much between the single-radio
and the MRD communication schemes. Yet, the individual receivers saw over an order of
magnitude difference in the link layer FLRs between the two schemes!

To test whether the observed behavior is an artifact of a malfunctioning wireless inter-
face, we conducted experiments Configs. II and III-2. These experiments use the same set
of nodes as Config. I, except that they use an alternate radio interface15 installed on the
transmitting and receiving nodes. In particular, R2 receives transmissions from its alternate
radio in Config. II. In Config III-2, the client (C) uses its alternate radio to transmit frames.
Tables 3.4(b) and 3.4(c) shows that Configs. II and III-2 follows the same link layer FLR
trend as Config. I. Thus, the abnormal FLR difference between the single-radio and MRD
experiments still exists even when data is transmitted and received via a different wireless

14The link layer FLRs are different from the MRD FLRs: The former is measured at the receiver and
the latter is measured at the MRDC after frame combining and soft selection.

15The antenna of the alternate radio is separated by about 50 cm from the main radio, as shown in
Figure 3-13(a).
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(a) Config. I

Bit-rate R1 R2 R1 R2 R1 R2
(Mbits/s) (MRD-R1) (MRD-R1) (MRD-R2) (MRD-R2)

6 0.694 0.401 ∗ ∗ ∗ ∗
9 0.375 0.264 ∗ ∗ ∗ ∗

12 0.475 0.383 ∗ ∗ ∗ ∗

18 0.440 0.386 ∗ ∗ ∗ ∗
24 0.768 0.387 0.861 0.023 0.020 0.578

36 0.837 0.418 0.619 0.016 0.091 0.483

48 1.000 0.727 0.964 0.562 0.944 0.745

54 1.000 0.980 1.000 0.991 1.000 0.982

(b) Config. II

Bit-rate R1 R2 R1 R2 R1 R2
(Mbits/s) (MRD-R1) (MRD-R1) (MRD-R2) (MRD-R2)

6 0.629 0.661 ∗ ∗ ∗ ∗

9 0.677 0.587 ∗ ∗ ∗ ∗
12 0.716 0.612 ∗ ∗ ∗ ∗
18 0.669 0.593 ∗ ∗ ∗ ∗
24 0.698 0.574 ∗ ∗ 0.022 0.790

36 0.771 0.584 0.725 0.028 0.343 0.747

48 0.992 0.954 0.987 0.882 0.738 0.934

54 1.000 0.999 1.000 1.000 0.960 1.000

(c) Config. III

Bit-rate R1 R2 R1 R2 R1 R2
(Mbits/s) (MRD-R1) (MRD-R1) (MRD-R2) (MRD-R2)

6 0.749 0.620 ∗ ∗ ∗ ∗
9 0.763 0.660 ∗ ∗ ∗ ∗

12 0.786 0.622 ∗ ∗ ∗ ∗
18 0.765 0.637 ∗ ∗ 0.031 0.744

24 0.772 0.615 ∗ ∗ 0.029 0.663

36 0.804 0.627 0.819 0.025 0.161 0.708

48 1.000 0.949 0.993 0.801 0.983 0.974

54 1.000 1.000 1.000 0.998 1.000 0.998

Table 3.5: The FLRs (expressed as a ratio between 0 and 1) observed at R1 and R2 at
different bit-rates. The right-most two pairs of columns are the raw FLRs observed at
the individual receivers R1 and R2 during the MRD-R1 and MRD-R2 experiments using
Config. I. In Configs. I, II, and III-2, the MRD schemes never had to reduce the transmission
bit-rates below 24 Mbits/s, 24 Mbits/s, and 18 Mbits/s respectively.

interface.

We know that the MRD communication schemes configure the receivers to operate in
different modes. The active radio operates as an access point in the AP infrastructure mode
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while the passive radio operates in the monitor mode. The abnormality seems to affect only
the passive radio in the MRD schemes but we have not been able to identify its cause.
Therefore, we cannot conclude that MRD can achieve throughput gains of factors that are
as high as 9.2×. We also note that the problems described in this section do not occur in
any of our other experiments.

3.7 Discussion

We discuss various implications that the MRD-RD system has on rate adaptation, capacity,
and contention control in wireless LANs.

3.7.1 Rate Adaptation

The conventional wisdom of managing link quality in WLANs is to have the clients adapt
to the channel conditions (i.e., adapt the bit-rate) before changing to an alternate link
(e.g., AP) with a better channel quality. MRD-RD can be viewed as taking the opposite
approach, where the clients use multiple links simultaneously before changing their bit-rate
to adapt to the underlying “diversified” channel.

Our experimental results suggest that, with MRD-RD, even a simple rate adaptation
algorithm, such as the one based-on MADWiFi, can perform well in different environments.
In Section 3.6, we observed a large performance difference between the HIVAR and LOVAR
experiments in the non-MRD schemes. We believe that the large performance difference
is attributed not only to the increased frame loss rates observed at the individual APs,
but also to the sub-optimal bit-rates that might have been chosen by the MADWiFi au-
torate algorithm in the high channel variability environment. (In Section 3.4, we tuned the
algorithm to work well with multiple radios and frame combining, but did not alter the
fundamental mechanisms used in the algorithm.)

In fact, we can use the results from the previous section to show that there is room for
improvement in the rate adaptation algorithm. Table 3-10(a) and Figure 3-10(b) show that
the frame loss rate to the active AP in MRD-R1 was 35% and that MRD-R1 selected a bit-
rate of at least 24 Mbps over 90% of the time. Multiplying 1− FLR with the the effective
throughput of the 24 Mbps (17.8 Mbps) bit-rate yields 11.6 Mbps. Thus, we could have
fixed the bit-rate to 24 Mbps for the non-MRD HIVAR experiment (R1) to improve the
performance by 1.4× over the MADWiFi autorate algorithm, which achieved 8.25 Mbps.
(Although the improvement is significant, it is not as great as MRD-R1, which achieved a
2.3× improvement at 18.7 Mbps.)

We are not suggesting that a fixed bit-rate should be used for non-MRD wireless links
operating in a channel with high variability: selecting an optimal fixed bit-rate for such
a channel still requires an adaptive algorithm. Rather, our intent is to use the example
to motivate the following open questions: 1) Could other existing autorate schemes (e.g.,
RBAR [44], AARF [55], MiSer [76], OAR [80], SampleRate [24]) be used to improve perfor-
mance of the non-MRD schemes in our HIVAR experiments? 2) Can we design an autorate
algorithm for a non-MRD WLAN that performs well under a variety of channel conditions
in a real environment that produces different types of errors (such as those observed in
Section 3.6.2)? These are open questions, but we have demonstrated—using real-world
experiments—that MRD-RD can use a simple rate adaptation algorithm to produce good
performance under different and difficult channel conditions, and that with MRD-RD, the
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need for a finely tuned rate adaptation algorithm is not as important as with schemes that
use single-radio terminals.

Finally, we should consider developing a rate adaptation scheme that can help reduce
packet delivery delay for MRD. Because retransmissions in MRD requires higher delay than
conventional scheme, as shown in Section 3.6.2, we should modify the rate adaptation algo-
rithm (e.g., adjust the minimum delivery threshold) to reduce retransmissions. Although
doing so might trade off throughput gains for reduced delays, we believe that it is possible
to develop an algorithm that provides both throughput gains and reduced delays in MRD
because of MRD’s fundamental ability to reduce frame loss rates and their variations.

3.7.2 Capacity

One may raise the question whether the overall capacity of a wireless network drops with
MRD-RD since an MRD-RD system sacrifices the possibility of channel reuse at different
APs for the sake of increased reliability for individual sessions. Let us consider a simple
scenario with two terminals, T1 and T2 and two APs, R1 and R2. In the non-MRD system,
each terminal is assigned to a single AP and transmit in orthogonal radio channels. In
the MRD-RD system, we equip R1 and R2 with multiple radios such that each can receive
transmissions from T1 and T2 at the same time. Thus, we have two MRD-RD sessions,
T1-(R1,R2) and T2-(R1,R2) running simultaneously over different channels. In this case, it
is clear that the MRD-RD system has a higher capacity than the non-MRD system since it
has two extra transmissions (T1-R2 and T2-R1) over the non-MRD system without extra
cost or interference to the existing transmissions, T1-R1 and T2-R2.

The results are similar if we assume that all nodes operate in the same radio frequency
and that the two pairs T1-R1 and T2-R2 are close to each other (i.e., adjacent cells) such that
simultaneous transmissions from both terminals cause significant interference to each other.
Then under any channel access scheme that avoids simultaneous transmissions (mutual
interference) from the two transmitters (e.g., CSMA), the MRD-RD system will have a
higher capacity than the non-MRD system. Like the previous scenario, the MRD-RD
system here provides extra complementary transmissions (T1-R2 and T2-R1) to improve
the reliability of the communication between the terminals and the APs.

However, the results are different if we allow T1-R1 and T2-R2 to transmit in different
channels in the non-MRD system but constrain R1 and R2 to operate in the same channel
in the MRD-RD system.16 In this case, the total capacity for the non-MRD system is higher
than the capacity of the MRD-RD system because simultaneous transmissions are possible
in the non-MRD system whereas only one terminal may transmit at a time in the MRD-RD
system due to the terminals’ mutual interference.

Nonetheless, one can observe in Fig. 3-13(b) that the throughput of a single terminal
in the MRD-RD system is higher than the combined (aggregate) throughput of T1-R1
and T2-R2 for the non-MRD system. Assuming that the combined throughput of the
single-radio experiments closely approximates the aggregate throughput of the simultaneous
communications (T1-R1 and T2-R2) in the non-MRD system, our experimental results
suggest that the MRD-RD system can sometimes outperform the non-MRD system even
though the capacity of the latter system is higher.

16This setup is a simplification of the following problem: When a network operator adds single-radio APs
in a WLAN, is it better to run MRD-RD by configuring them as passive radios or is it better create a new
cell by configuring them as a regular AP?
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As discussed in the previous section, we believe that the reason for MRD-RD’s higher
achieved throughput is the better utilization of the resources with the MRD-RD system.
In fact, MRD-RD not only reduces the frame loss rate, but also dampens the fluctuations
in the frame loss rate. When the channel parameters are more stable, the rate adaptation
algorithm does a better job in exploiting the existing bandwidth in the system. Hence, even
though the non-MRD system has a higher capacity, it may not be utilized efficiently due to
more variable conditions in each channel.

In the general case of more than two terminal-AP pairs, the capacity analysis is fairly
complex and is beyond the scope of this dissertation. However, based on the examples
given in the previous paragraphs, we can conclude that if the number of channels is suf-
ficiently high, MRD-RD can increase the capacity of the network, since we can set extra
“connections” between a terminal and an AP that are not directly paired, without caus-
ing any interference to the existing transmissions of the AP. Moreover, we illustrated an
example in which MRD-RD leads to a higher achieved throughput despite a theoretically
lower capacity, because MRD-RD provides less variable channel conditions that lead to
better adaptiveness of the rate adaptation algorithm and better utilization of the wireless
medium.

3.7.3 Link layer contention control

As mentioned in Section 3.5, the RDS needs to assume control over all retransmissions.
Performing software-based retransmissions in the driver, however, also has the side effect of
disabling the exponential backoff controlled by the firmware.

We acknowledge that the relative throughput improvement by MRD-RD may be reduced
when exponential backoff is enabled. That is because the link layer increases the backoff
window whenever a client fails to successfully transmit a data frame to the target receiver
(i.e., the active AP) at the link layer. In our current design, the link layer is oblivious
to MRD-RD. Even if the data frame is recovered through soft selection or block-based
combining, the link layer may not reduce the contention window (which is what CSMA
does when the link layer transmission succeeds). Consequently, the backoff window may
increase unnecessarily and reduce MRD-RD’s performance.

We can alleviate the problem by creating an interface that allows MRD-RD to inform
the link layer backoff mechanism about the results of frame recovery at the RDC. Designing
a medium access control algorithm that can adapt to MRD-RD’s error recovery results is an
interesting open problem. As an alternative, we can adopt some of the recently proposed
channel access methods that do not rely on link layer acknowledgments but adjust the
contention window size based on the measured idle channel time [43, 86].

Despite the above caveat, MRD-RD effectively reduces frame losses and the total number
of transmissions required to deliver a packet, without increasing the nominal frame trans-
mission time as in other existing approaches like using lowering data rates or employing
forward error correction.

3.8 Chapter Summary

MRD-RD uses wireless path diversity to improve loss resilience in wireless local area net-
works. It coordinates wireless receptions among multiple radios—either co-located on the
same device or distributed across different access points in the WLAN infrastructure—to
increase loss resilience against path-dependent corruptions in the wireless medium. Using
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multiple radios, MRD-RD performs frame combining, which attempts to correct bit errors
by combining corrupt copies of data frames received by each radio in our system. Be-
cause losses are often independent among different receivers, MRD-RD is able to achieve
significant improvement in loss rates.

Our experiments in an in-building testbed using commodity PCs and 802.11a/b/g wire-
less interfaces demonstrate throughput gains between 1.9×-3.0× that of single-path com-
munication schemes, under an environment with high channel variability in the uplink
direction. The corresponding one-way delay bounded to 35 ms for 95% of the delivered
packets.

From the experience we gathered in building and evaluating MRD-RD, we discovered a
number of performance optimizations such as marking packets for low-latency and out-of-
order delivery, and sharing MRD-RD feedback with the link layer to improve rate adaptation
and contention window adjustments.
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Chapter 4

MRD-Transmit Diversity
(MRD-TD)

In the previous chapter, we described how MRD uses multiple receivers to improve the
efficiency of delivering packets in wireless LANs without consuming much extra overhead.
This chapter describes how MRD uses multiple transmitters (transmit diversity) to achieve
the same goal.

MRD’s transmit diversity (MRD-TD) sub-system is based on the following intuition: the
process of choosing an appropriate transmission path (transmit radio) to deliver link layer
data frames to and from a client needs to adapt to short-term channel variations to obtain
good performance. Our measurements (detailed in Section 4.1) suggest that fine-grained
path selection for each frame transmission to client stations can substantially reduce the
number of transmissions required to successfully deliver a packet to a receiver.

There are two reasons why such fine-grained control is effective:

1. Frame losses occur in bursts, and many of these bursts are of long lengths on the order
of tens of frames, implying that the conditional probability of losing a frame given
that one had been lost in the recent past is often significantly larger than the average
frame loss rate.

2. Three of the five main causes of frame losses mentioned in the beginning of Chapter 1—
obstacle attenuation, multipath, and mobility—depend on the path traversed between
an AP and a client. Thus, the choice of transmit radio and the client’s location can
significantly affect performance. Furthermore, channel contention near a transmit
radio (e.g., a given client’s AP) may prevent it from sending a frame even when there
is no contention near the receiver, yet another property that depends on the choice of
transmit radios.

These observations motivate a WLAN data distribution system that permits fine-grained
client-specific path selection among a set of neighboring transmit radios or APs. MRD-TD
attempts to choose a transmit radio based on short-term frame delivery statistics, with the
goal of adapting to short-term variations using path diversity.

The main challenge that our MRD-TD design overcomes is high path switching cost.
Switching transmission paths in conventional WLANs requires a sequence of message ex-
changes to authenticate and register information about a client, which cannot not happen
frequently because they cause large interruptions in transmission flow. To support fast
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and efficient path switching among transmission sites, MRD-TD uses a central controller
to manage authentication and registration so that switching paths no longer requires nego-
tiation between the transmit radios and the receiver. MRD-TD runs in conjunction with a
longer-term primary-AP selection mechanism (for downlink transmissions), usually a card-
specific proprietary mechanism, and can also be used with techniques for coping with high
frame loss rates such as packet fragmentation [90], varying packet size [69], forward error
correction (FEC) [60], adjusting data transmission rates [44], and mechanisms for improving
performance in multi-rate WLANs [80, 87].

We present a fine-grained path selection heuristic that can reduce the average frame loss
rates without consuming any extra bandwidth in the wireless medium. Using this heuristic,
our prototype system reduces the average frame loss rates by as much as 26% compared to
a fixed-path scheme that uses the best available path when receiver is in motion. MRD-TD
also improves the transmission delay distribution by avoiding long burst losses. Because
the two observed facts mentioned above are prominent for a moving client, we find that the
benefits of MRD-TD are especially significant for such clients.

The rest of the chapter is organized as follows: Section 4.1 illustrates the benefits of
transmit diversity by analyzing the loss correlation and the impact of localized interference
in an experimental study that involves two transmitters and a single receiver. Section 4.2
describes the design and implementation of MRD-TD. Section 4.4 describes several per-
formance results measured on our testbed based on 802.11b. We summarize the chapter
in Section 4.5. Much of the work in this chapter also appears in [68] and builds on the
results in [66], which shows, using trace-driven simulations, how transmit path diversity
can improve the quality of low-latency video streams over 802.11 networks.

4.1 The Case for Fine-Grained Path Selection

We present experimental evidence and examples to make the case for fine-grained path
selection. First, we gather measurements to show the short-term loss characteristics of an
802.11b testbed deployed in our building. Our results confirm that frame losses occur in
bursts and reveal that the losses have little spatial correlation among different transmission
sites (For uplink traffic, the transmission sites are the different transmit radios installed on
a receiver. For downlink traffic, the sites are nearby APs.) Moreover, we find that when a
frame loss occurs, the short-term probability of losing a subsequent frame transmitted from
the same site is substantially greater than the short-term probability of losing a subsequent
frame if it were sent from another site. We exploit this observation and design a system
that seeks to avoid burst losses through fine-grained path selection.

We also analyze delay measurements from two concurrent packet streams transmitted
from different sites, and show how localized interference causes intermittently high trans-
mission delays. Our results demonstrate that transmission performance depends on path
selection and further supports our case for fine-grained path selection.

4.1.1 Experimental Setup

Our setup, shown in Figure 4-1, consists of two 802.11b transmitters, A and B, and a
receiving station placed at three different positions, R1, R2, and R3 inside our lab. We
conducted our experiments in late evening to avoid interacting with the building’s daily
802.11 activity. All nodes are configured to run in the 802.11b ad hoc mode. A central packet
generator sends a constant bit rate stream to the two wireless transmission sites via a 100
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Figure 4-1: Floor-plan of the experiment setup. 802.11b transmitters at locations A and B
each broadcast packets at 2.88 Mbits/s to a receiver at R1, R2 or R3.R3 is located in the
middle of an elevator lobby where the walls are made of concrete and is approximately 15
meters from each transmitter.

Mbits/s wired link. For each packet it receives from the packet generator, each wireless site
broadcasts the packet on its wireless interface. The packet generator is precisely calibrated
to alternate packet transmissions successively between the two wireless transmitters to
reduce potential collisions between them. The queues at each AP are large enough to
prevent any losses due to buffer overflows.

The packet generator sends a stream UDP/IP packets at 240 packets per second to each
wireless transmitter. Thus, the aggregate throughput of two transmitters is 5.96 Mbits/s,
which is similar to the observed saturation throughput in [18]. We use a high packet rate
to sample changes in the channel accurately. We use broadcast packets to measure the link
layer data frame loss rate; broadcast packets avoid the effects of link layer retransmissions
and exponential back-off delays, and the effects of link layer acknowledgment frame losses
in the reverse direction. Because frame loss rates tend to decrease with frame sizes [69], we
use 1500 byte packets, a maximum transmission unit commonly used in Ethernets, in all of
our experiments.

We conducted two sets of experiments, static and mobile, done in separate trials, to
examine the effects of stationary and mobile receivers. We conducted experiments at each
of the three different receiver positions during quiet hours to ensure the channel is not
affected by the building’s daily activities. For the mobile experiments, the receiving laptop
was carried by a human subject moving with random motion over a small area (2 m ×
2 m) centered at each receiver location at a normal walking speed. There is no line-of-
sight between the transmitters and the receiver. Such a location can be harsh for signal
propagation, but it is not unrealistic. Each experiment transmitted 144, 000 frames in 5
minutes. The results presented are the averages of three trials. We show the results for R3
but the trends for all three receiver locations are very similar.

4.1.2 Burstiness and Spatial Correlation of Losses

We measure the loss characteristics of two concurrent packet streams transmitted from two
802.11b devices at different locations. We are interested in i) how bursty losses are, ii) how
frame losses from different transmitters are related, and iii) how receiver motion affects loss
characteristics.
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Experiment static mobile

Sender A B A B

FLR(%) 4.79 10.2 17.1 15.3

BLR(%) 1.5 4.6 10.8 9.2

BLR/FLR 31% 45% 63% 60%

Table 4.1: The average frame loss rate (FLR) and average burst loss rate (BLR) for the
static and mobile experiments.
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Figure 4-2: CDF of the length of burst losses for both static and mobile experiments.

Table 4.1 shows the frame loss rate (FLR) and the burst loss rate (BLR) for each packet
stream averaged over three trials in the static and mobile experiments at R3. The BLR is
the number of frames lost in a burst of two or more consecutive frames divided by the total
number of frames sent in the stream.

For each stream, our mobile experiment has higher FLR and BLR than the static
experiments. The BLR/FLR ratio is greater than 50% for mobile and less than 50%
for static, which suggests that our mobile experiment has more lost frames that occur in
bursts than our static experiment. Figure 4-2 shows the CDF of burst loss length for each
transmitter in both experiments. Although “static” has fewer lost frames that occur in
bursts, the CDF shows that “static” has a long tail. When the receiver is static, losses can
occur in a few very long bursts (up to 146). In contrast, the maximum burst loss length for
“mobile” did not exceed 53. While we cannot pinpoint the exact cause for this behavior,
we believe that a receiver’s movement can lower the maximum burst loss length; a mobile
receiver can move out of a bad location where the channel quality is extremely poor while a
static receiver can suffer long bursts of losses due to sustained, problems in the transmission
path between the static sender and receiver.

Next, we examine how frame losses are correlated between different transmitters (spatial)
and at different times (temporal). Let Ai and Bi represent the lost of frame i sent from
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(a) Static (small k values)
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(b) Static (large k values)
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(c) Mobile (small k values)
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Figure 4-3: The auto-conditional and cross-conditional loss probabilities of frame losses at
different frame lags k for the static (a) and (b) and mobile (c) and (d) experiments.

transmitters A and B respectively. Then, P (Ai+k|Ai) and P (Bi+k|Bi), for k > 0, represents
the “auto-conditional loss probability” that the (i+k)th frame is lost, given that the ith frame
is lost in the same packet stream. If losses occur in bursts, we expect P (Ai+k|Ai) > P (A),
where P (A) = FLRA. In contrast, if losses are memoryless or independent, we expect
P (Ai+k|Ai) = P (A).

Similarly, we use P (Bi+k|Ai) and P (Ai+k|Bi) to represent the “cross-conditional loss
probability”. Thus, if losses are correlated between the streams, we expect P (Bi+k|Ai) >
P (B), where P (B) = FLRB . If losses are independent between streams, we expect
P (Bi+k|Ai) = P (B).

Figures 4-3(a) and 4-3(c) shows the auto-conditional and cross-conditional loss proba-
bilities for the static and mobile experiments at small values of k, 1 ≤ k ≤ 200 (4.2 to 840
ms).

In our mobile experiment, losses are bursty. Figure 4-3(c) shows that the auto-conditional
loss probabilities (P (Ai+k|Ai) and P (Bi+k|Bi)) are much larger than the respective average
FLR (Table 4.1) for A and B at small lags. Thus, given that a frame loss occurs, the prob-
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ability of losing the next few frames is much higher than the average FLR, which suggests
that burst losses are likely to happen. In contrast, the cross-conditional loss probabilities
(P (Ai+k|Bi) and P (Bi+k|Ai)) remain nearly the same as the respective average FLR, which
suggests that frame losses exhibit little correlation between the different transmission sites.
Observe that the average FLR of A is larger than that of B, yet P (Ai+k|Bi) < P (Bi+k|Bi).
This suggests that fine-grained path selection can be effective in avoiding imminent burst
losses by switching to an alternate site (path) whenever a loss occurs in the current site
(path), even in cases where sites have different average FLR. Thus, path diversity can
effectively reduce time-correlated losses over time-varying wireless channels.

In our static experiment, losses are less bursty than in our mobile experiment. Figure 4-
3(a) shows that in almost all lags, P (Bi+k|Ai) > P (Ai+k|Ai) but P (Ai+k|Bi) < P (Bi+k|Bi).
This is because the FLR of B is about twice that of A. While B can benefit by switching to
A whenever a loss occurs, the converse is not true for A. Although fine-grained path selection
is beneficial for our mobile environment, coarse-grained path selection based on long-term
frame loss rates may be sufficient in our static environment (i.e., when the channel is less
dynamic). However, we will illustrate in the next section that in some cases, fine-grained
path selection is beneficial for both static and mobile receivers.

Another interesting observation is that in our static experiment, P (Ai+k|Ai) tends to
be consistently higher for every k value that is a multiple of 4 (about 17 ms). Although
we are not certain, we think that this behavior might be caused by collisions with beacon
frames from nearby APs (belonging to the production 802.11b wireless LAN in our lab),
each of which periodically broadcast beacons at every 100 ms. The superposition of several
periodic beacon broadcasts with overlapping transmission range might produce the smaller
(17 ms) periodicity observed in our graph.

Figures 4-3(b) and 4-3(d) show similar probabilities for our static and mobile experi-
ments at large k values, 1 ≤ k ≤ 20, 000 (4.2 ms to 84 s). For clarity, we only plot data
for each k value that is a multiple of 100. First, as k grows larger, the auto-conditional
loss probabilities in both experiments converge to the corresponding frame loss rates. This
behavior arises because frame losses become increasingly independent as the lag increases.
We note that P (Ai+k|Ai) is consistently higher for each k value that is a multiple of 3000
(about 12.5 s), but we are not certain of the cause.

4.1.3 Impact of Localized Interference

Most WLAN MAC protocols use a carrier sensing (CS) mechanism to reduce the likelihood
of collisions. Before sending a frame, the sender senses the channel for activity. If the sender
senses energy in the channel, it suppresses its transmission to avoid colliding with another
potential ongoing transmission.

Carrier sense suppression depends on the relative positions of transmitting and receiving
nodes, and can lead to the classical exposed terminal problem [23]. For example, when one
AP’s transmission is suppressed by CS, an alternate AP may be used to transmit data
frames. However, the alternate AP’s transmission cannot succeed if the interfering energy
in the medium is too high at the receiver; the receiver must be at a location where the
signal to interference ratio is sufficiently high (see Figure 4-4). A fine-grained path selection
system can discover such transmission opportunities when they exist.

We gathered measurements that show that the scenario described above exists in a
real network. During a busy hour, two transmitters, AP1 and AP2, alternatively send
broadcast frames to a common receiver C. Table 4.2 shows that transmitter AP1 offers
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Figure 4-4: Carrier sense suppresses AP2 from transmitting due to the interfering signal
from I (e.g., a WLAN client in another nearby network or an appliance that use the same
frequency spectrum). However, AP1 may be used to communicate with C because the
interfering signal is not strong enough to affect either AP1 or C.

Loss RSSI Jitter DeferEngy
Path

Rate (%) (dBm) (ms) (Count)

AP1 1.82 -37.91 2.29 47389

AP2 2.03 -44.46 0.35 22749

Table 4.2: Based on loss rate and average received signal strength, AP1 is the preferred
path. However, AP1 has a much higher one-way delay jitter than AP2.

both higher signal strength and slightly lower overall loss rate in a 30-minute packet trace
of an experiment that involved transmitting 720,000 data frames. Thus, if AP1 were an
access point, the receiver would naturally associate with AP1.

Figure 4-5 shows the received signal strength, the average loss rates of 1-second slices
in the trace, and the one-way delay jitter (i.e., the delay variations above the minimum
one-way delay value) as a function of time for a 60-second snippet of the packet trace.
This 60-second snapshot is chosen to avoid cluttering the figure, and is representative of
the characteristics manifested in the entire trace. The figure shows that the packet delay
jitter from AP1 is substantially higher than the delay jitter from AP2. Lost packets were
ignored from the delay jitter analysis. Because broadcast packets are not retransmitted and
are not subject to the exponential back-off mechanism in 802.11 networks, the increased
one-way packet transmission delays from AP1 can only be attributed to the increased de-
lay caused by the carrier sense mechanism (perhaps due to ongoing traffic from a nearby
802.11b network). We confirm this hypothesis by verifying the DeferEngy register in the
transmitter’s 802.11b interface, which counts the number of times that a packet has been
deferred because energy was sensed in the carrier. Table 4.2 shows that the value of the
DeferEngy register for transmitter AP1 is much greater than the value for transmitter AP2,
indicating that transmitter AP1 deferred transmission more than twice as many times as
transmitter AP2.

Table 4.2 shows that the loss rate for transmitter AP1 is comparable to that of trans-
mitter AP2 even though the DeferEngy count for AP1 is twice as large as AP2. The result
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Figure 4-5: A 60-second snippet of a streaming experiment on two paths originating from
transmitters AP1 and AP2. AP1 (in red) offers higher signal strength and lower loss rate
than AP2. However, due to localized interference that triggers the carrier sensing mechanism
in AP1, AP1 frequently suffers from high spikes of delay jitter, while the one-way delay from
AP2 remains low and relatively constant.

suggests that many of AP2’s transmission can succeed even when interfering energy is de-
tected by AP1. Thus, we have identified a real case of the example shown in Figure 4-4.
For these scenarios, fine-grained path selection can be used to reduce both loss and delay
by switching data frame transmissions intelligently between the available APs (for downlink
traffic) and between different transmit radios on a receiver (for uplink traffic).

4.2 Design and Implementation of MRD-TD

To support downlink transmit diversity, MRD-TD deploys multiple APs within an area
(Figure 4-6), interconnected over a wired network whose data rate is much higher than the
wireless link rate, with each AP being able to detect whether a WLAN client is currently
within its transmitting range or not (e.g., using periodic probes). Optionally, MRD-TD
can support uplink transmit diversity by installing multiple transmit radios on each client
device. Both WLAN clients and APs use synchronous ACKs to immediately acknowledge
every non-broadcast data frame received over the wireless link. This feedback is important,
because it allows the data transmitter to determine path conditions at the granularity of
individual frame transmissions.

MRD-TD uses a path-selection heuristic to determine which AP and which client trans-
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Figure 4-6: A cellular WLAN model where neighboring APs (e.g., APi and APi+1) have
overlapping coverage. To achieve the benefits of fine-grained path selection, MRD-TD
requires that the client switch between APs quickly and at low cost. Section 4.2.2 shows
how 802.11-like systems can achieve this goal.

mit radio, and hence which wireless path, to use for transmitting frames in the downlink
and uplink directions. Section 4.2.1 discusses the details of the heuristic. MRD-TD also
requires the ability to change the wireless path on a fine-grained basis without disrupting
communication or incurring overhead. Section 4.2.2 describes how fast path switching can
be achieved in cellular WLAN networks.

In a traditional WLAN architecture, the different APs deployed in a single WLAN re-
quire little explicit coordination between one another. On the other hand, MRD-TD requires
explicit coordination because it makes path choices on a frame-by-frame basis (including
sending frame retransmissions along a path different from the original transmission), with
control over the path resting on the transmitter (AP) rather than on the receiver (client).
To enable this coordination, MRD-TD extends the WLAN architecture by adding two com-
ponents, the MRD-TD Controller (TDS) and the MRD-TD Channel Monitor (CM), as
shown in Figure 4-7. The TDS and CM run on the transmitter-side of the system—the
wired backbone network and AP in the downlink direction, and the WLAN client in the
uplink direction. In addition to the TDS and CM, we run a MRD-TD Receiver (TDR)
process on the receiver to ensure packets are delivered in-order to the upper network layers.

The system works if TDS and CM components are deployed on only one of the two
directions. In this case, fine-grained path selection is enabled in one corresponding direction
only. Our current Linux implementation and experiments are for the downlink direction
alone.

The TDS is responsible for forwarding each packet via one of the APs (or client transmit
radios) that is within transmission range of the client (or of the associated AP for uplink
traffic). The TDS runs a fine-grained path-selection heuristic, which makes a forwarding
decision for each packet based on feedback sent by the CMs, each of which runs at an AP
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Figure 4-7: The MRD-TD architecture to perform fine-grained path selection among access
points, shown in the downlink direction. The MRD-TD Controller (TDS) determines which
path (AP) to use. Each AP runs a MRD-TD Channel Monitor (CM) that monitors link
conditions and reports these conditions to the TDS. The client runs the MRD-TD Receiver
(TDR) to ensure packets are delivered in-order to the upper network layers.

or transmit radio. A CM monitors the wireless link at the transmitter and sends two types
of messages to the TDS, registration event messages and path-condition update messages.

Registration event The CM sends a periodic registration event to the downlink TDS
whenever the CM detects that a particular client is within its downlink transmission
range. The registration event allows the TDS to maintain a set of usable transmitters
for fine-grained path selection. The event is maintained as soft-state at the TDS so
that the registration can timeout when a client moves out of an AP’s transmission
range. The uplink TDS and CM use an analogous procedure to maintain a set of
usable transmit radios for uplink transmissions.1

Path-condition update Each CM monitors the channel conditions in the direction of the
data flow. In the downlink direction, the CM at the AP maintains this information
per client. In uplink, the CM maintains information only for the associated AP. The
CM periodically sends updates of this information to the TDS. The CM observes a
failed transmission if the sender does not receive a synchronous ACK after a frame
transmission. This failure can occur when either the data frame or the returning
ACK is lost. The CM may also observe the receiver’s received signal strength of
the transmitted data frame if it is reported in the synchronous ACK. To reduce the

1Transmit radios installed on the same device are likely to have similar transmission range. In most
cases, the uplink TDS and CM can simply assume that it can use all of the available transmit radios for
fine-grained path selection.
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overhead of reporting feedback to the TDS, the CM does not send per-frame level
information to the TDS. Instead, it sends an update at regular intervals or whenever
a threshold condition (see Section 4.2.1) has been satisfied.

To support retransmissions, the TDS wraps each data packet with a header that contains
a field indicating the retransmission limit. If the sender (AP or client transmit radio) fails
to successfully transmit a data frame to the receiver and receive an ACK, the corresponding
CM decrements the retransmission limit field and returns it to the TDS for retransmission
if the retransmission limit has not been exceeded. Because the TDS runs the path-selection
heuristic for the packet, including those being retransmitted, the retransmission may be
done along a different path.

The proposed retransmission scheme can introduce out-of-order frame delivery. To im-
prove efficiency, the TDS does not wait for the status (the success or failure) of every frame
transmission before transmitting the next frame, i.e., transmissions are pipelined. Because
the TDS decides when to retransmit a frame, the actual retransmission might occur after
a successful transmission of another frame belonging to a subsequent packet in the trans-
mission sequence. Some higher-layer network protocols such as TCP are sensitive to the
ordering of delivered packets. To ensure in-order packet delivery, the TDR checks the se-
quence numbers of the delivered frames and buffers frames that arrived out-of-order until
the missing packet arrives or a timeout occurs. We have not implemented pipelining nor
the TDR for the stand-alone MRD-TD sub-system.

We made a deliberate design decision to put the path-selection decision control at the
transmitter-side of the system. Alternatively, a receiver can monitor channel conditions and
select different wireless paths. But receiver-side control has several drawbacks. First, the
receiver can only detect lost frames from gaps in the sequence numbers of the transmitted
frames, which means that it cannot detect a loss before it receives a successful transmission.
When losses occur in bursts, a receiver may not be able to switch paths in time to avoid
them. Second, when a receiver decides to switch paths, it must send a control message to
notify the TDS to switch paths. Such a message is unreliable and is prone to loss when
channel conditions are poor. None of these problems will occur when the transmitter makes
path-selection decisions.

Moreover, a downlink TDS that resides in the distribution system has a global view of
the wireless activities at all the different APs. Thus, the downlink TDS can, for example,
measure traffic load among APs, track a client’s movement, or detect which APs are suffering
from localized interference from their carrier-sense mechanism, and adapt path-selection
decisions accordingly.

4.2.1 MRD-TD Path Selection Heuristic

The goal of MRD-TD’s fine-grained path selection heuristic is to reduce losses in the wireless
medium without consuming extra wireless bandwidth. The heuristic, at any given time,
selects only one AP/client transmit radio with a good transmission path to transmit a
downlink/uplink data frame to/from a client. Our goal is different from techniques proposed
in [84, 79, 75], which seek to aggregate bandwidth by using multiple orthogonal paths in
parallel. Our goal is also different from schemes that employ forward error correction
(FEC) across multiple paths. For example, a simple FEC scheme might replicate and
transmit every data frame via all the APs that are within range of the client. Such schemes
use redundancy to reduce loss rates in the wireless medium, while MRD-TD achieves the
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same goal through intelligent, fine-grained path selection without consuming extra wireless
bandwidth.

In theory, a path-selection algorithm should select the best path for each data frame
transmission. To do so, a system must acquire accurate knowledge of the wireless channel
condition of each available path within a few milliseconds. In practice, accurate sampling
of the channel conditions is difficult and might incur large overhead.

We observe that selecting the best path for every data frame is unnecessary to achieve
good results. As observed in Section 4.1.2, frame losses usually occur in bursts, especially
when the receiver is mobile, and different transmission paths often exhibit weakly correlated
channel conditions. Therefore, a “reactive” path selection heuristic can be effective if it can
determine whether the currently used transmission path has fallen into a bad state (i.e.,
predict whether the next few frame transmissions will fail with high probability), and divert
the subsequent transmissions to an alternate path. As long as the alternate path’s average
loss rate is not substantially higher than that of the current path, diverting the frame
transmissions will likely avoid burst losses.path.

In MRD-TD, the CM running at each AP (or client) keeps track of the per-path history
of the losses of the last data frames sent to each station within a window of H recent frame
transmissions.2 The CM then monitors the loss rate within this window. If the observed
number of lost data frames is greater than a certain threshold T , the CM notifies the TDS
to forward subsequent frames via a different transmitter. After a path switch occurs, the
CM at the newly-selected transmitter waits for at least H data frame transmission attempts
before signaling another switch to the TDS. Thus, H defines the switching time granularity
(hysteresis), while T governs the sensitivity to the losses on the current path.

This heuristic is simple, and it uses feedback information only from the currently used
transmitter. Active channel probing is unnecessary because the sender can detect a lost
unicast frame by the absence of its synchronous ACK.

However, this heuristic is sub-optimal and will not work well under all channel conditions
if the values H and T are fixed. A small value of H is desirable for bursty and dynamic
channel conditions, so that the heuristic can adapt quickly. On the other hand, a larger
value for H allows the heuristic to obtain a better estimate of the channel’s average loss
rate; a larger value is suitable under static channel conditions where the signal quality does
not vary quickly. As shown in Section 4.1.2, often, a better selection strategy for static
channel conditions is to “lock on” to the transmitter that has a lower average loss rate.
Similarly, when the loss rates of the alternate paths are significantly higher than or are
highly correlated with the current path, a large T is desirable to prevent switching to a
potentially poorer path when only a small number of losses are detected in the current
path. In other cases, a small T diverts packets early, which helps to avoid imminent burst
losses in the current path.

Our experiments in Section 4.4 indicates that a choice of H = 1 and T = 1 works
reasonably well for dynamic channel conditions when the receiver is mobile, and a choice
of H = 10 and T = 5 works well when the channel is less dynamic. Fortunately, our
experiments suggest that the observed loss rates are not too sensitive to the exact values of
H and T . Nonetheless, we believe that the current heuristic can be improved by making H
and T adaptive, e.g., using simple machine learning techniques for learning parameters [71].

Finally, when the losses of a transmission path triggers a path switch, the heuristic has to

2The CM also needs to keep a timer (not implemented in our testbed) to flush the loss window so that
H does not span a long time period when the traffic rate is low.
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Figure 4-8: Clients M1 and M2 belong to cells 1 and 2, which operate in channels a and
b respectively. For (b) and (c), all APs in the same cell operate in the same channel.
Arrows mark possible WLAN communication path(s) for each client. In a traditional cellular
WLAN (a), clients only communicate with one AP. In the extended MRD-TD WLAN (b),
the primary access points (PAP) associate with clients while the secondary access points
(SAP) provide alternate communication paths within the same cell. A low-cost deployment
alternative for MRD-TD is shown in (c), where the SAP is co-located with the PAP of
another cell to reduce the number of AP deployment locations. In (c), M1 has a long
communication path to SAP1 but in many cases, M1 will communicate with a closer SAP
located in another cell (not shown).

pick which one of the available alternate paths it should switch into. A simple mechanism is
to randomly pick an alternate path from among a set of APs within communication range of
the client. We currently assume that there is only one alternate path so our implementation
always switches into that path whenever a path switch occurs.

We emphasize that the fine-grained path selection heuristic presented here is different
from the handoff algorithms that are used to initiate a handoff process in many common
cellular WLANs (described in the next section). Due to the high overhead in a typical
handoff procedure, handoff algorithms often use a strong hysteresis to prevent a receiver
from flapping handoffs among APs [28] when it finds multiple APs within range. In con-
trast, the MRD-TD heuristic can switch paths among APs on a frame-by-frame basis; thus,
transmission paths are selected only as a function of channel conditions estimated by the
per-client data frame loss history at each AP.

4.2.2 Reducing Path Switching Cost

For downlink transmissions, the MRD-TD design assumes that the WLAN incurs negligible
cost when the transmission path is switched between different APs. This assumption is
reasonable for WLAN architectures that support soft handoff. In a soft handoff, during
the transfer of communication from one AP to another, a client maintains an undisrupted
communication flow with both APs until the transfer completes. For example, code-division
multiple access (CDMA) wireless networks support soft handoff, during which neighboring
APs transmit signals simultaneously. Clients use RAKE receivers to resolve and decode the
combined signals and maintain connectivity.

A WLAN that uses the same frequency channel for all its APs may also support soft-
handoffs. However, typical WLANs such as 802.11 uses a cellular architecture (Figure 4-
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8(a)) in which operators configure neighboring APs to use orthogonal channels to achieve
spatial frequency reuse that increases the capacity of the network. In order to communicate
with an AP in the network, a client needs to switch its communication channel to the one
being used by the AP. Thus, in cellular WLANs, MRD-TD needs to explicitly notify the
client to switch channels whenever it selects a new path for downlink communication. The
overhead associated with switching paths can be significant (lasting from a few to hundreds
of milliseconds [63]) especially when it occurs on a frame-by-frame basis. Moreover, forcing
a client to communicate with an AP when the client is outside of that AP’s cell boundary
may increase co-channel interference and reduce the capacity of the network, as we will
explain later.

One method of reducing the path-switching overhead is to install multiple radios on each
client and statically associate each radio with a different access point that is within range
of the client. This solution has two drawbacks: 1) it is not scalable; to take full advantage
of the path diversity offered by N available APs, a client needs to install N radio devices,
where N can be as large as the number of orthogonal channels offered by the WLAN (twelve
for 802.11a), and 2) because multiple radios consume more energy, it may not be suitable
for battery-powered clients.

Our approach for reducing the path switching cost is to use one radio on the client and
deploy additional secondary access points in the WLAN infrastructure. In the extended
MRD-TD architecture shown in Figure 4-8(b), each primary access point (PAP) defines a
distinct WLAN cell and may be assigned a frequency channel that is orthogonal to a neigh-
boring primary AP. The primary AP handles authentication and association procedures to
allow clients to join its cell. Then, one or more secondary APs are placed within a cell, i.e.,
within the coverage area of their primary AP, but at spatially diverse locations to achieve
path diversity gains. The secondary APs are used to provide alternate transmission paths
to the clients within their cell. All APs within a cell operate in the same frequency channel
to minimize the path switching cost among them. A CM runs at each AP within a cell to
monitor the wireless link condition and report feedback to the TDS, as described earlier.
The TDS performs fine-grained path selection as previously described, except that the set
of possible alternate paths for a particular client is limited to the APs within the client’s
cell.

Because common WLAN systems (e.g., 802.11) offer link layer services (e.g., security)
that process packets in an AP, it is convenient to place the TDS inside the primary AP.
Doing so allows the TDS to forward data frames to an AP after they have been processed.
The existing wireless services should run without modification. More importantly, the
processing takes place in a central location for every cell. Central processing obviates the
need to distribute state across the secondary APs to run the existing services.

Although a secondary AP is similar to a primary AP, it is different in the following ways.
A primary AP defines a distinct cell and a pair of neighboring primary APs define a cell
boundary. Although a secondary AP may transmit frames within a cell, a secondary AP
does not increase the size of the cell defined by its primary AP (when the operators deploy
secondary APs within their primary AP’s cell boundary). The primary AP is the only AP
within a cell that handles authentication and association procedures to allow clients to join
its cell. Thus, a secondary APs has no effect on a client’s handoff policy, which dictates
when a client initiates a handoff as it crosses cell boundaries. We made these design choices
to eliminate the potential interference problems described in Section 4.2.3.

A significant advantage of the extended MRD-TD architecture is that it allows the
WLAN to increase its capacity using the well-tested cellular architecture, while facilitat-
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C1(a) C2(a)D

Figure 4-9: A hexagonal cell model. The cells C1 and C2 operate in channel a and may
cause co-channel interference between each other. If all cell sizes are identical, the worst-
case co-channel interference between C1 and C2 is a function of their minimum separation
distance D.

ing low-cost fine-grained path selection. Because access points are commodity devices, we
expect that secondary APs will not significantly increase deployment cost. If the cost of
installing and wiring secondary APs at different physical sites become significant, WLAN
operators may co-locate the secondary APs of one cell with the primary APs in the neigh-
boring cells (see Figure 4-8(c)). In this case, MRD-TD operates in the same way as before
except that alternate paths of a cell will extend into the neighboring cells. Consequently, the
channel quality of the alternate paths may decrease and co-channel interference between
cells that operate at the same channel may increase. In practice, however, the channel
quality of alternate paths and co-channel interference between cells are related to the indi-
vidual cell’s location and traffic load. While MRD-TD does not restrict where secondary
APs are deployed, a WLAN operator needs to make the appropriate trade-offs between
cost and performance when deploying MRD-TD. The next section describes how MRD-
TD, with strategic placement of secondary APs, limits the potential increase in co-channel
interference.

4.2.3 Co-channel Interference

Co-channel interference arises when two or more wireless devices that operate at the same
frequency are placed near each other (i.e., within each others’ radio interference range).
Thus, APs that operate in the same frequency channel should be placed carefully so that
they do not interfere too much with one another and reduce the overall capacity of the
network. Because the extended MRD-TD architecture requires secondary APs that operate
at the same frequency, it is important to understand how their deployment might affect the
overall capacity of the network.

We use a simple hexagonal cell model as shown in Figure 4-9 to examine the impact of
adding secondary APs into a WLAN. To greatly simplify our exposition, we assume that
an AP is located in the center of each cell and that all cells are the same size. The results
are general and remain valid even if the cell sizes and shapes are different. Without loss
of generality, assume that cells C1 and C2 operate in the same frequency. In a traditional
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WLAN without secondary APs, clients can move to the edge of a cell’s boundary. Thus, the
worst-case co-channel interference between the two cells is a function of the cells’ minimum
separation distance D, i.e., the minimum distance between a client from C1 and a client
from C2.

Suppose the primary AP is located at the center of every cell, adding secondary APs
does not increase the worst-case co-channel interference, if the following conditions hold:

• The secondary APs do not affect a client’s handoff policy. As a client crosses a cell
boundary, it disassociates with the primary AP of the cell that it is leaving and
associates with the primary AP of the cell that it is entering.

• Secondary APs are always placed within the boundary of the same cell as their primary
AP.

The first condition maintains that a client cannot join a cell, e.g., C1, unless it is within
C1’s cell boundary. Thus, regardless of the secondary APs’ existence, all of C1’s active
clients are still contained within C1’s boundary, and similarly for clients in C2. The second
condition ensures that the secondary APs of C1 are placed within C1’s boundary, and the
secondary APs of C2 in C2’s boundary. With these two conditions, there is no way to place
a wireless station from C1 at less than D length away from the closest wireless station in
C2. Thus, the worst-case co-channel interference remains unchanged.

4.2.4 Rate Adaptation

When all the available transmission paths suffer from high long-term frame loss rates, fine-
grained path selection could be used to avoid a substantial number of frame losses but the
overall frame loss rate is likely to remain high. To help cope with channel conditions where
transmit diversity becomes inadequate, we can adjust the transmission bit-rate using the
rate adaptation algorithm listed in Figure 3-5.

Because there are multiple transmitters in a MRD-TD system, there is an interesting
design choice of 1) running a single, global instance of the rate adaptation algorithm in
the TDS to select a bit-rate based on the link layer losses observed by all transmitters or
2) running a separate, independent instance of the algorithm at each transmitter. How
fine-grained path selection benefits the “global” approach of adapting bit-rates is clear.
As we will show later, our system helps reduce the overall frame losses and the variance
of frame losses. Both of these properties can help the rate adaptation algorithm select
higher bit-rates to improve throughput, as we saw in the previous chapter. However, in
the “distributed” rate adaptation scheme, it is unclear how fine-grained path selection will
interact with the independent rate adjustments at each transmitter.

In this chapter, we provide an evaluation of MRD-TD using a fixed bit-rate transmission
scheme and in the next chapter, using a global rate adaptation algorithm. The study of
different rate adaptation schemes and their interactions with the MRD-TD sub-system is a
rich topic for future work.

4.3 802.11 Implementation

We use Linux PCs equipped with a Intersil Prism-II based 802.11b PCI card to implement
the primary and secondary APs, and a dedicated 100 Mbps Ethernet to serve as the wired
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backbone between the primary and secondary APs of a single MRD-TD WLAN cell. We
modify the HostAP (ver. 0.0.1) driver [50] to incorporate the TDS and CM. We configure
the wireless interfaces to run in 802.11 AP mode, and our prototype implementation works
with regular, unmodified 802.11b managed mode clients.

4.3.1 Routing

We configure the wired backbone and the wireless network as different subnets. The AP
host uses Linux iptables to forward packets with an IP address destined to a WLAN client
from the wired network to the wireless network. Because we implement the TDS and CM
within the HostAP driver, we need a way to deliver MRD-TD control messages to a TDS
or CM running at a remote AP. We achieve this behavior by configuring each AP host
with an IP address in the wireless subnet. An AP sends a MRD-TD control message to the
wireless IP address of the target AP host via the wired backbone. Unfortunately, IP packets
that reach the destination host will be consumed by the host. Thus, the target MRD-TD
component running within the wireless interface’s driver will not receive the control packet.
To solve this problem, we add to every AP host one static ARP entry that contains the
wireless IP address of the corresponding AP host. As long as there is an ARP entry with
the AP’s wireless IP address, the target host will forward all IP packets to the wireless
interface, independent of the MAC address value in the ARP entry.

We implement the TDS inside the data path of the HostAP driver so that the primary
AP can forward a client’s packets to the secondary APs via the wired backbone. The
TDS contains a table of wired ethernet MAC addresses of all the secondary APs in the
primary AP’s cell. Before the TDS forwards a packet to a secondary AP via the wired
interface, it changes the packet’s destination MAC address to the Ethernet address of the
selected secondary AP listed in the table. We disable packet retransmissions in the native
wireless interface layer to allow the TDS to assume control of retransmissions. The MRD-
TD testbed used to collect experimental results in this chapter does not implement TDS-
controlled retransmissions; the wireless interface simply drops all packets that fail their first
transmission attempt.

A TDS also needs to determine which APs are within transmission range for a particular
client. For the primary AP, client detection occurs automatically when the client sends an
association request. Secondary APs currently do not detect whether a client is within range.
However, we can implement client detection by configuring a dedicated wireless interface
in every secondary AP to sniff for the client’s upstream transmissions (either a data or an
ACK frame). Similar techniques have recently been proposed to build connectivity graphs
to improve 802.11 handoff performance [82].

4.3.2 Channel Monitor

We implement the CM inside the HostAP driver as an interrupt handler, which receives
a callback triggered by a packet transmission, indicating if its delivery has succeeded or
failed. The CM runs the MRD-TD path-selection heuristic. aWhen the CM detects that
an AP’s channel condition has fallen into a bad state, it sends a path-condition update to
the TDS. The TDS then selects a different AP by cycling through the table of secondary
APs. The TDS sends a control message to clear the packet history of the CM running at
the selected secondary AP and to start forwarding subsequent packets to it.
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4.3.3 Primary and Secondary Access Points

The primary AP runs like an ordinary 802.11 access point. It broadcasts periodic beacon
messages to advertise its existence to clients and accepts their association requests. The
secondary AP receives and forwards packets over the wireless interface, but does not par-
ticipate in broadcasting beacons or associating with clients. We change the MAC address
of the secondary AP’s wireless interface to the MAC address of the primary AP’s wireless
interface. Hence, the secondary AP is configured to spoof the primary AP’s identity. The
MAC address spoofing allows a client in 802.11b managed mode to receive packets from
different APs transparently and without interrupting the data flow.

One important detail concerns the use of link layer sequence numbers in 802.11. Ideally,
the primary and secondary APs should use synchronized sequence numbers so that the
packet’s origination is completely indistinguishable. However, the Prism-II chipset used in
our implementation does not export an API that allows us to synchronize the sequence
numbers or to modify them in the 802.11 header. In practice, the sequence numbers are
used only for duplicate packet detection and reassembling fragmented data frames. As long
as we restrict the fragmented frames to the same wireless interface that initiated the link
layer fragmentation, the system will handle fragmented frames properly.

Unfortunately, the system can no longer detect duplicate data frames transmitted by
different APs, which can happen in the event of an ACK frame loss.3 Fortunately, link
layer packet duplication is usually not a problem in practice because the best-effort service
model allows for occasional packet duplication; the link layer is not required to filter all
duplicate packets for the higher layers of the protocol stack. End-host applications and
transport layer protocols such as TCP can usually detect duplicate packets and discard
them if necessary.

We have not yet implemented the client-side modifications to support fine-grained path
selection in the uplink direction. Uplink transmissions from the unmodified clients are
received and acknowledged by the primary AP in exactly the same way as a regular AP in
the 802.11 network. We also have not implemented the TDR, which runs on the receiver
and is used to order packet delivery for higher transport layers. In the next chapter, we will
show how the RDC can be used in place of TDR to ensure in-order packet delivery in the
integrated system.

4.3.4 Security Support

MRD-TD does not affect link layer security services such as the Wired Equivalent Privacy
(WEP) and the 802.1x security extensions [17]. An unmodified client associates and authen-
ticates with a primary AP in the same manner as it would in the original 802.11 WLAN. For
downlink communication, the TDS can let the WEP/802.1x security service perform the
necessary processing to a data frame before forwarding it to the selected AP for immediate
transmission. Since the security layer is typically implemented in the device driver of the
wireless interface, it is important to run the TDS component inside the primary AP.

For clients that do fine-grained path selection in the uplink direction, the TDS at the
client may modify the next-hop address in the 802.11 link layer header of an uplink frame.
Since the 802.11 header is not protected by either WEP or 802.1x, the security service

3In the future, the availability of an 802.11 chipset that allows higher-layer control of the frame sequence
numbers can solve this problem in a way that permits duplicate detection.
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for uplink packets should be unaffected, as long as the secondary APs forward all received
packets to the primary AP for proper processing.
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Figure 4-10: Average frame loss rates of different transmission schemes at three different
receiver positions. The label denotes that values {H, T} used in a MRD-TD transmission
scheme. Hybrid uses {1, 1} for transmitter A and {3, 2} for B.

4.4 Experimental Results

We evaluate our implementation of MRD-TD to demonstrate the benefits of fine-grained
path selection. The experimental setup is the similar to the one in Section 4.1.1. The major
difference is the use of unicast frames as opposed to broadcast frames, and the transmitters
at A and B are APs running our MRD-TD implementation. To measure link layer frame
loss rate (FLR), we disabled packet retransmissions. We stream 1500 byte unicast UDP
packets to the receiver at each of the three locations in Figure 4-1 at a rate of 240 packets
per second using i) only transmitter A (referred to as scheme A), ii) only transmitter B
(referred to as scheme B) and iii) MRD-TD with several settings of H and T values. As
explained earlier, MRD-TD will use AP A or B to transmit each frame. Except for the
Hybrid configuration, the same set of H and T values is used as the switching criteria from
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A to B and from B to A. Under the Hybrid configuration, MRD-TD uses H = 1 and T = 1
as the switching criteria from the transmitter with a higher average FLR and H = 3 and
T = 2, from the transmitter with a lower average FLR.

We disabled roaming at the receiver to prevent it from initiating a handoff during
the experiment. We conducted our experiments in late evening to avoid interacting with
the building’s daily 802.11 activity. We repeated each experiment over three trials. To
avoid biases from the human subject performing the mobile experiments, the order of the
experiments’ trials was randomized and was unknown to the human subject. Each trial
transmitted 72,000 packets in 300 seconds.

These experiments are by no means exhaustive. Nonetheless, they illustrate how a
simple fine-grained path selection heuristic such as the one used by MRD-TD can offer
significant performance improvements in terms of reduced delay and loss rate in realistic
scenarios.

4.4.1 Frame Loss Rate

In our mobile environment, MRD-TD performs significantly better than both schemes A
and B when the receiver is at R2 and R3, for all the values we used for H and T . Figures 4-
10(a) and 4-10(b) show that at R2, MRD-TD H = 1 and T = 1 reduces the average FLR
by about 38% from scheme A and 21% from scheme B, and as the receiver moves further to
R3, the loss reductions increase to 56% from A and 26% from B. As predicted in Section 4.1
(see Figure 4-3), MRD-TD effectively reduces losses by avoiding burst losses in the wireless
channel. MRD-TD performs better with H = 1 and T = 1 than with H = 10 and T = 5
because it is more responsive with smaller H and T values.

At R1, the receiver is much closer to transmitter A than B. As expected, the average
FLR of scheme A (2.1%) is much lower than B (15%). Due to the large difference in the
average loss rates, it is unlikely that the auto-conditional loss probability of transmitter A
(P (Ai+k|Ai)) will exceed the cross-conditional loss probability of B (P (Bi+k|Ai)) for any
lag k. Figure 4-10(c) shows that non-Hybrid configurations of MRD-TD perform slightly
worse than schemes A and B. To compensate for the large differences in the average loss
rates between the two transmitters, MRD-TD may use different H and T path-switching
thresholds for each path. The Hybrid case at R1 uses a more conservative threshold (i.e.,
H = 3 and T = 2) for the transmitter with lower FLR (A), and maintains an aggressive
threshold (i.e., H = 1 and T = 1) for the transmitter with higher FLR (B). Figure 4-
10(c) shows that Hybrid MRD-TD performs as well as the better transmitter (A) when
it uses different path-switching thresholds for different paths. Thus, MRD-TD can adapt
remarkably well to extremely asymmetric, dynamic channel conditions (e.g., R1) by making
small adjustments to H and T . In our mobile environment, MRD-TD performs no worse
than the best available path when the available paths are extremely different (e.g., R1).
But when the paths are less asymmetric (e.g., R2 and R3), MRD-TD drastically reduces
the average FLR compared to the fixed-path schemes.

When the receiver is stationary at R3, Figure 4-10(d) shows that MRD-TD has a lower
average FLR than scheme B but a higher average FLR than scheme A. This is because
losses are seldomly bursty in our static environment. In our case, choosing the transmit-
ter that has a lower average FLR (which is AP A) is better than fine-grained selection.
However, we believe that there are cases when fine-grained path selection is beneficial even
when the receiver is static, e.g., when the channel condition is dynamic or when there is
localized interference at the transmitter.
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Figure 4-11: CDFs of various measures for the mobile experiments at R3

The measured FLR suggests that the performance gains of MRD-TD is much higher
in dynamic conditions than in static conditions. To understand MRD-TD’s potential gains
in other performance aspects, we focus on mobile experiments at R3 for the rest of this
section. In general, the trends described earlier hold for the following evaluation: MRD-TD
performs no worse than the best available path at R1. When the receiver is stationary at
R3, MRD-TD’s performance is about the same as the average of the two available paths.

4.4.2 Burst Loss Length and Window Loss Rate

Figure 4-11(a) shows the CDF of the burst loss length. MRD-TD is able to significantly
cut the tail of the distribution. In particular, the largest burst loss length of MRD-TD with
H = 1 and T = 1 is less than 20 whereas that of scheme A is 52 and that of scheme B is
61.

Some applications such as multicast video streaming require low loss rates over short
intervals. Figure 4-11(b) shows the CDF of frame loss rates over 1-second windows. MRD-
TD’s distribution of the 1-second window FLRs is much lower (and narrower) than that of
both schemes A and B. The worst-case 1-second window loss rate is also much lower: the
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highest loss rate in a 1-second window for schemes A, B and MRD-TD are 59%, 47%, and
29% respectively.

4.4.3 Channel Delay

As explained earlier, losses tend to occur in bursts, especially in mobile environments.
Transmitters often experience periods of degraded channel conditions, lasting for several
tens of milliseconds. Any frame transmission attempt during such periods is likely to fail.
We define the per-packet channel delay as the difference between the time when a packet
is first transmitted in the wireless medium and the time when it is successfully received.
Channel delay is an important metric for voice and video applications that require low
one-way packet delay and low delay jitter.

To accurately compute the per-packet channel delay, we need the transmit and receive
times of each packet. It is difficult to synchronize the clocks accurately to within a fraction
of a microsecond and consistently among the transmitters and the mobile receiver in each
experiment. Thus, we use a sampling approximation to estimate per-packet channel delay.
We transmit packets at periodic intervals of I and assume that packet i is sent precisely at
ti = i∗ I. Let rj be the time when the jth data frame is successfully received, i.e., when the
jth data frame logged in the receiver’s data trace. Then, the ith channel delay sample di is
computed as: di = rmin

j − ti = rmin
j − i ∗ I, where rmin

j is the minimum rj in the data trace
that satisfies rj − ti ≥ I. In our analysis, we combine all three trials of each experiment to
generate 216, 000 delay samples. We used an inter-packet transmission period of I = 4.17
ms.

Figure 4-11(c) shows the CDF of the channel delay samples for the mobile experiment
under various schemes when the receiver is at R3. As shown, all of the MRD-TD schemes
have a lower channel delay distribution than the fixed-path schemes (A and B), e.g., in
MRD-TD, 98% of the packets have a channel delay less than 15 ms but in the fixed-path
schemes A and B, fewer packets (90% and 95%) are transmitted successfully within the
same delay. In terms of delay reduction, the 99th-percentile delay is reduced from 70 ms
and 40 ms for fixed-path schemes A and B to 20 ms for MRD-TD.

4.4.4 Number of Path Switches

We measured the number of path switches that took place in each of our experiments.
A large number of switches is indicative of a large number of MRD-TD control messages
being sent over the wired backbone. Because a typical wired backbone usually has a much
higher capacity than a 802.11b WLAN, the additional traffic caused by MRD-TD’s control
messages in most cases will produce little congestion in the wired network. However, for
low-bandwidth wired backbone networks, a smaller number of AP switches may be more
desirable especially with higher-capacity WLAN technologies such as 802.11a.

Figure 4-11(d) shows the number of AP switches for various MRD-TD configurations.
As expected, the number of switches decreases as H increases. The number of switches for
the third trial of MRD-TD with H = 1 and T = 1 is missing because the file containing
that data was corrupted.
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4.5 Chapter Summary

In this chapter, we showed that a fine-grained path selection technique for wireless networks
can yield substantial performance benefits under the following conditions: i) strong tem-
poral loss correlation within a path in which the short-term (10-100 ms) frame loss rate is
significantly higher than the steady state frame loss rate, and ii) weak spatial loss correla-
tion across paths. Using a number of real-world experiments on an indoor 802.11b WLAN,
we showed that such conditions can occur when the receiver is in motion. Our results show
that the simple and practical fine-grained path selection technique proposed in this paper
can help reduce loss rates—without consuming extra wireless bandwidth—by as much as
26% compared to a fixed-path scheme that uses the best available transmission path under
realistic settings.

Our choice of fixed algorithm parameters (loss history and loss threshold) for fine-grained
selection may not be appropriate in some environments. An interesting direction for future
work is to explore adaptive path selection algorithms so that the scheme is suitable under
a variety of dynamic conditions.
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Chapter 5

MRD-TRD: Integrating Transmit
and Receive Diversity

This chapter describes how to integrate the MRD-RD and MRD-TD sub-systems to provide
both transmit and receive diversity gains in a unified system called MRD—Transmit/Receive
Diversity (MRD-TRD). One way to integrate the two sub-systems is to run them indepen-
dently in the opposite directions of communication. For example, a MRD WLAN can
run MRD-RD to perform frame combining for uplink traffic and MRD-TD to perform fine-
grained path selection among multiple APs for downlink traffic. This design takes advantage
of path diversity provided by multiple APs in the infrastructure and supports clients that
have only a single radio.

For clients that have multiple wireless interfaces, we can run both MRD-RD and MRD-
TD to provide both receive and transmit diversity gains in the same direction of traffic. For
example, in the downlink direction, MRD can provide receive diversity gains using multiple
receive radios installed on the client and provide transmit diversity gains from multiple
APs in the infrastructure. Intuitively, the gains of the integrated system are expected to
be greater than the individual transmit or receive diversity systems because the integrated
system provides additional communication paths between the client and the infrastructure.
Transmit diversity may be used to divert transmissions away from physical obstacles, while
receive diversity may be used in the same direction of communication to mitigate the effects
of attenuation, mobility, multipath, and thermal noise in the electronics of the receiver radio.

Chapters3 and 4 showed how each sub-system implements its own feedback-control logic.
MRD-RD uses the RDS and RDC to run the RFA protocol, while MRD-TD uses the TDS
and TDR to perform path selection and packet ordering. In merging the two sub-systems
for delivering packets in the same traffic direction, we have to decide how to connect the
data and control flows (i.e., retransmissions, rate adaptation, packet ordering) between the
RDS and TDS components at the sender and between the RDC and TDR at the receiver.

Sections 5.1 and 5.2 describe the design and implementation of the MRD-TRD system.
We evaluate the performance of MRD-TRD in Section 5.3 and summarize the chapter in
Section 5.4. Our experiments show that the combined MRD-TRD system provides up to
34% and 12% throughput gains over schemes using MRD-TD and MRD-RD respectively.
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Figure 5-1: An illustration of the MRD-TRD architecture, which combines both transmit
radios Tx 1 and Tx 2 into a single virtual MRD-TD link and runs MRD-RD over this link.

5.1 Design of MRD-TRD

MRD-TRD uses MRD-TD to tie different transmit radios into a single virtual MRD-TD link
and runs MRD-RD on top of the virtual link, as depicted in Figure 5.1. In this configuration,
the higher network layers inject packets into the RDS of the MRD-RD sub-system, which
encapsulates them into link layer frames and passes them to the TDS of the MRD-TD
sub-system. In turn, the TDS performs fine-grained path selection directly over a set of
transmit radios. In the original MRD-TD design (see Section 4.2.1), each CM running at
each available transmitter keeps a history of transmission losses and notifies TDS to switch
paths if the frame loss rate exceeds a threshold. In MRD-TRD, we modify the CM to report
to the TDS whether it has received a link layer ACK for every frame it transmits. The
TDS assumes from the CM the task of tracking link layer frame losses for each transmission
path, and performs fine-grained path selection accordingly.1 The TDS also forwards the
link layer ACK reception reports to the RDS so that the RDS can issue an RFA to the RDC
quickly after a transmission loss (detected by the absence of an ACK) at the link layer.

In MRD-TRD, only the MRD-RD layer knows about the final status of each frame
transmission at the receiver. Thus, we disable the TDS from retransmitting frames that do
not receive a link layer ACK. Otherwise, the TDS can potentially cause unnecessary retrans-
missions for frames successfully received by the passive radio at the receiver or successfully
combined after the RDC stage at the receiver.

The receiver of MRD-TRD is identical to the one in the MRD-RD sub-system. Although
the sender runs the TDS, MRD-TRD does not run the corresponding TDR component at the
receiver because the RDC already implements an ordering buffer that the TDR implements.

Figures 5-2(a) and 5-2(b) illustrate how each of the MRD-TRD components fit together

1The TDS can also cross the layer boundary between MRD-TD and MRD-RD, and use the feedback of
MRD-ACKs in conjunction with the loss status of link layer transmissions to perform path selection. We
leave the development of this idea for future work.

96



CM …

WLAN Backbone

Rest of Network

WLAN Infrastructure

WLAN Client

AP1 AP2 APi

CMCM

(central controller)
TDS

R
D

C

RDS

R
a1

R
a2

forward
frames

forward
frames

(a) Downlink

CM …

WLAN Backbone

Rest of Network

WLAN Infrastructure

WLAN Client

AP1 AP2 APi

CMCM

(central controller)

RDC

R
a1

R
a2

forward
frames

forward
frames

T
D

S

R
D

S

(b) Uplink

Figure 5-2: WLAN architecture of MRD-TRD.

to deliver downlink and uplink traffic in a single WLAN cell. In the downlink direction,
the central controller provides transmit diversity and performs fine-grained path selection
among the available APs (tuned to operate in the same radio frequency), with one of the
APs (e.g., AP1) configured as the primary AP and the rest as secondary APs.2 The primary
AP broadcasts beacon frames that the WLAN clients use to measure signal strength and
determine which cell to associate with. The secondary APs spoofs the identity of primary
AP so that path switches can take place transparently from the WLAN client. At the
client, the RDC collects received frames from multiple radios. Ra1 is the active radio that
responds to any successful link layer receptions with a link layer ACK, while Ra2 is tuned
to listen on the same radio frequency as Ra1 and provides an alternate reception path for
receive diversity at the client.

In the uplink direction, the radios reverse their roles. The client uses radios Ra1 and
Ra2 (without distinction) for transmit diversity. The set of APs provide receive diversity
for uplink traffic, with one of the APs configured as the active AP that transmits link layer
ACKs in response to successful link layer receptions.

5.1.1 Rate Adaptation

Our MRD-TRD architecture supports two forms of rate adaptation. In our implementation,
the RDS runs a single, global instance of the rate adaptation process and adjusts bit-rates

2As described in Section 4.2.2, the secondary APs may be provided by adding APs within a cell or by
co-locating them at the sites of primary APs that belong to adjacent cells
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according to the loss rates observed by the RDC. Alternatively, we can run a separate
instance of the rate adaptation process for each transmit radio and have each of them
select a transmission bit-rate independently. Thus, similar to MRD-TD’s “distributed”
rate adaptation scheme described in Section 4.2.4, each transmit radio is associated with
its own rate adaptation process. Unlike MRD-TD’s distributed scheme, which adapts to
link layer losses, MRD-TRD’s distributed scheme adapts to RDC loss statistics for improved
efficiency. Thus, the distributed rate adaptation processes need to peek into the MRD-ACKs
for the final frame loss status that the RDS receives from the RDC.

Because a rate adaptation process should only adapt to the reception status of frames
transmitted by the radio that it controls the bit-rate, each rate adaptation process needs to
maintain a set of sequence numbers of the frames transmitted by its transmit radio. The
rate adaptation process use the saved sequence numbers to deduce which loss status bits in
a MRD-ACK are relevant to it and adapt bit-rates accordingly.

We expect the “global” MRD-TRD rate adaptation scheme to behave similarly to the
one used in the MRD-RD sub-system (Section 3.4), except that it draws further benefits
from reduced frame losses provided by fine-grained path selection. Although running an
independent rate adaptation process for each transmissions path could in theory increase
adaptability, the distributed rate adaptation scheme presents many complex interactions
with both the TDS and the RDS components. It is unclear how these interactions might
impact performance. For instance, one of the distributed rate adaptation processes might
select a low bit-rate for its transmit radio A, while another process selects a high bit-rate
for its transmit radio B. It is plausible that B can observe both higher link layer frame loss
rates and higher throughput than A (e.g., the MRD-RD sub-system can recover most of
the link layer frame losses in B but not for A). Despite the higher throughput in path B,
TDS selects A for transmission because it observes fewer link layer frame losses (perhaps
because the rate adaptation algorithm selects a low bit-rate for A). One possible solution
is to modify the fine-grained path selection algorithm to include throughput as part of its
path selection metric. Developing a robust and stable distributed rate adaptation scheme
for MRD-TRD is beyond the scope of this dissertation and we defer its study to future
work.

5.2 Implementation

We ported the MRD-TD sub-system from the HostAP/Prism2 802.11b platform to the
MADWiFi/Atheros 802.11a/b/g platform on which the MRD-RD sub-system is imple-
mented. Rather than integrating the TDS logic inside the wireless interface’s driver as
we did in our old implementation, we decided to implement the TDS as a separate user-
level program called mrdsender. We also ported the RDS logic to mrdsender to facilitate
the integration of the RDS and TDS components in the MRD-TRD system. The clean
separation of the sender control logic from the driver allows us to run mrdsender at the
client or on a router attached to the WLAN’s backbone infrastructure. We can easily set
the mrdsender and the RDC daemon to communicate in different schemes (single-radio,
MRD-TD, MRD-RD, MRD-TRD).

Because we separated the RDS and TDS implementations from the driver, the mrdsender
uses UDP to transmit and receive frames between it and the APs or diversity radios. The
mrdsender encapsulates all transmission frames along with their transmission bit-rate and
transmit sequence numbers (explained later) into UDP datagrams. The mrdsender sends
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the datagrams to a target mrdforwarder daemon over the backbone network (or via the
loopback interface in the case when both mrdsender and mrdforwarder run on the same
host, e.g., a WLAN client). There is one mrdforwarder daemon process running per ter-
minal. Upon receiving the datagrams, the target mrdforwarder decapsulates them and
forwards the resulting transmission frames and their specified bit-rates into the intended
wireless interface’s raw socket for immediate transmission at the specified bit-rates. We
modified the MADWiFi driver to accept and select the bit-rate specified for each frame
and return the status of the transmissions (i.e., the success or failure of receiving the link
layer ACK for the transmitted frame) to the mrdforwarder, which then relays it to the
mrdsender.

In addition to the changes above, we introduced four optimizations in MRD-TRD to
improve its efficiency. We describe their details below.

5.2.1 Improving throughput: Pipelined transmissions

The delay for the mrdsender to receive a feedback after a transmission takes at least sev-
eral hundred microseconds, which is comparable to the duration of transmitting a frame.
To improve throughput, the mrdsender does not wait for the status of every frame trans-
mission before transmitting the next frame, i.e., the transmissions are pipelined. In our
implementation, the depth of the pipeline, P , is 4 frames and appears to work well on our
testbed. The mrdsender blocks if more than P frames are transmitted without receiving
their corresponding feedback from the mrdforwarder.

One side effect of pipelined transmissions is that it can increase retransmission delays.
The original implementation assumes that RDS receives the transmission status of a frame
immediately after its transmission so that it can set the rfa flag with the appropriate value
in the CTX header (Figure 3-7(a)) of a subsequent frame. Because the mrdsender pipelines
the transmissions, the RDS might not receive the feedback of a transmitted frame until
after sending one or several subsequent frame(s) into the pipeline. Hence, the RDS may not
issue an RFA for a failed transmission until after (up to) P frames have been transmitted.
The RFA delays add delays to obtaining MRD-ACKs from the RDC, which in turn add
delays to retransmissions. However, the increased delays are usually insignificant (≈ 1 − 2
ms) because P is small (4). Also, the RFA delays should not affect throughput because of
pipelined transmissions.

After implementing pipelined transmissions and conducting initial tests, we observed
increased levels of link layer losses in the MRD-TD and MRD-TRD schemes. Because
of pipelining, the mrdsender can queue up (up to) P − 1 transmission frames behind a
transmit radio before the TDS switches subsequent transmissions to a different but nearby
transmit radio. Now, multiple transmit radios have backlogged frames for transmission, thus
increasing the level of contention and collisions in the channel.3 To alleviate contention,
we incorporated a mechanism in the mrdsender to let the pipeline drain before the TDS is
allowed to switch transmission paths. Although the system sacrifices some throughput on
every path switch, the benefits of fine-grained path selection still outweigh its costs, as we
will see in Section 5.3.

3The minimum contention window size in 802.11a and 802.11g has reduced from 31 slots (in 802.11b) to
15 slots. Thus, there is 1

15
= 6.67% chance for a collision in a scenario that involves two backlogged transmit

radios.
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5.2.2 Identifying stale feedback from the RDC: Numbering the transmis-
sion sequence
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Figure 5-3: Time diagram showing the problem of stale feedback (left) and its solution
(right). Symbols s, t, r, v label respectively the values for seq, tseq, useq (for RFA), and
the MRD-ACK status feedback vector. Note that only one transmission can occupy the
channel in the wireless medium at a time. Dotted lines indicate the length of time that a
frame resides inside the transmit radio’s buffer.

We discovered that there were many instances where stale feedback from MRD-ACKs
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triggered unnecessary retransmissions. Figure 5-3(a) shows an example illustrating how it
might happen. The example assumes no transmission pipelining and begins with the loss
of frame 1 followed by a successful transmission of frame 2 that includes an RFA for frame
1. When the RDC receives frame 2, it sets the MRD-ACK timer D, which expires during
the reception of frame 5. Then, the RDC reports the loss of frame 1 through MRD-ACK 1.
Observe, however, that the final transmission status of frame 1 is unknown to the RDS thus
far, so frame 5 includes a RFA for frame 1 and causes the RDC to set a fresh MRD-ACK
timer to honor the RFA request.

Upon receiving MRD-ACK #1, the RDS learns about the loss of frame 1 and retrans-
mits it. Meanwhile, the second MRD-ACK timer expires and the RDS sends MRD-ACK
#2 before the arrival of frame 1’s retransmission. Hence, MRD-ACK #2 contains stale
information about the status of frame 1 because it reports the status of frame 1’s first
transmission (failure) as opposed to the status of its second transmission. Let’s suppose
that the second transmission of frame 1 fails to receive a link layer ACK but succeeds after
frame combining. Because the RDS cannot tell whether the status in MRD-ACK 2 #is
stale, it accepts the failure status of frame 1 from MRD-ACK #2 and transmits frame 1
for a third time, even though the RDC has successfully recovered the errors of frame 1’s
second transmission.

To solve the problem, we embed into each frame a 11-bit transmission sequence number,
tseq,4 which the RDS increments on every transmission, including retransmissions, indepen-
dently from the frame’s seq value (Section 3.5.2). Thus unlike seq, which remains fixed once
assigned to a frame, tseq increases monotonically to allow the RDS compare the transmit
order of any two given transmissions. Whenever the RDC sends a MRD-ACK, it informs the
RDS about the latest transmission it has received thus far, by inserting the latest-received
tseq value into the MRD-ACK header. The RDS can then decide that a given status bit
in the MRD-ACK is stale if the current tseq of the frame in the retransmission buffer is
greater than the tseq value indicated in the MRD-ACK. Figure 5-4 shows the new format
of the data frame and MRD-ACK headers.

Figure 5-3(b) illustrates how tseq solves the stale feedback problem in our original
example. Because the RDC receives the 7th transmission (frame 7) before sending MRD-
ACK #2, the RDC assigns tseq = 7 in the MRD-ACK #2’s header. Meanwhile, the second
transmission of frame 1 is the 8th transmission in the sequence so tseq = 8. Because the
latest transmission sequence of frame 1 is greater than the one found in MRD-ACK #2, the
RDS considers frame 1’s failure status in the MRD-ACK as stale and ignores it. Then, the
RDS transmits the next frame (frame 9) in the sequence. The RDS will eventually receive
the status of the second retransmission of frame 1 from MRD-ACK #3 (not shown).

5.2.3 Draining stalled traffic: Early retransmissions

While running some TCP throughput tests over a low-loss link using MRD-RD or MRD-
TRD in both traffic directions, we encountered large variations in the measured throughput
between trials.

The main problem comes from our implementation of the RFA protocol, which uses
only subsequent data frames to issue an RFA to the RDC. Thus, the RDS can fall into a
bad state where it cannot issue an RFA because the transmission queue is empty. This

4We managed to use 802.11’s 12-bit sequence number field to embed the 11-bit tseq field. The reason
why tseq is 11-bits long is that it (conservatively) ensures that the tseq value do not encounter wrap-around
value problems among the unacknowledged frames in the RDS retransmission buffer.
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Figure 5-4: New MRD-ACK control information.

problem is present even when MRD-RD or MRD-TRD is running on one direction but is
especially pronounced when a TCP connection runs over a system that has either MRD-RD
or MRD-TRD enabled in both directions of traffic.

The following example illustrates how the problem usually happens. First, assume that
the RDC on the sender side fails to receive one of the TCP ACKs as a result of frame errors.
The RDS on the receiver side continues to transmit the subsequent TCP ACKs but may
not issue an RFA because of feedback delays in the transmission pipeline (Section 5.2.1).
The original frame loss presents a gap in the sequence so the RDC at the sender side keeps
the incoming TCP ACKs in the ordering buffer. If, at the same time, the TCP window
at the TCP sender is full, no additional forward TCP data packets would reach the TCP
receiver and as a result, no additional TCP ACKs are generated. Thus, by the time that
the link layer feedback reporting the loss of the original TCP ACK frame makes it back
to the RDS in the TCP receiver, the receiver’s transmission queue is empty, and it cannot
issue an RFA (because RFAs were always piggybacked on data frames). In this case, both
the TCP sender and TCP receiver are simultaneously waiting for timeouts to occur: The
RDS on the receiver side cannot issue an RFA so it is waiting on a retransmission timeout
(Ts = 90 ms). At the same time, the TCP sender is waiting for TCP ACKs, all of which are
blocked inside the ordering buffer, and is waiting for a retransmission timeout (RTOmin =
200 ms in Linux) before it retransmits the un-acknowledged TCP segment. As a result, the
traffic stops dead in both directions for a substantial duration, impacting the throughput
of the TCP flow.

The crux of the problem is that empty transmission queues are preventing the RDS from
sending RFAs. One solution is to have the RDS detect when a transmission queue becomes
empty and transmit a pure RFA frame as needed.5 Alternatively, the RDS can retransmit
one of the outstanding unacknowledged frames in the send buffer early (i.e., without a

5Note that simply reducing the retransmission timer would not work because it can increase the number
of unnecessary retransmissions even when the transmission queue is not empty.
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MRD-ACK) whenever the transmission queue and the pipeline become empty. The RDS
can use the early retransmissions to issue an RFA.6 The latter strategy usually yields greater
throughput because it does not need to wait for the MRD-ACK delay, D, before retrans-
mitting frames. However, the cost of the latter strategy is the possibility of retransmitting
frame that the RDC has received correctly. The RDS waits until the pipeline empties before
retransmitting a frame early because we wish to perform early retransmissions during times
when the channel is less busy. Although there is waste associated with retransmitting a
successfully recovered frame, the cost of transmitting a pure RFA is there even if it is small.
After weighing the trade-offs above, we chose to implement early retransmissions to drain
stalled traffic to maximize throughput.

5.2.4 Out-of-order packet delivery

Because some applications can tolerate out-of-order packet delivery and it would be useful
to flag them so that they can be immediately delivered to the higher network layers right
after a successful reception, avoiding potential delays in MRD’s packet ordering buffer. We
have incorporated this feature in our current implementation of the MRD-RD and MRD-
TRD systems. The new CTX header adds an unord bit field to flag frames for unordered,
immediate transmission (Figure 5-4(a)).

Out-of-order packet delivery is especially useful for transmitting MRD-ACKs in a WLAN
that has the MRD-RD or MRD-TRD system enabled in both directions of traffic. Because
both RDC and RDS run on the same host machine, the RDC, after receiving an RFA
from a remote terminal, can use the local RDS to transmit the MRD-ACK in the return
direction. Doing so takes advantage of receive diversity in the return direction and improve
the delivery rate of MRD-ACKs. Because MRD-ACKs do not require ordered delivery to
the RDC, it is safe to mark them for immediate delivery. The RDC only inserts normal
transmission frames into the ordering buffer so they would not block in the event of a lost
MRD-ACK (or a loss of any other frames marked unord).

5.3 Evaluation

We run UDP throughput measurements to evaluate the performance of MRD-TRD. First,
we describe our testbed setup followed by our throughput results. We present the underlying
frame loss and recovery rates and the distribution of the selected bit-rates to help explain
how the MRD communication schemes improve performance over the single-path schemes.
We conclude the section by examining the packet delivery delay characteristics of the MRD-
TRD system.

5.3.1 Setup

We conducted five UDP downlink experiments under highly varying channel conditions
generated by a moving laptop client receiver. We used the same testbed setup as shown
in Figure 3-8, except we configure node R1 as a primary (802.11a Master-mode) AP and
node R2 as a secondary (802.11a Monitor-mode) AP.7 We configure the laptop client C

6It may be odd at first to issue an RFA for the frame that is already being retransmitted. But often,
there can be other unacknowledged frames in the send buffer and the returning MRD-ACK may contain
useful status report about them.

7The host machines R1 and R2 have been upgraded to Intel Celeron desktops running at 2.66GHz.

103



Figure 5-5: Laptop Setup. The primary radio is a Proxim 8480-WD 802.11a/b/g CardBus
adapter and the secondary radio is an internal miniPCI module extracted from a Netgear
WAG311 PCI card. The secondary is attached to an external 5dBi 2.4GHz omni-directional
rubber duck antenna. The 802.11b USB dongle provides a back-channel connection to the
building’s production wireless network. The back-channel allows experiments to be launched
and monitored from the IBM T30 laptop.

as a (802.11a Managed-mode) receiver. Our testbed also includes a central controller (not
shown) that runs mrdsender and connects to R1 and R2 via a wired network to generate
UDP traffic and run the sender-side processes in all of the experiments.

The five experiments evaluate the performance of the conventional schemes (R1 and
R2) that used a single-radio AP, of the MRD-TD scheme (TD) that used multiple APs
as transmitters, of the MRD-RD scheme (RD) that used multiple radios on the client as
receivers, and of the MRD-TRD scheme (TRD). In the RD experiments, we enable only
the downlink components of the MRD-RD sub-system (thus, the client uses multiple radios
to receive frames but uses its primary radio to transmit MRD-ACKs via a single-path link
in the uplink direction), while the TRD experiments enable uplink MRD-RD in addition
to the downlink MRD-TRD components (thus, the client uses its primary to transmit
MRD-ACKs via a MRD-RD link in the uplink direction). The reason why we enable uplink
receive diversity in the TRD experiment is to keep the system’s implementation simple. Our
implementation of mrdforwarder automatically forwards frames to and from any operating
radios. Because the TRD experiments enable the secondary AP for transmit diversity
in the downlink direction, mrdforwarder will automatically forward uplink traffic to the
mrdsender as well. Thus, disabling receive diversity in the uplink direction will require an
additional mechanism to filter all frames received by the secondary AP.

Because the client needs to support receive diversity for MRD-RD and MRD-TRD
experiments, we had to install on the laptop client an additional wireless interface as a
passive radio. Although it is possible to stack two interfaces next to each other in the
laptop’s PC-Card slots, such a configuration could potentially generate noise and crosstalk
between the interfaces’ radio chain. Instead, we installed the second wireless interface in
the laptop’s internal miniPCI slot (Figure 5.3.1). We then encountered a problem with
the passive interface receiving substantially fewer total frames than the primary interface.
There were two causes that contributed to the problem. First, the IBM T30 laptop’s
internal antenna with an impedance that is specifically designed for 802.11b/g interfaces
that operated in the 2.4GHz band. Because of mismatched impedance, this type of antenna
would attenuate the signals transmitted in 802.11a’s 5GHz band. Second, our tests show
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that MADWiFi’s hardware abstraction layer increases the minimum received signal strength
threshold (also known as the receive sensitivity threshold) when the interface operates in
the 802.11 Monitor mode. The interface filters frames received with a signal strength below
the sensitivity threshold. Thus, the increased sensitivity threshold caused the interface to
reject more frames.

We used two measures to solve the two problems above. First, we attached a 5dBi
gain 2.4GHz external antenna to the miniPCI interface as shown in Figure5.3.1. Although
we still used a 2.4GHz antenna (because that was what we had available at the time of
the experiments), the external antenna performed substantially better than the internal
one. Second, we patched the driver to override the default threshold in Monitor mode.
The combination of these fixes helped the passive radio to receive a comparable number of
frames to the primary radio. However, we still noticed that the fraction of those frames
that are received erroneously is still consistently (≈ 10% − 20%) higher than the primary
radio across all of our MRD-RD and MRD-TRD experiments.

The RDSs in both the RD and TRD experiments use an identical set of MRD-RD
parameter values listed in Section 3.6.1 for delivering downlink UDP packets, except we
use a MRD-ACK delay of D = 4 ms in the new implementation. The only type of frames
delivered in the uplink direction are MRD-ACKs, which are not retransmitted if not received
by the RDS.

The TDSs in both the TD and TRD experiments use H = 16 and T = 12 for path
selection. We tested several H and T values and found that the increased threshold values
(from H = 4 and T = 2 in the MRD-TD experiments in Chapter 4) tend to perform better
on our new testbed. We have not found any compelling reasons that explain why the new
values work better. Determining how to tune the H and T parameters that give the best
results for MRD-TRD is an open topic for future investigation.

5.3.2 Throughput

Figure 5-6(a) shows the throughput of each trial of our experiment. The average throughput
over five trials for the single-radio experiments R1 and R2 were 16.8 Mbps and 12.1 Mbps.
Although the node locations are nearly identical8 to the ones used in the uplink experiments
in Section 3.6.1, the throughput of the single-radio downlink experiments is about 2× greater
than the corresponding experiments in the uplink direction. Thus, the wireless channel
appears to be fairly asymmetric in our experiments.

The throughput averages for the TD, RD, TRD experiments are 19.2 Mbps, 20.3 Mbps,
and 21.4 Mbps respectively, representing improvement factors of 1.14×, 1.21×, and 1.27×.
The gains are substantial but not as impressive as the 1.9-3.0× improvements that we ob-
served in the uplink experiments. We attribute some of the reduced gains to the signal
attenuation caused by the mismatched external antenna on the client’s passive radio. An-
other reason for reduced relative gain might be the increased base-line reference throughput
from the single-radio experiments, which decreases the maximum potential gain for any
MRD scheme. To test the latter hypothesis, we reduced the transmit power9 of the radios
at R1 and R2 to reduce their base-line throughput and repeated the experiments.

8The height of the R2 antenna in the downlink experiments in this chapter is approximately 30 cm lower
than the uplink experiments in Chapter 3. Otherwise, the physical locations of the nodes are identical across
the downlink and uplink experiments.

9The transmit power reduced from a maximum value of 60 to 6 in the interface’s register but we have no
documentation about how these values relates to the actual transmit power.
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(d) One-second throughput distribution (Low Tx
Power)

Figure 5-6: Throughput Analysis (downlink). Top: Throughput of single-path, MRD-
TD, MRD-RD, and MRD-TRD experiments; throughput of each trial is represented by
a bar within an experiment set. Bottom: Distribution of throughput averaged over non-
overlapping one-second window samples. The bottom set of two graphs came from experi-
ments that used a low transmit power setting.

As expected, the reduced transmit power reduced the throughput of all experiments by
27% to 40%, as shown in Figure 5-6(b). The improvement factors of TD, RD, and TRD over
R1 in the new set of experiments changed to 1.08×, 1.30×, 1.46×. The next section reveals
an implementation bug that could have contributed to the reduced throughput improve-
ments for the downlink experiments. Interestingly, the relative gains over R1 decreased for
TD but increased with RD and TRD.

Overall, the relative gains of TRD over TD and over RD are 1.11× and 1.05× in the
full transmit power experiments; 1.34× and 1.12× in the low transmit power experiments.
Hence, the integrated MRD-TRD system does provide gains over the individual MRD sub-
systems.

We plot the throughput distribution of the one-second non-overlapping window samples
for both full and low transmit power experiments in Figures 5-6(c) and 5-6(d). Not only
does the plot shows TRD has higher throughput samples than all other communication
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Figure 5-7: Frame loss rates FLR (Top) and packet loss rates PLR (Bottom) averaged over
all five trials of all downlink experiments using low transmit power.

schemes, it also shows substantially lower throughput variation than the rest of the schemes.

5.3.3 Loss Analysis

We plot the average frame loss rates (FLR) and packet loss rates (PLR) for all of the
downlink experiment in Figure 5.3.3. For the RD and TRD experiments, FLR is defined to
be the number of transmitted frames for which the RDS did not receive a link layer ACK
from the receiver’s active radio. PLR is defined to be the number of packets that exhausted
their retransmission limit and were not delivered successfully to the receiver.

All FLRs are above 14% because our rate adaptation algorithm uses a set of aggressive
minimum delivery thresholds to improve throughput (Section 3.4). On the other hand, the
TD experiment produced the lowest FLRs among all experiments, because the fine-grained
path selection algorithm aims to reduce frame losses. RD had the highest FLRs because
the RDS maintains a high bit-rate despite high levels of frame losses in the link between
the transmitter and the primary receive radio, as long as the RDC can recover enough
frames from soft site selection or frame combining. Not surprisingly, the FLRs of the TRD
experiments lie between the FLRs of TD and RD. The results show that the TDS can work
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(a) Frame loss/recovery rates (Full Tx Pow.)

Exp. FLR FRR FRRSS FRRFC

RD 0.283 0.492 0.400 0.092

TRD 0.229 0.424 0.326 0.097

(b) Frame loss/recovery rates (Low Tx Pow.)

Exp. FLR FRR FRRSS FRRFC

RD 0.331 0.500 0.463 0.037

TRD 0.260 0.382 0.340 0.043

Table 5.1: Frame loss (FLR) and frame recovery rates (FRR) averaged over five trials of low
transmission power and high channel variability downlink experiments. FRR is decomposed
into two sources of recovery: soft selection (FRRSS) and frame combining (FRRFC).

in conjunction with the RDS to help reduce frame loss rates and as a result, increase the
overall throughput.

The PLR of the R1 and R2 experiments are about four folds higher than TD and over
an order of magnitude higher than the RD and TRD experiments. One reason that explains
is that losses occur in bursts more often in the single-path schemes than the schemes that
use path diversity. Thus, R1 and R2 have proportionately more packets that exhaust their
retransmission limit than the MRD schemes. The absolute PLRs (1.5 - 4.1%) of R1 and
R2 are “small” but these packet loss levels can cause serious throughput degradations in
TCP ??.

However, we later uncovered a timeout bug in the implementation that prevented the
transmitter to retransmit a frame up to the set limit of 7 (excluding the first transmission
of a frame) in the single-radio experiments. The timeout bug was clearing frames from
the sender’s buffer prematurely and reduced the effective retransmission limit to about 2
or 3 for each frame. As a result, the bug could have increased the packet loss rate. At
the same time, the bug could also have increased the measured throughput for the single-
radio schemes in the previous section because the bug essentially reduces the upper limit
of the total number of retransmission failures for each lost packet. Because the timeout
bug affected only the single-radio receiver schemes, the bug might have also impacted the
observed improvement of MRD-TRD over these schemes.

5.3.4 Error Recovery Rates

As we learned from the previous uplink experiments in Section 3.6.2, the performance of the
receive diversity sub-system depends on its ability to recover frame losses from site selection
(i.e., those frames correctly received by the passive radio at the receiver) and from frame
combining.

Table 5.3.4 shows the frame loss and the decomposed recovery rates for the downlink
RD and TRD experiments. In the experiments that used full transmit power, the FRR
values are comparable to the values measured for the uplink experiments.

5.3.5 Transmission bit-rates

The performance of every communication depends on the bit-rates that were selected for
frame transmissions as well. Figures 5-8(a) and 5-8(b) show that the TDR experiments had
a higher and narrower transmission bit-rate distribution than all of the other experiments,
which help produce high and consistent measured throughput in our experiments.
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Figure 5-8: Distribution of selected bit-rate for each downlink frame transmission.
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Figure 5-9: One way delay jitter for downlink experiments using low transmit power.

5.3.6 Delay Analysis

We use the method described in Section 3.6.2 to compute the one-way delays for each de-
livered packet and plot the resulting distribution in Figure 3-15. The shape of the delay
distributions of the R1, R2, RD experiments are similar to the ones for the uplink experi-
ments presented in Section 3.6.2. The TRD experiments had slightly lower delays than RD
because TRD had lower frame loss rates and therefore, required fewer retransmissions than
RD.

In contrast to the conclusion drawn in Section 4.4.3, the TD experiments did not re-
duce delays over the single-radio experiments of R1, even though TD was able to reduce
a great number of frame losses over R1 as shown in the previous section. We attribute
the delay to the interaction between retransmissions in MRD-TD and the frame transmis-
sion pipeline. Unlike in R1 and R2, where retransmissions are performed locally at the
transmitter, retransmissions in the MRD-TD scheme are performed by the TDS running
over the backbone infrastructure. Thus, the actual retransmission might not occur until
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after a round-trip delay plus some number of transmission delays of frames that are queued
in the transmission pipeline. The process of filling an empty transmission pipeline, which
happens whenever the TDS switches transmission paths, also adds a small amount of delay
in delivering a packet.

5.4 Summary

This chapter covers the design of MRD-TRD, a system that integrates the MRD-RD and
MRD-TD sub-systems described in the previous two chapters to provide gains of both
receive and transmit diversity in both uplink and downlink directions of data delivery. We
provide a clean implementation of the system, which integrates the sender-side components
(the RDS and TDS) into a single user-level process that can run on a central router and
forward frames over the network to/from a set of diversity radios.

To enhance the efficiency of the system, we introduced four optimizations in the MRD-
TRD system. These include:

• Pipelined transmissions, which helps improve throughput in presence of feedback de-
lays in the backbone network;

• Transmit sequence numbering, which helps the RDS to identify stale feedback from
the RDC

• Early retransmits, which helps keep the channel utilized when not busy and helps
prevent traffic (especially TCP) from stalling;

• Out-of-order packet delivery, which reduces latency for applications that do not require
ordered packet delivery

We measured the downlink UDP transmission performance of MRD-TRD and compared
it against MRD-RD and MRD-TD. Our results show that MRD-TRD provides up to 34%
and 12% throughput gains over MRD-TD and MRD-RD respectively. Furthermore, MRD-
TRD exhibits much less throughput variation than the MRD-RD and MRD-TD schemes.

For future work, it would be interesting to examine TCP performance, how the per-
formance change as we add more radios at the transmitter and receiver, and evaluate how
MRD-TRD performs in a scenario that consists of many contenders.
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Chapter 6

Conclusion and Future Work

This chapter provides a summary of this dissertation and discusses directions for future
work.

6.1 Summary

In this dissertation, we addressed the challenge of improving performance and packet deliv-
ery efficiency in wireless LANs. We showed how channel variabilities in the wireless medium
can lead to high frame loss rates and clustered loss patterns. They cause inefficient packet
delivery in current wireless WANs because the transmitter can retransmit wastefully or
select a conservatively low bit-rate to compensate for losses. As a result, connections often
suffer from low throughput, increased packet loss rates, and inconsistent performance.

Although diversity is a commonly known technique used to mitigate channel variations in
communications theory, we observe that existing wireless LANs adopts a model that treats
each terminal as an independent entity and do not take advantage of the path diversity that
inherently exists among nearby APs or radios in the system’s infrastructure. To this end, we
developed the Multi-Radio Diversity system, which includes the following key components
to help improve performance in a wireless LAN:

• MRD-Receive Diversity (MRD-RD). This sub-system allows a wireless LAN to
reduce losses by using multiple radio receivers. It funnels all received versions of the
same transmission from different radios or APs to a central controller, so that it can
forward onto the rest of the network an error-free version of the frame while filtering
the redundant ones. We introduced a practical block-based frame combining algo-
rithm, a technique that can produce an error-free version of a frame even when none
of the receivers manage to receive an error-free version of the original transmission.
For efficient retransmissions, MRD-RD incorporates the request-for-acknowledgment
(RFA) protocol. MRD-RD uses RFA to retrieve from the central controller the fi-
nal reception status of a given transmission but maintains high throughput by not
blocking subsequent transmissions immediately after a transmission error. In addi-
tion, MRD-RD uses an enhanced rate adaptation algorithm that adjusts transmission
bit-rates using the losses observed at the central controller.

• MRD-Transmit Diversity (MRD-TD). This sub-system allows a wireless LAN to
reduce losses by using multiple transmitters. It uses spoofing to decouple the process
of associating a client with an AP from the process of delivering data frames to the
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client to facilitate low-overhead path switching, and incorporates a practical fine-
grained path selection heuristic that effectively reduces burst losses in environments
with high channel variations.

• MRD-Transmit and Receive Diversity (MRD-TRD). This system integrates
both MRD-RD and MRD-TD to combine the gains of receive and transmit diversity
and further increase the efficiency of packet delivery in wireless LANs.

In addition, this dissertation demonstrates two key results:

• MRD helps reduce losses and improves efficiency and throughput without
consuming much wireless bandwidth. We have conducted a wide variety indoor
measurements that show packet loss rate reductions of up to 75% and throughput
improvements of up to 3×. Even though MRD does not aggregate bandwidth over
multiple radio frequencies, our measurements show that MRD can sometimes even
achieve higher throughput than bandwidth aggregation.

• Reducing loss variance improves the efficiency of a simple rate adaptation
algorithm. While the conventional wisdom in managing link quality is to have the
sender adapt the bit-rates first before attempting a handoff (using another path),
MRD takes an opposite approach that allows a sender to communicate over multiple
paths first, then adapt the bit-rate. MRD exploits path diversity to reduce both frame
losses and loss variations. Thus, even a simple rate adaptation algorithm, such as the
one we used, can maintain high throughput, despite high losses and high variations
in the individual paths.

6.2 Future Work

The MRD wireless architecture presents many interesting areas that can be further devel-
oped and greatly improved. We describe a few of them below.

Scalability. One of the issues we have not addressed in this dissertation is scaling MRD-
enabled wireless LANs to tens and hundreds of APs, while coping with mobility. The
system needs a way to manage load on MRD’s central controller and traffic on the back-
bone network as the number of APs increase in the network. One possibility is to scale
the central controller using a cluster of servers and implement a classifier that balances
load by distributing traffic from different clients to a different server. Another possibility
is to partition the network into smaller network segments and deploy a central controller
to manage the traffic for each segment. In addition to traditional mobility problems such
as authenticating and managing IP address assignments for a mobile client moving across
segment boundaries, the problem of migrating MRD state between the central controllers
without disrupting the flow of the clients’ traffic must be solved.

Another research direction for improving scalability is to develop mechanisms for re-
ducing traffic load on the backbone network. Currently, the receive diversity sub-system
forwards all received version of the same transmission to the central controller. Thus, if N
APs are within reception range of a client, the traffic load on the backbone increases by up
to a factor of N . One key observation is that the bulk of the traffic is redundant information
that can be filtered out by either snooping on the wireless medium (e.g., do not forward
a client’s transmission to the central controller if the passive AP detects a link layer ACK
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from the active AP) or snooping on the backbone (e.g., do not forward a client’s transmis-
sion if another AP has already forwarded an error-free reception of the frame). To support
an infrastructure that is interconnected over a wireless backbone, we might even adapt a
more sophisticated reception reporting scheme that is used in the ExOR protocol [25] to
help reduce load on the backbone.

Deprecating the Handoff Process. One of the contributions of MRD’s system de-
sign is removing the constraint that a sender can only communicate with one AP (or radio)
at a time. However, the current MRD design still requires a client to associate with a pri-
mary (active) AP and to perform handoffs between primary APs, which could disrupt the
flow of the clients’ traffic. An open question is whether we can replace the handoff process
completely by extending the function of the RDC to manage client mobility. We can config-
ure the client to periodically send a broadcast message and use the RDC to determine the
set of APs that could be used to communicate with the client. The RDC can then choose
the most appropriate AP to be the primary AP (to be responsible for sending link layer
ACKs for uplink transmissions) for a given client at a given location. In such a system, the
client should not need to disrupt traffic flow for scanning and discovering unknown APs as
it moves within the network.

Dynamic Role and Channel Assignment. An extension of MRD is the notion of
dynamic channel assignment and using the technique to help balance load and improve ca-
pacity in the network. The current MRD design assumes a cellular frequency reuse model
where the operating radio frequency is statically assigned to each primary (active) AP. As
a result, the roles of primary and secondary APs (used to provide alternative transmission
and reception paths) are also statically assigned for each AP (or for each co-located radio
in a single AP) within a cell.

Static radio frequency and role assignments can be sub-optimal in many scenarios. For
example, many wireless clients can be clustered within a conference room covered by a
single cell. Instead of assigning a single radio frequency for that cell, the system ought to
be able to dynamically assign multiple operating frequencies to that cell and balance load
by re-distributing the clients to operate at the different frequencies. Dynamic frequency
assignment is a classical problem for cellular phone networks [].XXX Similarly, the system
should be able to assign different (primary and secondary) roles to each AP so that the
system can strike a balance between the number of operating frequencies that can be sup-
ported for a given area (i.e., the number of APs designated as primary) and coverage (i.e.,
the number of APs designated as secondary). Solving this problem will require a better
understanding about how capacity and achieved throughput are related, and developing a
model that predicts how throughput gains from path diversity trades off with gains from
aggregating multiple channels. We alluded to some of these issues in Section 3.7.2.

Exploiting Capture Effect. When two or more senders transmit simultaneously, one
of the transmissions could capture the receiver to produce a successful reception despite
interference from other ongoing transmissions. The success of capture depends on the mod-
ulation scheme and the relative signal strengths of the arriving signals that the receiver
observes. A recent measurement study shows that capture effects can be significant in
networks based on 802.11g [47].

Because MRD uses multiple receive radios, there could be multiple opportunities for
receiving captured transmissions. It would be interesting to quantify and measure the gains
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of capture effects in the MRD system. Moreover, the capture properties are likely to be dif-
ferent at different receivers because of path diversity. While one transmitter might capture
the reception at one receiver, another transmitter might capture a receiver at a different lo-
cation. Thus, with multiple receive radios, the receiver-side of the system could potentially
be used to 1) identify capture events when they occur and 2) determine which (subset of)
transmitters were involved in the capture event. Determining how to exploit this informa-
tion to improve performance is an interesting open topic.

Other Improvements. We have also outlined several other kinds of improvements through-
out Chapters 3-5. These include:

• Modifying the Medium Access Control protocol to use an idle-sense mechanism [43, 86]
or become MRD-aware to avoid excessive congestion window back-offs (Section 3.7.3).

• Enhancing the fine-grained selection algorithm by adapting the H and T thresholds
based on relative long-term channel quality in each transmission path (Section 4.2.1).

• Refining the frame combining algorithm by incorporating an incremental CRC com-
putation scheme [27, 81] to reduce the running time and hence, permitting the MRD
to run a stronger frame combining process (Section 3.6.2).

• Exploring and evaluating various rate adaptation schemes and other optimizations
described in Sections 3.6.2, 3.7.1 and 5.1.1 to improve MRD’s throughput and delay
performance.

Despite the laundry list of potential improvements, we have shown that the current
MRD system can improve throughput by up to a factor of 3× over conventional wireless
LANs.
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